Taxi Demand Method Based on SCSSA-CNN-BiLSTM
The randomness of passengers’ travel and the blindness of empty drivers seeking passengers can lead to a serious imbalance in the spatio-temporal distribution of taxi supply and demand. In order to realize the accurate prediction of taxi demand, promote a balance between taxi supply and demand, and...
Uložené v:
| Vydané v: | Sustainability Ročník 16; číslo 18; s. 7879 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.09.2024
|
| Predmet: | |
| ISSN: | 2071-1050, 2071-1050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The randomness of passengers’ travel and the blindness of empty drivers seeking passengers can lead to a serious imbalance in the spatio-temporal distribution of taxi supply and demand. In order to realize the accurate prediction of taxi demand, promote a balance between taxi supply and demand, and respond to the requirements of the sustainable development of urban transportation, a travel demand prediction model based on Sparrow Search Algorithm incorporating sine-cosine and Cauchy variants (SCSSA), Convolutional Neural Network (CNN), and Bi-directional Long Short-Term Memory (BiLSTM) is proposed. The key factors affecting travel demand are identified by constructing a set of influencing factors for feature correlation analysis. In order to overcome the overfitting or underfitting phenomenon caused by the improper parameter configuration of the CNN-BiLSTM model, the SCSSA algorithm is utilized to optimize the model. By fine tuning the model parameters, the algorithm enhanced the model’s adaptability to dataset characteristics and improved the accuracy of the prediction results. Compared with CNN, LSTM, CNN- LSTM, CNN-BiLSTM, and SSA-CNN-BiLSTM models, the Root Mean Square Error is decreased by 10.77 on average. |
|---|---|
| AbstractList | The randomness of passengers’ travel and the blindness of empty drivers seeking passengers can lead to a serious imbalance in the spatio-temporal distribution of taxi supply and demand. In order to realize the accurate prediction of taxi demand, promote a balance between taxi supply and demand, and respond to the requirements of the sustainable development of urban transportation, a travel demand prediction model based on Sparrow Search Algorithm incorporating sine-cosine and Cauchy variants (SCSSA), Convolutional Neural Network (CNN), and Bi-directional Long Short-Term Memory (BiLSTM) is proposed. The key factors affecting travel demand are identified by constructing a set of influencing factors for feature correlation analysis. In order to overcome the overfitting or underfitting phenomenon caused by the improper parameter configuration of the CNN-BiLSTM model, the SCSSA algorithm is utilized to optimize the model. By fine tuning the model parameters, the algorithm enhanced the model’s adaptability to dataset characteristics and improved the accuracy of the prediction results. Compared with CNN, LSTM, CNN- LSTM, CNN-BiLSTM, and SSA-CNN-BiLSTM models, the Root Mean Square Error is decreased by 10.77 on average. |
| Audience | Academic |
| Author | Sun, Miao Zhang, Jinquan Guo, Dudu Wang, Qingqing |
| Author_xml | – sequence: 1 givenname: Dudu surname: Guo fullname: Guo, Dudu – sequence: 2 givenname: Miao orcidid: 0009-0008-7259-3147 surname: Sun fullname: Sun, Miao – sequence: 3 givenname: Qingqing surname: Wang fullname: Wang, Qingqing – sequence: 4 givenname: Jinquan surname: Zhang fullname: Zhang, Jinquan |
| BookMark | eNptkNtKAzEQhoMoWGtvfIIFrxS35tBNdi_b9VRoK7j1OqQ51JR2tyZZqG9vpIJWnLmYYfj-GeY_A8d1U2sALhDsE1LAW98iinKWs-IIdDBkKEUwg8e_-lPQ834FYxCCCkQ74GYudja50xtRq2Sqw1ujkpHwWiVNnVRlVQ3TcjZLR3ZSzafn4MSItde979oFrw_38_IpnTw_jsvhJJWE5iHNJaMEYaVzrDFRzFCkMgoXGkFsZCYNpGTBzMBgrAsFkcEEDagRBVlkRmJBuuByv3frmvdW-8BXTevqeJIThOIzJBuwSPX31FKsNbe1aYITMqbSGyujNcbG-TCPgpyybBAFVweCyAS9C0vRes_H1cshe71npWu8d9rwrbMb4T44gvzLbf7jdoThH1jaIIKN-52w6_8kn9I5fj8 |
| CitedBy_id | crossref_primary_10_1063_5_0273984 crossref_primary_10_1016_j_epsr_2024_111330 |
| Cites_doi | 10.1016/j.inffus.2020.01.002 10.3233/JIFS-210657 10.1007/s00521-021-06092-6 10.3390/math10193694 10.1007/s00466-019-01740-0 10.1007/s10489-021-03128-1 10.1201/9781003393030-10 10.1016/j.physa.2019.121456 10.3390/computers12080151 10.1111/tgis.12943 10.1016/j.engappai.2023.105987 10.1016/j.apr.2023.101766 10.1109/TITS.2018.2860925 10.1049/itr2.12119 10.1007/s00521-019-04530-0 10.1080/15472450.2018.1518137 10.1109/TITS.2013.2262376 10.1109/TITS.2021.3080511 10.3390/s20133776 10.1007/s11280-019-00700-1 10.1016/j.energy.2023.127430 10.1016/j.jclepro.2023.136192 10.1016/j.eswa.2021.114805 10.1109/ACCESS.2023.3266275 10.1109/ACCESS.2024.3368521 10.1007/s11063-019-10185-8 10.1109/TITS.2017.2755684 10.3390/su11195179 10.1016/j.ress.2023.109185 10.1016/j.jhydrol.2023.129163 10.1007/s10661-020-08601-x 10.1016/j.eswa.2020.113216 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 4U- ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI |
| DOI | 10.3390/su16187879 |
| DatabaseName | CrossRef Gale In Context: Science University Readers ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Publicly Available Content Database University Readers ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 2071-1050 |
| ExternalDocumentID | A810786754 10_3390_su16187879 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29Q 2WC 2XV 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV ADMLS AENEX AFFHD AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION E3Z ECGQY ESTFP FRS GX1 IAO IEP ISR ITC KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC TR2 4U- ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c368t-8c76312de82e23d7f61d560be102fc5cf063b7f4f22e9d01f23146fa93b5fc2a3 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001323087400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2071-1050 |
| IngestDate | Mon Jun 30 14:42:33 EDT 2025 Tue Nov 04 18:21:02 EST 2025 Thu Nov 13 16:09:34 EST 2025 Tue Nov 18 21:25:51 EST 2025 Sat Nov 29 07:16:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 18 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c368t-8c76312de82e23d7f61d560be102fc5cf063b7f4f22e9d01f23146fa93b5fc2a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0008-7259-3147 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/3110713547?pq-origsite=%requestingapplication% |
| PQID | 3110713547 |
| PQPubID | 2032327 |
| ParticipantIDs | proquest_journals_3110713547 gale_infotracacademiconefile_A810786754 gale_incontextgauss_ISR_A810786754 crossref_primary_10_3390_su16187879 crossref_citationtrail_10_3390_su16187879 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sustainability |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Hu (ref_4) 2022; 43 Dong (ref_1) 2019; 528 ref_12 Chen (ref_14) 2021; 15 Liao (ref_16) 2022; 52 Ghimire (ref_19) 2023; 275 Chen (ref_30) 2023; 10 Kong (ref_7) 2020; 23 Zhong (ref_23) 2023; 391 Chen (ref_6) 2020; 2020 Liu (ref_34) 2020; 51 Gama (ref_5) 2013; 14 Zhu (ref_8) 2021; 41 Celik (ref_29) 2021; 174 Zhang (ref_15) 2022; 23 Wang (ref_21) 2023; 618 Xu (ref_10) 2018; 19 Bhatnagar (ref_18) 2019; 64 Yang (ref_13) 2023; 35 Xu (ref_22) 2023; 234 Xie (ref_17) 2020; 59 Xu (ref_26) 2024; 12 Khalilpourazari (ref_31) 2020; 32 Wu (ref_33) 2022; 26 ref_3 ref_28 ref_27 ref_9 Wang (ref_20) 2023; 121 Ehteram (ref_25) 2023; 14 Govind (ref_35) 2020; 192 Davis (ref_11) 2018; 19 Panda (ref_24) 2023; 11 Tang (ref_2) 2019; 23 Wang (ref_32) 2020; 150 |
| References_xml | – volume: 59 start-page: 1 year: 2020 ident: ref_17 article-title: Urban Flow Prediction from Spatiotemporal Data Using Machine Learning: A Survey publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.01.002 – volume: 41 start-page: 3355 year: 2021 ident: ref_8 article-title: A Novel Hybrid Deep Learning Model for Taxi Demand Forecasting Based on Decomposition of Time Series and Fusion of Text Data publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-210657 – volume: 35 start-page: 13119 year: 2023 ident: ref_13 article-title: Dual Temporal Gated Multi-Graph Convolution Network for Taxi Demand Prediction publication-title: Neural Comput. Applic. doi: 10.1007/s00521-021-06092-6 – ident: ref_9 doi: 10.3390/math10193694 – volume: 64 start-page: 525 year: 2019 ident: ref_18 article-title: Prediction of Aerodynamic Flow Fields Using Convolutional Neural Networks publication-title: Comput. Mech. doi: 10.1007/s00466-019-01740-0 – volume: 52 start-page: 12077 year: 2022 ident: ref_16 article-title: Taxi Demand Forecasting Based on the Temporal Multimodal Information Fusion Graph Neural Network publication-title: Appl. Intell. doi: 10.1007/s10489-021-03128-1 – ident: ref_28 doi: 10.1201/9781003393030-10 – volume: 528 start-page: 121456 year: 2019 ident: ref_1 article-title: The Analysis of Urban Taxi Operation Efficiency Based on GPS Trajectory Big Data publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2019.121456 – ident: ref_27 doi: 10.3390/computers12080151 – volume: 26 start-page: 2166 year: 2022 ident: ref_33 article-title: Spatio-Temporal Neural Network for Taxi Demand Prediction Using Multisource Urban Data publication-title: Trans. GIS doi: 10.1111/tgis.12943 – volume: 121 start-page: 105987 year: 2023 ident: ref_20 article-title: Wind Speed Interval Prediction Based on Multidimensional Time Series of Convolutional Neural Networks publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.105987 – volume: 14 start-page: 101766 year: 2023 ident: ref_25 article-title: Graph Convolutional Network—Long Short Term Memory Neural Network- Multi Layer Perceptron- Gaussian Progress Regression Model: A New Deep Learning Model for Predicting Ozone Concertation publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2023.101766 – volume: 10 start-page: 16 year: 2023 ident: ref_30 article-title: Real-Time Unmanned Aerial Vehicle Flight Path Prediction Using a Bi-Directional Long Short-Term Memory Network with Error Compensation publication-title: J. Comput. Des. Eng. – volume: 19 start-page: 3686 year: 2018 ident: ref_11 article-title: Taxi Demand Forecasting: A HEDGE-Based Tessellation Strategy for Improved Accuracy publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2860925 – volume: 15 start-page: 1533 year: 2021 ident: ref_14 article-title: Research on Origin-Destination Travel Demand Prediction Method of Inter-Regional Online Taxi Based on SpatialOD-BiConvLSTM publication-title: IET Intell. Transp. Syst. doi: 10.1049/itr2.12119 – volume: 32 start-page: 7725 year: 2020 ident: ref_31 article-title: Sine–Cosine Crow Search Algorithm: Theory and Applications publication-title: Neural Comput. Applic doi: 10.1007/s00521-019-04530-0 – volume: 43 start-page: 100788 year: 2022 ident: ref_4 article-title: Choice of Ride-Hailing or Traditional Taxi Services: From Travelers’ Perspectives publication-title: Res. Transp. Bus. Manag. – volume: 23 start-page: 403 year: 2019 ident: ref_2 article-title: Identification and Interpretation of Spatial–Temporal Mismatch between Taxi Demand and Supply Using Global Positioning System Data publication-title: J. Intell. Transp. Syst. doi: 10.1080/15472450.2018.1518137 – volume: 14 start-page: 1393 year: 2013 ident: ref_5 article-title: Predicting Taxi–Passenger Demand Using Streaming Data publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2013.2262376 – volume: 23 start-page: 8412 year: 2022 ident: ref_15 article-title: MLRNN: Taxi Demand Prediction Based on Multi-Level Deep Learning and Regional Heterogeneity Analysis publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2021.3080511 – ident: ref_12 doi: 10.3390/s20133776 – volume: 2020 start-page: 4173094 year: 2020 ident: ref_6 article-title: Multitime Resolution Hierarchical Attention-Based Recurrent Highway Networks for Taxi Demand Prediction publication-title: Math. Probl. Eng. – volume: 23 start-page: 1381 year: 2020 ident: ref_7 article-title: TBI2Flow: Travel Behavioral Inertia Based Long-Term Taxi Passenger Flow Prediction publication-title: World Wide Web doi: 10.1007/s11280-019-00700-1 – volume: 275 start-page: 127430 year: 2023 ident: ref_19 article-title: A Novel Approach Based on Integration of Convolutional Neural Networks and Echo State Network for Daily Electricity Demand Prediction publication-title: Energy doi: 10.1016/j.energy.2023.127430 – volume: 391 start-page: 136192 year: 2023 ident: ref_23 article-title: Prediction of Instantaneous Yield of Bio-Oil in Fluidized Biomass Pyrolysis Using Long Short-Term Memory Network Based on Computational Fluid Dynamics Data publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.136192 – volume: 174 start-page: 114805 year: 2021 ident: ref_29 article-title: RSigELU: A Nonlinear Activation Function for Deep Neural Networks publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2021.114805 – volume: 11 start-page: 42679 year: 2023 ident: ref_24 article-title: Time Series Forecasting and Modeling of Food Demand Supply Chain Based on Regressors Analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3266275 – volume: 12 start-page: 30085 year: 2024 ident: ref_26 article-title: Research on Parking Space Detection and Prediction Model Based on CNN-LSTM publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3368521 – volume: 51 start-page: 1771 year: 2020 ident: ref_34 article-title: Daily Activity Feature Selection in Smart Homes Based on Pearson Correlation Coefficient publication-title: Neural Process Lett. doi: 10.1007/s11063-019-10185-8 – volume: 19 start-page: 2572 year: 2018 ident: ref_10 article-title: Real-Time Prediction of Taxi Demand Using Recurrent Neural Networks publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2017.2755684 – ident: ref_3 doi: 10.3390/su11195179 – volume: 234 start-page: 109185 year: 2023 ident: ref_22 article-title: Fast Capacity Prediction of Lithium-Ion Batteries Using Aging Mechanism-Informed Bidirectional Long Short-Term Memory Network publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2023.109185 – volume: 618 start-page: 129163 year: 2023 ident: ref_21 article-title: Medium-Long-Term Prediction of Water Level Based on an Improved Spatio-Temporal Attention Mechanism for Long Short-Term Memory Networks publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.129163 – volume: 192 start-page: 650 year: 2020 ident: ref_35 article-title: Exploring the Relationship between LST and Land Cover of Bengaluru by Concentric Ring Approach publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-020-08601-x – volume: 150 start-page: 113216 year: 2020 ident: ref_32 article-title: Yin-Yang Firefly Algorithm Based on Dimensionally Cauchy Mutation publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2020.113216 |
| SSID | ssj0000331916 |
| Score | 2.3622072 |
| Snippet | The randomness of passengers’ travel and the blindness of empty drivers seeking passengers can lead to a serious imbalance in the spatio-temporal distribution... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 7879 |
| SubjectTerms | Accuracy Algorithms Deep learning Efficiency Energy consumption Forecasts and trends Fuzzy sets Neural networks Passengers Supply and demand Sustainable development Taxicabs |
| Title | Taxi Demand Method Based on SCSSA-CNN-BiLSTM |
| URI | https://www.proquest.com/docview/3110713547 |
| Volume | 16 |
| WOSCitedRecordID | wos001323087400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxtBEB9qIrQvtWqDaTUctiCCS3K7e19PkqSRBpIjeFH06bjbDwnUi3pRfOrf7mxuYxCkT32-gVt2Zmd-szvzG4CfnIkcw25GAi454VzmJNeeIJGnfDxbtOMtX0wvR0Ech1dX0cS2R5e2rHLlE5eOumJ7NnXb6ITbci7MjXmbmbTFZR4PTu_uiZkhZd5a7UCNDagb4q1ODeqT4Xhy_Xrn0mFocK5fsZQyzPZR24YwHo02ehOX3vfOy5BztvV_F_sFPlvo6XQrW9mGD6rYgY-rzuRyBxqDddcbCtpjX-7CyTR7njm_1G1WSGe8nDnt9DD8SWdeOEk_SbqkH8ekNxsl0_FXuDgbTPu_iR2zQATzwwUJBfoYl0oVUkWZDLTvSsRBuULsoYUnNKKYPNBcU6oi2XE1QkLu6yxiuacFzVgDasW8UHvgCMQTkan0RGCHgY7n3HMDH1MqpRH4-bQJx6tNToXlIDejMP6kmIsYhaRrhTThx6vsXcW88a7UodFVaqgsClMrc5M9lmU6TM7TbojbHmJCxJtwZIX0HH8nMtt6gIs27FdvJPdXCk3tYS7Ttf6-_fvzd_hEEfNUJWj7UFs8PKoD2BRPi1n50IJ6bxBPzluwMf47aFnbfAGFAe5p |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RUAkutKVFDdDW6kNVpa5q765fhwqFACIisaI6rehpa-8DRQIHcCjwp_iNzMY2ERLqjUPPHvk13843szsPgI-cyRxpNyMhV5xwrnKSG1-S2NcBri3q-rMT01_9MEmiw8N4uAA3TS2MTatsbOLMUKuJtHvk35gNVDzm83Dr9IzYqVH2dLUZoVHB4kBfX2LIVn7v7aB-P1G6tzvq7pN6qgCRLIimJJK4pDyqdEQ1ZSo0gaeQ9nONVGukLw2Sdh4abijVsXI9gx4QD0wWs9w3kmYM7_sEFjmC3W3B4rA3GP6-29VxGULaC6o-qIzFLuLJtqTHZRHfY76H7f-M1Pae_W-_4zms1O6z06nw_gIWdLEKS011dbkKa7vzyj0UrE1X-RK-jrKrsbOjT7JCOYPZ3GxnGylcOZPCSbtp2iHdJCHb4346GryCn4_yFWvQKiaFfg2ORJ8ottmq6JwiWfOc-14YYFioDTqvAW3Dl0aNQtZ91O04j2OB8ZRVuZirvA0f7mRPq-4hD0q9t2gQth1HYfN9jrKLshS99IfoRKjmCIM63obPtZCZ4ONkVpdP4EvbDl73JDcbyIjaIJVijpf1f19-B0v7o0Ff9HvJwQYsU_ThqpS6TWhNzy_0G3gq_07H5fnbGvsO_HlsfN0CkAA9UA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB6VFAEvBQoVgQIWhxASq8a76-sBoZwiampFdUB9W-w9UCRwSp3S9q_x65iN140qVbz1gWePfM03-83szgHwhjNZIO3mJOKKE85VQQoTSJIEOkTbop1gdWL6dRKlaXx0lEw34E9TC2PTKps1cbVQq4W0e-R7zAYqPgt4tGdcWsR0MPp0_IvYCVL2pLUZp1FDZF9fnGH4Vn0cD1DXbykdDWf9z8RNGCCShfGSxBLNy6dKx1RTpiIT-gpdgEIj7RoZSIMEXkSGG0p1ojq-QW-IhyZPWBEYSXOG970FmxHDoKcFm71hOj283OHpMIS3H9Y9URlLOogt254eTSS5woLXc8GK4Eb3_-df8wC2nFvtdWs7eAgbutyGu03VdbUNO8N1RR8KuiWtegQfZvn53Bvon3mpvIPVPG2vh9SuvEXpZf0s65J-mpLefJLNDh7Dlxv5ih1olYtSPwFPoq-U2CxWdFqRxHnBAz8KMVzUBp3akLbhfaNSIV1_dTvm44fAOMuqX6zV34bXl7LHdVeRa6VeWWQI26ajtFr9np9WlRhnh6Ibo8pjDPZ4G945IbPAx8nclVXgS9vOXlckdxv4CLdQVWKNnaf_vvwS7iCoxGSc7j-DexRduzrTbhday5NT_Rxuy9_LeXXywpmBB99uGl5_AajDReo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Taxi+Demand+Method+Based+on+SCSSA-CNN-BiLSTM&rft.jtitle=Sustainability&rft.au=Guo%2C+Dudu&rft.au=Sun%2C+Miao&rft.au=Wang%2C+Qingqing&rft.au=Zhang%2C+Jinquan&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=16&rft.issue=18&rft_id=info:doi/10.3390%2Fsu16187879&rft.externalDBID=ISR&rft.externalDocID=A810786754 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |