The basic Gauss hypergeometric matrix function and its matrix q-difference equation

In this paper, the basic Gauss hypergeometric matrix function is introduced and studied. The ratio test is used to determine the radius of convergence in which this matrix function is absolutely convergent. The domains in which the basic Gauss hypergeometric matrix function is invertible and its -de...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear & multilinear algebra Ročník 62; číslo 3; s. 347 - 361
Hlavní autor: Salem, Ahmed
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 04.03.2014
Taylor & Francis Ltd
Témata:
ISSN:0308-1087, 1563-5139
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, the basic Gauss hypergeometric matrix function is introduced and studied. The ratio test is used to determine the radius of convergence in which this matrix function is absolutely convergent. The domains in which the basic Gauss hypergeometric matrix function is invertible and its -derivative is bounded are determined. Hypergeometric matrix -difference equation is introduced and two solutions to this equation are found as terms of basic Gauss hypergeometric matrix function. The -integral representation for this matrix function is established.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0308-1087
1563-5139
DOI:10.1080/03081087.2013.777437