Taxi Demand Method Based on SCSSA-CNN-BiLSTM

The randomness of passengers’ travel and the blindness of empty drivers seeking passengers can lead to a serious imbalance in the spatio-temporal distribution of taxi supply and demand. In order to realize the accurate prediction of taxi demand, promote a balance between taxi supply and demand, and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Sustainability Ročník 16; číslo 18; s. 7879
Hlavní autori: Guo, Dudu, Sun, Miao, Wang, Qingqing, Zhang, Jinquan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.09.2024
Predmet:
ISSN:2071-1050, 2071-1050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The randomness of passengers’ travel and the blindness of empty drivers seeking passengers can lead to a serious imbalance in the spatio-temporal distribution of taxi supply and demand. In order to realize the accurate prediction of taxi demand, promote a balance between taxi supply and demand, and respond to the requirements of the sustainable development of urban transportation, a travel demand prediction model based on Sparrow Search Algorithm incorporating sine-cosine and Cauchy variants (SCSSA), Convolutional Neural Network (CNN), and Bi-directional Long Short-Term Memory (BiLSTM) is proposed. The key factors affecting travel demand are identified by constructing a set of influencing factors for feature correlation analysis. In order to overcome the overfitting or underfitting phenomenon caused by the improper parameter configuration of the CNN-BiLSTM model, the SCSSA algorithm is utilized to optimize the model. By fine tuning the model parameters, the algorithm enhanced the model’s adaptability to dataset characteristics and improved the accuracy of the prediction results. Compared with CNN, LSTM, CNN- LSTM, CNN-BiLSTM, and SSA-CNN-BiLSTM models, the Root Mean Square Error is decreased by 10.77 on average.
AbstractList The randomness of passengers’ travel and the blindness of empty drivers seeking passengers can lead to a serious imbalance in the spatio-temporal distribution of taxi supply and demand. In order to realize the accurate prediction of taxi demand, promote a balance between taxi supply and demand, and respond to the requirements of the sustainable development of urban transportation, a travel demand prediction model based on Sparrow Search Algorithm incorporating sine-cosine and Cauchy variants (SCSSA), Convolutional Neural Network (CNN), and Bi-directional Long Short-Term Memory (BiLSTM) is proposed. The key factors affecting travel demand are identified by constructing a set of influencing factors for feature correlation analysis. In order to overcome the overfitting or underfitting phenomenon caused by the improper parameter configuration of the CNN-BiLSTM model, the SCSSA algorithm is utilized to optimize the model. By fine tuning the model parameters, the algorithm enhanced the model’s adaptability to dataset characteristics and improved the accuracy of the prediction results. Compared with CNN, LSTM, CNN- LSTM, CNN-BiLSTM, and SSA-CNN-BiLSTM models, the Root Mean Square Error is decreased by 10.77 on average.
Audience Academic
Author Sun, Miao
Zhang, Jinquan
Guo, Dudu
Wang, Qingqing
Author_xml – sequence: 1
  givenname: Dudu
  surname: Guo
  fullname: Guo, Dudu
– sequence: 2
  givenname: Miao
  orcidid: 0009-0008-7259-3147
  surname: Sun
  fullname: Sun, Miao
– sequence: 3
  givenname: Qingqing
  surname: Wang
  fullname: Wang, Qingqing
– sequence: 4
  givenname: Jinquan
  surname: Zhang
  fullname: Zhang, Jinquan
BookMark eNptkNtKAzEQhoMoWGtvfIIFrxS35tBNdi_b9VRoK7j1OqQ51JR2tyZZqG9vpIJWnLmYYfj-GeY_A8d1U2sALhDsE1LAW98iinKWs-IIdDBkKEUwg8e_-lPQ834FYxCCCkQ74GYudja50xtRq2Sqw1ujkpHwWiVNnVRlVQ3TcjZLR3ZSzafn4MSItde979oFrw_38_IpnTw_jsvhJJWE5iHNJaMEYaVzrDFRzFCkMgoXGkFsZCYNpGTBzMBgrAsFkcEEDagRBVlkRmJBuuByv3frmvdW-8BXTevqeJIThOIzJBuwSPX31FKsNbe1aYITMqbSGyujNcbG-TCPgpyybBAFVweCyAS9C0vRes_H1cshe71npWu8d9rwrbMb4T44gvzLbf7jdoThH1jaIIKN-52w6_8kn9I5fj8
CitedBy_id crossref_primary_10_1063_5_0273984
crossref_primary_10_1016_j_epsr_2024_111330
Cites_doi 10.1016/j.inffus.2020.01.002
10.3233/JIFS-210657
10.1007/s00521-021-06092-6
10.3390/math10193694
10.1007/s00466-019-01740-0
10.1007/s10489-021-03128-1
10.1201/9781003393030-10
10.1016/j.physa.2019.121456
10.3390/computers12080151
10.1111/tgis.12943
10.1016/j.engappai.2023.105987
10.1016/j.apr.2023.101766
10.1109/TITS.2018.2860925
10.1049/itr2.12119
10.1007/s00521-019-04530-0
10.1080/15472450.2018.1518137
10.1109/TITS.2013.2262376
10.1109/TITS.2021.3080511
10.3390/s20133776
10.1007/s11280-019-00700-1
10.1016/j.energy.2023.127430
10.1016/j.jclepro.2023.136192
10.1016/j.eswa.2021.114805
10.1109/ACCESS.2023.3266275
10.1109/ACCESS.2024.3368521
10.1007/s11063-019-10185-8
10.1109/TITS.2017.2755684
10.3390/su11195179
10.1016/j.ress.2023.109185
10.1016/j.jhydrol.2023.129163
10.1007/s10661-020-08601-x
10.1016/j.eswa.2020.113216
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOI 10.3390/su16187879
DatabaseName CrossRef
Gale In Context: Science
University Readers
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 2071-1050
ExternalDocumentID A810786754
10_3390_su16187879
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29Q
2WC
2XV
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
E3Z
ECGQY
ESTFP
FRS
GX1
IAO
IEP
ISR
ITC
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
4U-
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c368t-8c76312de82e23d7f61d560be102fc5cf063b7f4f22e9d01f23146fa93b5fc2a3
IEDL.DBID PIMPY
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001323087400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2071-1050
IngestDate Mon Jun 30 14:42:33 EDT 2025
Tue Nov 04 18:21:02 EST 2025
Thu Nov 13 16:09:34 EST 2025
Tue Nov 18 21:25:51 EST 2025
Sat Nov 29 07:16:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-8c76312de82e23d7f61d560be102fc5cf063b7f4f22e9d01f23146fa93b5fc2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-7259-3147
OpenAccessLink https://www.proquest.com/publiccontent/docview/3110713547?pq-origsite=%requestingapplication%
PQID 3110713547
PQPubID 2032327
ParticipantIDs proquest_journals_3110713547
gale_infotracacademiconefile_A810786754
gale_incontextgauss_ISR_A810786754
crossref_primary_10_3390_su16187879
crossref_citationtrail_10_3390_su16187879
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hu (ref_4) 2022; 43
Dong (ref_1) 2019; 528
ref_12
Chen (ref_14) 2021; 15
Liao (ref_16) 2022; 52
Ghimire (ref_19) 2023; 275
Chen (ref_30) 2023; 10
Kong (ref_7) 2020; 23
Zhong (ref_23) 2023; 391
Chen (ref_6) 2020; 2020
Liu (ref_34) 2020; 51
Gama (ref_5) 2013; 14
Zhu (ref_8) 2021; 41
Celik (ref_29) 2021; 174
Zhang (ref_15) 2022; 23
Wang (ref_21) 2023; 618
Xu (ref_10) 2018; 19
Bhatnagar (ref_18) 2019; 64
Yang (ref_13) 2023; 35
Xu (ref_22) 2023; 234
Xie (ref_17) 2020; 59
Xu (ref_26) 2024; 12
Khalilpourazari (ref_31) 2020; 32
Wu (ref_33) 2022; 26
ref_3
ref_28
ref_27
ref_9
Wang (ref_20) 2023; 121
Ehteram (ref_25) 2023; 14
Govind (ref_35) 2020; 192
Davis (ref_11) 2018; 19
Panda (ref_24) 2023; 11
Tang (ref_2) 2019; 23
Wang (ref_32) 2020; 150
References_xml – volume: 59
  start-page: 1
  year: 2020
  ident: ref_17
  article-title: Urban Flow Prediction from Spatiotemporal Data Using Machine Learning: A Survey
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.01.002
– volume: 41
  start-page: 3355
  year: 2021
  ident: ref_8
  article-title: A Novel Hybrid Deep Learning Model for Taxi Demand Forecasting Based on Decomposition of Time Series and Fusion of Text Data
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-210657
– volume: 35
  start-page: 13119
  year: 2023
  ident: ref_13
  article-title: Dual Temporal Gated Multi-Graph Convolution Network for Taxi Demand Prediction
  publication-title: Neural Comput. Applic.
  doi: 10.1007/s00521-021-06092-6
– ident: ref_9
  doi: 10.3390/math10193694
– volume: 64
  start-page: 525
  year: 2019
  ident: ref_18
  article-title: Prediction of Aerodynamic Flow Fields Using Convolutional Neural Networks
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-019-01740-0
– volume: 52
  start-page: 12077
  year: 2022
  ident: ref_16
  article-title: Taxi Demand Forecasting Based on the Temporal Multimodal Information Fusion Graph Neural Network
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-03128-1
– ident: ref_28
  doi: 10.1201/9781003393030-10
– volume: 528
  start-page: 121456
  year: 2019
  ident: ref_1
  article-title: The Analysis of Urban Taxi Operation Efficiency Based on GPS Trajectory Big Data
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2019.121456
– ident: ref_27
  doi: 10.3390/computers12080151
– volume: 26
  start-page: 2166
  year: 2022
  ident: ref_33
  article-title: Spatio-Temporal Neural Network for Taxi Demand Prediction Using Multisource Urban Data
  publication-title: Trans. GIS
  doi: 10.1111/tgis.12943
– volume: 121
  start-page: 105987
  year: 2023
  ident: ref_20
  article-title: Wind Speed Interval Prediction Based on Multidimensional Time Series of Convolutional Neural Networks
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.105987
– volume: 14
  start-page: 101766
  year: 2023
  ident: ref_25
  article-title: Graph Convolutional Network—Long Short Term Memory Neural Network- Multi Layer Perceptron- Gaussian Progress Regression Model: A New Deep Learning Model for Predicting Ozone Concertation
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2023.101766
– volume: 10
  start-page: 16
  year: 2023
  ident: ref_30
  article-title: Real-Time Unmanned Aerial Vehicle Flight Path Prediction Using a Bi-Directional Long Short-Term Memory Network with Error Compensation
  publication-title: J. Comput. Des. Eng.
– volume: 19
  start-page: 3686
  year: 2018
  ident: ref_11
  article-title: Taxi Demand Forecasting: A HEDGE-Based Tessellation Strategy for Improved Accuracy
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2860925
– volume: 15
  start-page: 1533
  year: 2021
  ident: ref_14
  article-title: Research on Origin-Destination Travel Demand Prediction Method of Inter-Regional Online Taxi Based on SpatialOD-BiConvLSTM
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/itr2.12119
– volume: 32
  start-page: 7725
  year: 2020
  ident: ref_31
  article-title: Sine–Cosine Crow Search Algorithm: Theory and Applications
  publication-title: Neural Comput. Applic
  doi: 10.1007/s00521-019-04530-0
– volume: 43
  start-page: 100788
  year: 2022
  ident: ref_4
  article-title: Choice of Ride-Hailing or Traditional Taxi Services: From Travelers’ Perspectives
  publication-title: Res. Transp. Bus. Manag.
– volume: 23
  start-page: 403
  year: 2019
  ident: ref_2
  article-title: Identification and Interpretation of Spatial–Temporal Mismatch between Taxi Demand and Supply Using Global Positioning System Data
  publication-title: J. Intell. Transp. Syst.
  doi: 10.1080/15472450.2018.1518137
– volume: 14
  start-page: 1393
  year: 2013
  ident: ref_5
  article-title: Predicting Taxi–Passenger Demand Using Streaming Data
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2013.2262376
– volume: 23
  start-page: 8412
  year: 2022
  ident: ref_15
  article-title: MLRNN: Taxi Demand Prediction Based on Multi-Level Deep Learning and Regional Heterogeneity Analysis
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3080511
– ident: ref_12
  doi: 10.3390/s20133776
– volume: 2020
  start-page: 4173094
  year: 2020
  ident: ref_6
  article-title: Multitime Resolution Hierarchical Attention-Based Recurrent Highway Networks for Taxi Demand Prediction
  publication-title: Math. Probl. Eng.
– volume: 23
  start-page: 1381
  year: 2020
  ident: ref_7
  article-title: TBI2Flow: Travel Behavioral Inertia Based Long-Term Taxi Passenger Flow Prediction
  publication-title: World Wide Web
  doi: 10.1007/s11280-019-00700-1
– volume: 275
  start-page: 127430
  year: 2023
  ident: ref_19
  article-title: A Novel Approach Based on Integration of Convolutional Neural Networks and Echo State Network for Daily Electricity Demand Prediction
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127430
– volume: 391
  start-page: 136192
  year: 2023
  ident: ref_23
  article-title: Prediction of Instantaneous Yield of Bio-Oil in Fluidized Biomass Pyrolysis Using Long Short-Term Memory Network Based on Computational Fluid Dynamics Data
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2023.136192
– volume: 174
  start-page: 114805
  year: 2021
  ident: ref_29
  article-title: RSigELU: A Nonlinear Activation Function for Deep Neural Networks
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2021.114805
– volume: 11
  start-page: 42679
  year: 2023
  ident: ref_24
  article-title: Time Series Forecasting and Modeling of Food Demand Supply Chain Based on Regressors Analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3266275
– volume: 12
  start-page: 30085
  year: 2024
  ident: ref_26
  article-title: Research on Parking Space Detection and Prediction Model Based on CNN-LSTM
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3368521
– volume: 51
  start-page: 1771
  year: 2020
  ident: ref_34
  article-title: Daily Activity Feature Selection in Smart Homes Based on Pearson Correlation Coefficient
  publication-title: Neural Process Lett.
  doi: 10.1007/s11063-019-10185-8
– volume: 19
  start-page: 2572
  year: 2018
  ident: ref_10
  article-title: Real-Time Prediction of Taxi Demand Using Recurrent Neural Networks
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2017.2755684
– ident: ref_3
  doi: 10.3390/su11195179
– volume: 234
  start-page: 109185
  year: 2023
  ident: ref_22
  article-title: Fast Capacity Prediction of Lithium-Ion Batteries Using Aging Mechanism-Informed Bidirectional Long Short-Term Memory Network
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109185
– volume: 618
  start-page: 129163
  year: 2023
  ident: ref_21
  article-title: Medium-Long-Term Prediction of Water Level Based on an Improved Spatio-Temporal Attention Mechanism for Long Short-Term Memory Networks
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.129163
– volume: 192
  start-page: 650
  year: 2020
  ident: ref_35
  article-title: Exploring the Relationship between LST and Land Cover of Bengaluru by Concentric Ring Approach
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-020-08601-x
– volume: 150
  start-page: 113216
  year: 2020
  ident: ref_32
  article-title: Yin-Yang Firefly Algorithm Based on Dimensionally Cauchy Mutation
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2020.113216
SSID ssj0000331916
Score 2.3622072
Snippet The randomness of passengers’ travel and the blindness of empty drivers seeking passengers can lead to a serious imbalance in the spatio-temporal distribution...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 7879
SubjectTerms Accuracy
Algorithms
Deep learning
Efficiency
Energy consumption
Forecasts and trends
Fuzzy sets
Neural networks
Passengers
Supply and demand
Sustainable development
Taxicabs
Title Taxi Demand Method Based on SCSSA-CNN-BiLSTM
URI https://www.proquest.com/docview/3110713547
Volume 16
WOSCitedRecordID wos001323087400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxtBEB9qIrQvtWqDaTUctiCCS3K7e19PkqSRBpIjeFH06bjbDwnUi3pRfOrf7mxuYxCkT32-gVt2Zmd-szvzG4CfnIkcw25GAi454VzmJNeeIJGnfDxbtOMtX0wvR0Ech1dX0cS2R5e2rHLlE5eOumJ7NnXb6ITbci7MjXmbmbTFZR4PTu_uiZkhZd5a7UCNDagb4q1ODeqT4Xhy_Xrn0mFocK5fsZQyzPZR24YwHo02ehOX3vfOy5BztvV_F_sFPlvo6XQrW9mGD6rYgY-rzuRyBxqDddcbCtpjX-7CyTR7njm_1G1WSGe8nDnt9DD8SWdeOEk_SbqkH8ekNxsl0_FXuDgbTPu_iR2zQATzwwUJBfoYl0oVUkWZDLTvSsRBuULsoYUnNKKYPNBcU6oi2XE1QkLu6yxiuacFzVgDasW8UHvgCMQTkan0RGCHgY7n3HMDH1MqpRH4-bQJx6tNToXlIDejMP6kmIsYhaRrhTThx6vsXcW88a7UodFVaqgsClMrc5M9lmU6TM7TbojbHmJCxJtwZIX0HH8nMtt6gIs27FdvJPdXCk3tYS7Ttf6-_fvzd_hEEfNUJWj7UFs8PKoD2BRPi1n50IJ6bxBPzluwMf47aFnbfAGFAe5p
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RUAkutKVFDdDW6kNVpa5q765fhwqFACIisaI6rehpa-8DRQIHcCjwp_iNzMY2ERLqjUPPHvk13843szsPgI-cyRxpNyMhV5xwrnKSG1-S2NcBri3q-rMT01_9MEmiw8N4uAA3TS2MTatsbOLMUKuJtHvk35gNVDzm83Dr9IzYqVH2dLUZoVHB4kBfX2LIVn7v7aB-P1G6tzvq7pN6qgCRLIimJJK4pDyqdEQ1ZSo0gaeQ9nONVGukLw2Sdh4abijVsXI9gx4QD0wWs9w3kmYM7_sEFjmC3W3B4rA3GP6-29VxGULaC6o-qIzFLuLJtqTHZRHfY76H7f-M1Pae_W-_4zms1O6z06nw_gIWdLEKS011dbkKa7vzyj0UrE1X-RK-jrKrsbOjT7JCOYPZ3GxnGylcOZPCSbtp2iHdJCHb4346GryCn4_yFWvQKiaFfg2ORJ8ottmq6JwiWfOc-14YYFioDTqvAW3Dl0aNQtZ91O04j2OB8ZRVuZirvA0f7mRPq-4hD0q9t2gQth1HYfN9jrKLshS99IfoRKjmCIM63obPtZCZ4ONkVpdP4EvbDl73JDcbyIjaIJVijpf1f19-B0v7o0Ff9HvJwQYsU_ThqpS6TWhNzy_0G3gq_07H5fnbGvsO_HlsfN0CkAA9UA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB6VFAEvBQoVgQIWhxASq8a76-sBoZwiampFdUB9W-w9UCRwSp3S9q_x65iN140qVbz1gWePfM03-83szgHwhjNZIO3mJOKKE85VQQoTSJIEOkTbop1gdWL6dRKlaXx0lEw34E9TC2PTKps1cbVQq4W0e-R7zAYqPgt4tGdcWsR0MPp0_IvYCVL2pLUZp1FDZF9fnGH4Vn0cD1DXbykdDWf9z8RNGCCShfGSxBLNy6dKx1RTpiIT-gpdgEIj7RoZSIMEXkSGG0p1ojq-QW-IhyZPWBEYSXOG970FmxHDoKcFm71hOj283OHpMIS3H9Y9URlLOogt254eTSS5woLXc8GK4Eb3_-df8wC2nFvtdWs7eAgbutyGu03VdbUNO8N1RR8KuiWtegQfZvn53Bvon3mpvIPVPG2vh9SuvEXpZf0s65J-mpLefJLNDh7Dlxv5ih1olYtSPwFPoq-U2CxWdFqRxHnBAz8KMVzUBp3akLbhfaNSIV1_dTvm44fAOMuqX6zV34bXl7LHdVeRa6VeWWQI26ajtFr9np9WlRhnh6Ibo8pjDPZ4G945IbPAx8nclVXgS9vOXlckdxv4CLdQVWKNnaf_vvwS7iCoxGSc7j-DexRduzrTbhday5NT_Rxuy9_LeXXywpmBB99uGl5_AajDReo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Taxi+Demand+Method+Based+on+SCSSA-CNN-BiLSTM&rft.jtitle=Sustainability&rft.au=Guo%2C+Dudu&rft.au=Sun%2C+Miao&rft.au=Wang%2C+Qingqing&rft.au=Zhang%2C+Jinquan&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=16&rft.issue=18&rft_id=info:doi/10.3390%2Fsu16187879&rft.externalDBID=ISR&rft.externalDocID=A810786754
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon