The basic Gauss hypergeometric matrix function and its matrix q-difference equation
In this paper, the basic Gauss hypergeometric matrix function is introduced and studied. The ratio test is used to determine the radius of convergence in which this matrix function is absolutely convergent. The domains in which the basic Gauss hypergeometric matrix function is invertible and its -de...
Uloženo v:
| Vydáno v: | Linear & multilinear algebra Ročník 62; číslo 3; s. 347 - 361 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
04.03.2014
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0308-1087, 1563-5139 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, the basic Gauss hypergeometric matrix function is introduced and studied. The ratio test is used to determine the radius of convergence in which this matrix function is absolutely convergent. The domains in which the basic Gauss hypergeometric matrix function is invertible and its
-derivative is bounded are determined. Hypergeometric matrix
-difference equation is introduced and two solutions to this equation are found as terms of basic Gauss hypergeometric matrix function. The
-integral representation for this matrix function is established. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0308-1087 1563-5139 |
| DOI: | 10.1080/03081087.2013.777437 |