Learning Feature Embedding Refiner for Solving Vehicle Routing Problems

While the encoder-decoder structure is widely used in the recent neural construction methods for learning to solve vehicle routing problems (VRPs), they are less effective in searching solutions due to deterministic feature embeddings and deterministic probability distributions. In this article, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 35; H. 11; S. 15279 - 15291
Hauptverfasser: Li, Jingwen, Ma, Yining, Cao, Zhiguang, Wu, Yaoxin, Song, Wen, Zhang, Jie, Chee, Yeow Meng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.11.2024
Schlagworte:
ISSN:2162-237X, 2162-2388, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract While the encoder-decoder structure is widely used in the recent neural construction methods for learning to solve vehicle routing problems (VRPs), they are less effective in searching solutions due to deterministic feature embeddings and deterministic probability distributions. In this article, we propose the feature embedding refiner (FER) with a novel and generic encoder-refiner-decoder structure to boost the existing encoder-decoder structured deep models. It is model-agnostic that the encoder and the decoder can be from any pretrained neural construction method. Regarding the introduced refiner network, we design its architecture by combining the standard gated recurrent units (GRU) cell with two new layers, i.e., an accumulated graph attention (AGA) layer and a gated nonlinear (GNL) layer. The former extracts dynamic graph topological information of historical solutions stored in a diversified solution pool to generate aggregated pool embeddings that are further improved by the GRU, and the latter adaptively refines the feature embeddings from the encoder with the guidance of the improved pool embeddings. To this end, our FER allows current neural construction methods to not only iteratively refine the feature embeddings for boarder search range but also dynamically update the probability distributions for more diverse search. We apply FER to two prevailing neural construction methods including attention model (AM) and policy optimization with multiple optima (POMO) to solve the traveling salesman problem (TSP) and the capacitated VRP (CVRP). Experimental results show that our method achieves lower gaps and better generalization than the original ones and also exhibits competitive performance to the state-of-the-art neural improvement methods.
AbstractList While the encoder-decoder structure is widely used in the recent neural construction methods for learning to solve vehicle routing problems (VRPs), they are less effective in searching solutions due to deterministic feature embeddings and deterministic probability distributions. In this article, we propose the feature embedding refiner (FER) with a novel and generic encoder-refiner-decoder structure to boost the existing encoder-decoder structured deep models. It is model-agnostic that the encoder and the decoder can be from any pretrained neural construction method. Regarding the introduced refiner network, we design its architecture by combining the standard gated recurrent units (GRU) cell with two new layers, i.e., an accumulated graph attention (AGA) layer and a gated nonlinear (GNL) layer. The former extracts dynamic graph topological information of historical solutions stored in a diversified solution pool to generate aggregated pool embeddings that are further improved by the GRU, and the latter adaptively refines the feature embeddings from the encoder with the guidance of the improved pool embeddings. To this end, our FER allows current neural construction methods to not only iteratively refine the feature embeddings for boarder search range but also dynamically update the probability distributions for more diverse search. We apply FER to two prevailing neural construction methods including attention model (AM) and policy optimization with multiple optima (POMO) to solve the traveling salesman problem (TSP) and the capacitated VRP (CVRP). Experimental results show that our method achieves lower gaps and better generalization than the original ones and also exhibits competitive performance to the state-of-the-art neural improvement methods.
While the encoder-decoder structure is widely used in the recent neural construction methods for learning to solve vehicle routing problems (VRPs), they are less effective in searching solutions due to deterministic feature embeddings and deterministic probability distributions. In this article, we propose the feature embedding refiner (FER) with a novel and generic encoder-refiner-decoder structure to boost the existing encoder-decoder structured deep models. It is model-agnostic that the encoder and the decoder can be from any pretrained neural construction method. Regarding the introduced refiner network, we design its architecture by combining the standard gated recurrent units (GRU) cell with two new layers, i.e., an accumulated graph attention (AGA) layer and a gated nonlinear (GNL) layer. The former extracts dynamic graph topological information of historical solutions stored in a diversified solution pool to generate aggregated pool embeddings that are further improved by the GRU, and the latter adaptively refines the feature embeddings from the encoder with the guidance of the improved pool embeddings. To this end, our FER allows current neural construction methods to not only iteratively refine the feature embeddings for boarder search range but also dynamically update the probability distributions for more diverse search. We apply FER to two prevailing neural construction methods including attention model (AM) and policy optimization with multiple optima (POMO) to solve the traveling salesman problem (TSP) and the capacitated VRP (CVRP). Experimental results show that our method achieves lower gaps and better generalization than the original ones and also exhibits competitive performance to the state-of-the-art neural improvement methods.While the encoder-decoder structure is widely used in the recent neural construction methods for learning to solve vehicle routing problems (VRPs), they are less effective in searching solutions due to deterministic feature embeddings and deterministic probability distributions. In this article, we propose the feature embedding refiner (FER) with a novel and generic encoder-refiner-decoder structure to boost the existing encoder-decoder structured deep models. It is model-agnostic that the encoder and the decoder can be from any pretrained neural construction method. Regarding the introduced refiner network, we design its architecture by combining the standard gated recurrent units (GRU) cell with two new layers, i.e., an accumulated graph attention (AGA) layer and a gated nonlinear (GNL) layer. The former extracts dynamic graph topological information of historical solutions stored in a diversified solution pool to generate aggregated pool embeddings that are further improved by the GRU, and the latter adaptively refines the feature embeddings from the encoder with the guidance of the improved pool embeddings. To this end, our FER allows current neural construction methods to not only iteratively refine the feature embeddings for boarder search range but also dynamically update the probability distributions for more diverse search. We apply FER to two prevailing neural construction methods including attention model (AM) and policy optimization with multiple optima (POMO) to solve the traveling salesman problem (TSP) and the capacitated VRP (CVRP). Experimental results show that our method achieves lower gaps and better generalization than the original ones and also exhibits competitive performance to the state-of-the-art neural improvement methods.
Author Li, Jingwen
Cao, Zhiguang
Ma, Yining
Wu, Yaoxin
Song, Wen
Zhang, Jie
Chee, Yeow Meng
Author_xml – sequence: 1
  givenname: Jingwen
  orcidid: 0000-0001-8661-5695
  surname: Li
  fullname: Li, Jingwen
  email: lijingwen@sicnu.edu.cn
  organization: Department of Computer Science, Sichuan Normal University, Chengdu, China
– sequence: 2
  givenname: Yining
  orcidid: 0000-0002-6639-8547
  surname: Ma
  fullname: Ma, Yining
  email: yiningma@u.nus.edu
  organization: Department of Industrial Systems Engineering and Management, College of Design and Engineering, National University of Singapore, Queenstown, Singapore
– sequence: 3
  givenname: Zhiguang
  orcidid: 0000-0002-4499-759X
  surname: Cao
  fullname: Cao, Zhiguang
  email: zhiguangcao@outlook.com
  organization: School of Computing and Information Systems, Singapore Management University, Bras Basah, Singapore
– sequence: 4
  givenname: Yaoxin
  orcidid: 0000-0002-3625-6599
  surname: Wu
  fullname: Wu, Yaoxin
  email: wyxacc@hotmail.com
  organization: Faculty of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven, The Netherlands
– sequence: 5
  givenname: Wen
  orcidid: 0000-0001-7624-1861
  surname: Song
  fullname: Song, Wen
  email: wensong@email.sdu.edu.cn
  organization: Institute of Marine Science and Technology, Shandong University, Qingdao, China
– sequence: 6
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
  email: zhangj@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, Jurong West, Singapore
– sequence: 7
  givenname: Yeow Meng
  surname: Chee
  fullname: Chee, Yeow Meng
  email: ymchee@nus.edu.sg
  organization: Department of Industrial Systems Engineering and Management, College of Design and Engineering, National University of Singapore, Queenstown, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37352084$$D View this record in MEDLINE/PubMed
BookMark eNp9kF1LwzAUhoMofv8BEemlN5vJSdeklyLbFIaKTvEupOmJRtpGk1bw37u6TcQLz8354H1eOO8e2Wx8g4QcMTpkjOZn8-vr2f0QKPAhBzmiQmyQXWAZDIBLufkzi6cdchjjK11URkdZmm-THS74CKhMd8l0hjo0rnlOJqjbLmAyrgssy_5yh9Y1GBLrQ3Lvq4_-9ogvzlSY3Pmu7ffb4IsK63hAtqyuIh6u-j55mIznF5eD2c306uJ8NjA8k-1AaJozkBbAoi20RC1QQikMaJNzY1Nrgcm0TIsyLwtRWmYMFxkXBWVCGMn3yenS9y349w5jq2oXDVaVbtB3UYGEPAUhGF9IT1bSrqixVG_B1Tp8qvXzC4FcCkzwMQa0yrhWt843bdCuUoyqPmr1HbXqo1arqBco_EHX7v9Cx0vIIeIvgGWUpiP-BSG2ieU
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TNNLS_2024_3371781
crossref_primary_10_3390_math13132039
crossref_primary_10_1007_s40747_025_01826_8
crossref_primary_10_1177_03611981251322486
crossref_primary_10_3390_app15094776
crossref_primary_10_1007_s40747_025_02018_0
crossref_primary_10_1007_s10489_025_06778_7
Cites_doi 10.1016/j.ejor.2016.08.012
10.1109/TNNLS.2017.2740224
10.1016/j.cor.2012.07.018
10.1007/s10479-009-0657-6
10.1109/TSMC.2020.2969317
10.1016/j.cor.2021.105643
10.1016/j.ejor.2004.08.018
10.1109/TNNLS.2021.3068828
10.1007/978-3-319-60801-3_27
10.1109/tnnls.2022.3148435
10.1287/ijoc.3.4.376
10.1109/CVPR.2016.90
10.1109/TITS.2021.3056120
10.5555/3045118.3045167
10.1109/TII.2020.3031409
10.1109/TNNLS.2021.3105905
10.1016/j.eswa.2011.03.088
10.1016/0377-2217(92)90192-C
10.1016/S1352-2310(97)00447-0
10.1109/TNNLS.2021.3070584
10.48550/ARXIV.1706.03762
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNNLS.2023.3285077
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 15291
ExternalDocumentID 37352084
10_1109_TNNLS_2023_3285077
10160045
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2021QF063
  funderid: 10.13039/501100007129
– fundername: National Natural Science Foundation of China
  grantid: 62102228
  funderid: 10.13039/501100001809
– fundername: Agency for Science Technology and Research Career Development Fund
  grantid: C222812027
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7X8
ID FETCH-LOGICAL-c368t-7a09128f22fefba8ea7e82d7c2ac93cf4ff2184d4bd9db7df1cc37637b0177c83
IEDL.DBID RIE
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001128242500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Thu Oct 02 06:54:00 EDT 2025
Mon Jul 21 05:59:27 EDT 2025
Sat Nov 29 01:40:26 EST 2025
Tue Nov 18 21:05:09 EST 2025
Wed Aug 27 03:01:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-7a09128f22fefba8ea7e82d7c2ac93cf4ff2184d4bd9db7df1cc37637b0177c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8661-5695
0000-0002-3625-6599
0000-0002-4499-759X
0000-0001-7624-1861
0000-0002-6639-8547
OpenAccessLink https://research.tue.nl/en/publications/944c1075-f9f9-4c33-ad21-474d0e791bcf
PMID 37352084
PQID 2829427713
PQPubID 23479
PageCount 13
ParticipantIDs pubmed_primary_37352084
proquest_miscellaneous_2829427713
crossref_citationtrail_10_1109_TNNLS_2023_3285077
crossref_primary_10_1109_TNNLS_2023_3285077
ieee_primary_10160045
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
Kingma (ref33)
ref12
ref36
ref31
Bello (ref18)
ref30
ref11
Kim (ref28); 34
ref32
Dai (ref19)
ref2
ref1
Kool (ref16)
Awad (ref37)
ref39
ref38
Joshi (ref20) 2019
Xin (ref21)
Nazari (ref14)
Vinyals (ref17); 28
Hottung (ref26)
Ma (ref15); 34
Hottung (ref24)
ref22
(ref34) 2021
Kwon (ref10); 33
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Helsgaun (ref35) 2017
Chen (ref23); 32
Lu (ref25)
References_xml – start-page: 1
  volume-title: Proc. 24th Eur. Conf. Artif. Intell.
  ident: ref24
  article-title: Neural large neighborhood search for the capacitated vehicle routing problem
– ident: ref39
  doi: 10.1016/j.ejor.2016.08.012
– ident: ref9
  doi: 10.1109/TNNLS.2017.2740224
– ident: ref12
  doi: 10.1016/j.cor.2012.07.018
– volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref16
  article-title: Attention, learn to solve routing problems!
– ident: ref2
  doi: 10.1007/s10479-009-0657-6
– volume: 34
  start-page: 10418
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref28
  article-title: Learning collaborative policies to solve NP-hard routing problems
– start-page: 374
  volume-title: Proc. Int. Conf. Ind. Eng. Oper. Manag.
  ident: ref37
  article-title: An effective genetic algorithm for capacitated vehicle routing problem
– ident: ref27
  doi: 10.1109/TSMC.2020.2969317
– ident: ref36
  doi: 10.1016/j.cor.2021.105643
– ident: ref11
  doi: 10.1016/j.ejor.2004.08.018
– start-page: 9861
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref14
  article-title: Reinforcement learning for solving the vehicle routing problem
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref25
  article-title: A learning-based iterative method for solving vehicle routing problems
– ident: ref13
  doi: 10.1109/TNNLS.2021.3068828
– ident: ref32
  doi: 10.1007/978-3-319-60801-3_27
– ident: ref8
  doi: 10.1109/tnnls.2022.3148435
– ident: ref38
  doi: 10.1287/ijoc.3.4.376
– start-page: 1
  volume-title: Proc. Int. Conf. Mach. Learn. Workshop
  ident: ref18
  article-title: Neural combinatorial optimization with reinforcement learning
– volume: 32
  start-page: 6281
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref23
  article-title: Learning to perform local rewriting for combinatorial optimization
– start-page: 6351
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref19
  article-title: Learning combinatorial optimization algorithms over graphs
– ident: ref29
  doi: 10.1109/CVPR.2016.90
– ident: ref22
  doi: 10.1109/TITS.2021.3056120
– ident: ref30
  doi: 10.5555/3045118.3045167
– year: 2019
  ident: ref20
  article-title: An efficient graph convolutional network technique for the travelling salesman problem
  publication-title: arXiv:1906.01227
– year: 2017
  ident: ref35
  article-title: An extension of the Lin–Kernighan–Helsgaun TSP solver for constrained traveling salesman and vehicle routing problems
– ident: ref5
  doi: 10.1109/TII.2020.3031409
– ident: ref7
  doi: 10.1109/TNNLS.2021.3105905
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref33
  article-title: Adam: A method for stochastic optimization
– start-page: 12042
  volume-title: Proc. AAAI Conf. Artif. Intell.
  ident: ref21
  article-title: Multi-decoder attention model with embedding glimpse for solving vehicle routing problems
– ident: ref3
  doi: 10.1016/j.eswa.2011.03.088
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref26
  article-title: Learning a latent search space for routing problems using variational autoencoders
– ident: ref1
  doi: 10.1016/0377-2217(92)90192-C
– volume-title: Gurobi Optimizer Reference Manual
  year: 2021
  ident: ref34
– volume: 34
  start-page: 11096
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref15
  article-title: Learning to iteratively solve routing problems with dual-aspect collaborative transformer
– volume: 28
  start-page: 2692
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref17
  article-title: Pointer networks
– ident: ref31
  doi: 10.1016/S1352-2310(97)00447-0
– ident: ref6
  doi: 10.1109/TNNLS.2021.3070584
– ident: ref4
  doi: 10.48550/ARXIV.1706.03762
– volume: 33
  start-page: 21188
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref10
  article-title: POMO: Policy optimization with multiple optima for reinforcement learning
SSID ssj0000605649
Score 2.5482988
Snippet While the encoder-decoder structure is widely used in the recent neural construction methods for learning to solve vehicle routing problems (VRPs), they are...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15279
SubjectTerms Costs
Decoding
Encoder–decoder structure
Logic gates
neural combinatorial optimization
Probability distribution
reinforcement learning
Routing
Search problems
Vehicle routing
vehicle routing problems (VRPs)
Title Learning Feature Embedding Refiner for Solving Vehicle Routing Problems
URI https://ieeexplore.ieee.org/document/10160045
https://www.ncbi.nlm.nih.gov/pubmed/37352084
https://www.proquest.com/docview/2829427713
Volume 35
WOSCitedRecordID wos001128242500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYAceDC-zFeChI31NEmbZMeEeJxQNPEBtqtahMHkMaG9uD3E6fttAtI3FopSavYiT_HsT-AS4pVJUaYQEY6CeKsDIPS6CKIVGowRefmeprO1yfZ6ajBIOvWyeo-FwYR_eUzbNOjj-WbsZ7TUdm1L4fmMMgqrEopq2StxYFK6IB56uEuj1IecCEHTZJMmF33O52nXpu4wtuCKweCiH1PSAc_fGHTJZvkSVZ-x5ve7txv_fOPt2GzBpjsptKIHVjB0S5sNeQNrF7Le_BQV1Z9Y4QC5xNkd58lGjJl7Bkt5QQyB2hZbzykMwf2iu80IKMrRPTerZhopvvwcn_Xv30MalaFQItUzQJZOIjAleXcoi0LhYVExY3UvNCZ0Da2ltw-E5cmM6U0NtKadiFZusUrtRIHsDYaj_AIWMETTCMbktcTC0zKJBNh5jCd20HJ6LUgauY113XJcWK-GObe9Qiz3IslJ7HktVhacLXo81UV3Piz9T5N-lLLar5bcNHIL3frhYIgxQjH82lOkeOYS-ebt-CwEuyid6MPx7-MegIb7uNxlYp4CmuzyRzPYF1_zz6mk3OnlAN17pXyB7Ih2R4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-xMmm8ANsYlK950t6mlMRO4uQRITrQuqhau6pvUWKfB1JpUT_4-_E5SdWXIu0tkWzL8p19v_P57gfwnWJVkRbak4GKvDAtfa_UqvCCJNYYo3VzHU3nqCezLBmP036drO5yYRDRPT7DDn26WL6eqRVdlV25cmgWg7yD3SgMeVCla62vVHwLzWMHeHkQc48LOW7SZPz0aphlvUGH2MI7gicWBhH_npAWgLjSphtWydGsbEeczvJ0D_5zzoewX0NMdl3pxEfYweknOGjoG1i9mz_Dz7q26j9GOHA1R3b7VKImY8b-oKGsQGYhLRvMJnTrwEb4QAMyekRE__2Ki2ZxBH-7t8ObO6_mVfCUiJOlJwsLEnhiODdoyiLBQmLCtVS8UKlQJjSGHD8dljrVpdQmUIrOIVna7StVIr5Aazqb4gmwgkcYB8YnvycUGJVRKvzUojp7hpLZa0PQrGuu6qLjxH0xyZ3z4ae5E0tOYslrsbThx7rPc1Vy483WR7ToGy2r9W7Dt0Z-ud0xFAYppjhbLXKKHYdcWu-8DceVYNe9G3043TLqV_hwN_zdy3v32a8z2LMTCavExHNoLecrvID36mX5uJhfOtV8BQpA230
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Feature+Embedding+Refiner+for+Solving+Vehicle+Routing+Problems&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Li%2C+Jingwen&rft.au=Ma%2C+Yining&rft.au=Cao%2C+Zhiguang&rft.au=Wu%2C+Yaoxin&rft.date=2024-11-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=35&rft.issue=11&rft.spage=15279&rft_id=info:doi/10.1109%2FTNNLS.2023.3285077&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon