Exponential convergence of distributed primal–dual convex optimization algorithm without strong convexity

This paper establishes exponential convergence rates for a class of primal–dual gradient algorithms in distributed optimization without strong convexity. The convergence analysis is based on a carefully constructed Lyapunov function. By evaluating metric subregularity of the primal–dual gradient map...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Automatica (Oxford) Ročník 105; s. 298 - 306
Hlavní autoři: Liang, Shu, Wang, Le Yi, Yin, George
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.07.2019
Témata:
ISSN:0005-1098, 1873-2836
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper establishes exponential convergence rates for a class of primal–dual gradient algorithms in distributed optimization without strong convexity. The convergence analysis is based on a carefully constructed Lyapunov function. By evaluating metric subregularity of the primal–dual gradient map, we present a general criterion under which the algorithm achieves exponential convergence. To facilitate practical applications of this criterion, several simplified sufficient conditions are derived. We also prove that although these results are developed for the continuous-time algorithms, they carry over in a parallel manner to the discrete-time algorithms constructed by using Euler’s approximation method.
ISSN:0005-1098
1873-2836
DOI:10.1016/j.automatica.2019.04.004