Improved best linear unbiased estimators for the simple linear regression model using double ranked set sampling schemes
In this paper, we consider the best linear unbiased estimators (BLUEs) based on double ranked set sampling (DRSS) and ordered DRSS (ODRSS) schemes for the simple linear regression model with replicated observations. We assume three symmetric distributions for the random error term, i.e., normal, Lap...
Saved in:
| Published in: | Communications in statistics. Theory and methods Vol. 45; no. 12; pp. 3541 - 3561 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Philadelphia
Taylor & Francis
17.06.2016
Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 0361-0926, 1532-415X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we consider the best linear unbiased estimators (BLUEs) based on double ranked set sampling (DRSS) and ordered DRSS (ODRSS) schemes for the simple linear regression model with replicated observations. We assume three symmetric distributions for the random error term, i.e., normal, Laplace and some scale contaminated normal distributions. The proposed BLUEs under DRSS (BLUEs-DRSS) and ODRSS (BLUEs-ODRSS) are compared with the BLUEs based on ordered simple random sampling (OSRS), ranked set sampling (RSS), and ordered RSS (ORSS) schemes. These estimators are compared in terms of relative efficiency (RE), RE of determinant (RED), and RE of trace (RET). It is found that the BLUEs-ODRSS are uniformly better than the BLUEs based on OSRS, RSS, ORSS, and DRSS schemes. We also compare the estimators based on imperfect RSS (IRSS) schemes. It is worth mentioning here that the BLUEs under ordered imperfect DRSS (OIDRSS) are better than their counterparts based on IRSS, ordered IRSS (OIRSS), and imperfect DRSS (IDRSS) methods. Moreover, for sensitivity analysis of the BLUEs, we calculate REs and REDs of the BLUEs under the assumption of normality when in fact the parent distribution follows a non normal symmetric distribution. It turns out that even under violation of normality assumptions, BLUEs of the intercept and the slope parameters are found to be unbiased with equal REs under each sampling scheme. It is also observed that the BLUEs under ODRSS are more efficient than the existing BLUEs. |
|---|---|
| AbstractList | In this paper, we consider the best linear unbiased estimators (BLUEs) based on double ranked set sampling (DRSS) and ordered DRSS (ODRSS) schemes for the simple linear regression model with replicated observations. We assume three symmetric distributions for the random error term, i.e., normal, Laplace and some scale contaminated normal distributions. The proposed BLUEs under DRSS (BLUEs-DRSS) and ODRSS (BLUEs-ODRSS) are compared with the BLUEs based on ordered simple random sampling (OSRS), ranked set sampling (RSS), and ordered RSS (ORSS) schemes. These estimators are compared in terms of relative efficiency (RE), RE of determinant (RED), and RE of trace (RET). It is found that the BLUEs-ODRSS are uniformly better than the BLUEs based on OSRS, RSS, ORSS, and DRSS schemes. We also compare the estimators based on imperfect RSS (IRSS) schemes. It is worth mentioning here that the BLUEs under ordered imperfect DRSS (OIDRSS) are better than their counterparts based on IRSS, ordered IRSS (OIRSS), and imperfect DRSS (IDRSS) methods. Moreover, for sensitivity analysis of the BLUEs, we calculate REs and REDs of the BLUEs under the assumption of normality when in fact the parent distribution follows a non normal symmetric distribution. It turns out that even under violation of normality assumptions, BLUEs of the intercept and the slope parameters are found to be unbiased with equal REs under each sampling scheme. It is also observed that the BLUEs under ODRSS are more efficient than the existing BLUEs. |
| Author | Brown, Jennifer Moltchanova, Elena Haq, Abdul |
| Author_xml | – sequence: 1 givenname: Abdul surname: Haq fullname: Haq, Abdul email: aaabdulhaq@yahoo.com organization: Department of Statistics, Quaid-i-Azam University – sequence: 2 givenname: Jennifer surname: Brown fullname: Brown, Jennifer organization: Department of Mathematics and Statistics, University of Canterbury – sequence: 3 givenname: Elena surname: Moltchanova fullname: Moltchanova, Elena organization: Department of Mathematics and Statistics, University of Canterbury |
| BookMark | eNqFkUFv1DAQhS1UJLaFf8DBEhcuWcax4zhcEKqgrVSJC0jcLMd2WhfHXjxJof8eR0svPcDJ0vh7TzPvnZKTlJMn5DWDPQMF74BLBkMr9y0wsR9A8A6ekR3reNsI1n0_IbsNaTbmBTlFvANgXa_4jvy-mg8l33tHR48LjSF5U-iaxmCwDusszGbJBemUC11uPcUwH6J_JIu_KR4x5ETn7HykK4Z0Q11exwoVk35UF_QLRVNl2xfaWz97fEmeTyaif_X3PSPfPn_6en7ZXH-5uDr_eN1YLtXSyIlxI8A52fZyMIODsbee2cEyLnrLjXGt4j234AY7tMxOHKQblbQM2DhM_Iy8PfrWM3-u9R49B7Q-RpN8XlEzxSTwTkBb0TdP0Lu8llS306xXUoFQvaiUOFK2ZMTiJ30oNaPyoBnorQ79WIfe6tDHOqrs_ROZDYtZanBLMSH-T_zhKA6p1jCbX7lEpxfzEHOZasg2oOb_dPgDUBGmZA |
| CitedBy_id | crossref_primary_10_1007_s00362_025_01707_9 crossref_primary_10_1080_00949655_2018_1444040 crossref_primary_10_1080_00949655_2019_1665043 crossref_primary_10_32604_cmc_2021_015047 |
| Cites_doi | 10.1002/bimj.4710370704 10.1007/BF02911622 10.5209/rev_REMA.2007.v20.n1.16528 10.1093/biomet/39.1-2.88 10.1080/00401706.1974.10489214 10.1023/A:1009609902784 10.1111/j.2517-6161.1972.tb00909.x 10.2307/2556166 10.1080/00949650701756872 10.1002/0471722162 10.1071/AR9520385 10.1016/S0167-7152(99)00206-0 10.2307/2556187 10.1081/SAC-200055641 10.1016/j.jspi.2005.08.050 |
| ContentType | Journal Article |
| Copyright | 2016 Taylor & Francis Group, LLC 2016 2016 Taylor & Francis Group, LLC |
| Copyright_xml | – notice: 2016 Taylor & Francis Group, LLC 2016 – notice: 2016 Taylor & Francis Group, LLC |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1080/03610926.2014.904350 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1532-415X |
| EndPage | 3561 |
| ExternalDocumentID | 4044968801 10_1080_03610926_2014_904350 904350 |
| Genre | Article Feature |
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS EJD E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM M4Z NA5 NY~ O9- QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ TWF TWZ UPT UT5 UU3 WH7 ZGOLN ZL0 ~02 ~S~ AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c368t-6f13a40dd62769a9d0b7ce1c9c1347c3aad28373c0d9c921cf306db86c101b9f3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000375864900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0361-0926 |
| IngestDate | Sun Nov 09 11:08:56 EST 2025 Wed Aug 13 03:43:16 EDT 2025 Sat Nov 29 01:53:49 EST 2025 Tue Nov 18 22:35:54 EST 2025 Mon Oct 20 23:47:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c368t-6f13a40dd62769a9d0b7ce1c9c1347c3aad28373c0d9c921cf306db86c101b9f3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1786804874 |
| PQPubID | 186202 |
| PageCount | 21 |
| ParticipantIDs | crossref_primary_10_1080_03610926_2014_904350 crossref_citationtrail_10_1080_03610926_2014_904350 informaworld_taylorfrancis_310_1080_03610926_2014_904350 proquest_miscellaneous_1816035402 proquest_journals_1786804874 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-06-17 |
| PublicationDateYYYYMMDD | 2016-06-17 |
| PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-17 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | Philadelphia |
| PublicationPlace_xml | – name: Philadelphia |
| PublicationTitle | Communications in statistics. Theory and methods |
| PublicationYear | 2016 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | cit0011 Vaughan R.J. (cit0017) 1972; 34 cit0001 cit0012 Leone F.C. (cit0010) 1973; 68 Bapat R.B. (cit0005) 1989; 1 cit0008 cit0009 cit0006 cit0007 cit0004 cit0015 cit0016 cit0002 cit0013 cit0003 cit0014 |
| References_xml | – ident: cit0015 doi: 10.1002/bimj.4710370704 – ident: cit0016 doi: 10.1007/BF02911622 – ident: cit0002 doi: 10.5209/rev_REMA.2007.v20.n1.16528 – volume: 68 start-page: 953 year: 1973 ident: cit0010 publication-title: J. Am. Stat. Assoc. – ident: cit0012 doi: 10.1093/biomet/39.1-2.88 – volume: 1 start-page: 79 year: 1989 ident: cit0005 publication-title: Sankhya, Series A – ident: cit0014 doi: 10.1080/00401706.1974.10489214 – ident: cit0006 doi: 10.1023/A:1009609902784 – volume: 34 start-page: 308 year: 1972 ident: cit0017 publication-title: J. R. Stat. Soc. Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1972.tb00909.x – ident: cit0009 doi: 10.2307/2556166 – ident: cit0011 doi: 10.1080/00949650701756872 – ident: cit0008 doi: 10.1002/0471722162 – ident: cit0013 doi: 10.1071/AR9520385 – ident: cit0001 doi: 10.1016/S0167-7152(99)00206-0 – ident: cit0007 doi: 10.2307/2556187 – ident: cit0003 doi: 10.1081/SAC-200055641 – ident: cit0004 doi: 10.1016/j.jspi.2005.08.050 |
| SSID | ssj0015783 |
| Score | 2.0819745 |
| Snippet | In this paper, we consider the best linear unbiased estimators (BLUEs) based on double ranked set sampling (DRSS) and ordered DRSS (ODRSS) schemes for the... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3541 |
| SubjectTerms | Best linear unbiased estimator Economic models Estimators Mathematical models Normality Order statistics Primary: 62D05; Secondary: 62F10 Ranked set sample Regression Regression analysis Relative efficiency Sampling Sensitivity analysis Simple linear regression model Statistics Symmetry |
| Title | Improved best linear unbiased estimators for the simple linear regression model using double ranked set sampling schemes |
| URI | https://www.tandfonline.com/doi/abs/10.1080/03610926.2014.904350 https://www.proquest.com/docview/1786804874 https://www.proquest.com/docview/1816035402 |
| Volume | 45 |
| WOSCitedRecordID | wos000375864900010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis customDbUrl: eissn: 1532-415X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015783 issn: 0361-0926 databaseCode: TFW dateStart: 19760101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4iHvTgY1VcX0TwWm2amiZHERcPunhQ9FbyFEG7st0Vf74zTbsoooIeS55NJvNIZr4h5BDlQnCWJV4wlyBgV2KYFInmRQgZ6EmKN4HCl8VwKO_v1fWHKH50q0QbOkSgiIZX4-HWpu484o6B6bJUZehgwPIjlYLER6MdJD-ezJvB3ewZAcgx5kcWYDNDiy527ptOPsmmT8ilXzh1I34GK_-f-CpZblVPehppZY3M-apHlq5muK11jyyi7hmhm9fJW7xw8I4amBDF8fSYTivzCJLPUYTneEaTvabwBxR6ofUjYg13Ncf-ITrZVrTJt0PRx_6ButHUQCVMFg-91H5Ca41u7VAElrZ_9vUGuR2c35xdJG2ihsRyISeJCIzrPHVOZIVQWrnUFNYzqywGqlqutUOQHW5Tp6zKmA1gqDgjhQWGYFTgm2S-GlV-i1DjZK4yKUERDbkXRvsTp9IT70QAbcWwPuHdFpW2RTHHZBpPJevATttFLnGRy7jIfZLMWr1EFI9f6suPu19OmtuTEFOdlPznprsdpZQtO6hLVkghgVcWeZ8czIrhIOPrjK78aAp1JGb8BgU62_776DtkEb4E-rKxYpfMT8ZTv0cW7CvQzni_ORzvfaMLfg |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFD5IFawPVavitlUj-Do6mcxmkkcpLhW3iw8r9i3kWgp2VnZ2xZ_vOZOZxSIqiM-5zSQn55J8-Q7AK7ILKXheRMlDQYRdheNKFlY0KVXoJ2nRPxSeN4uFurjQHwc0YTfAKimGTpkootfVtLnpMHqExL1BrctLXRHCgNevdYkmH6P221M0tUSfv5x93l0koEDmDMkSo2ZsMr6e-00vN6zTDe7SX3R1b4Bm9__Dpz-Ag8H7ZG-zuDyEW7E9hHvnO-rW7hD2yf3M7M2P4Hs-c4iBOfwiRgPaNdu27gqNX2DE0HFNUXvH8BcY9sK6K6IbHmuu42XG2basT7nDCGZ_ycJq67AS5YvHXrq4YZ0lZDsWYbAdr2P3GD7N3i1Pz4ohV0PhhVSbQiYubF2GIKtGaqtD6Rofudee3qp6YW0gnh3hy6C9rrhPGKsEp6RHneB0Ek9gr1218SkwF1StK6XQF011lM7GadDlNAaZ0GFxfAJiXCPjByJzyqfxxfCR73SYZEOTbPIkT6DYtfqaiTz-Ul_9vPxm0x-gpJztxIg_Nz0ZRcUMGqEzvFFSobps6gm83BXjXqYLGtvG1RbrKEr6jT50dfTvo7-Au2fL87mZv198OIZ9LJEEbePNCext1tv4DO74byhH6-f9TvkBZp8PqA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ8YNAYeRFHDKWhNfF3dbpdu-2iEC0a88ICRt6afhET2yO2d8c93Zrt7gRg1wedO2912Oh_tzG8A3pJeSMHzIkoeCgLsKhxXsrCiSalCO0mLPlH4pJnN1Pm5Pr2RxU9hleRDpwwU0ctqOtzXIY0Rce9R6PJSVxRgwOt3ukSNj077fbScJfH42fTb-h0B-TEXSJboNGOXMXnuD6PcUk63oEt_E9W9_plu__-XP4ZHg-3JPmRmeQL3YrsDW1_WwK3dDmyS8Zmxm5_Cz3zjEANz-EGM5rMLtmrdJaq-wAif44p89o7hHzAchXWXBDY8Ui7iRY6ybVlfcIdRkP0FC_OVQyKqFo-jdHHJOktx7diErna8it0z-Do9Ovt4XAyVGgovpFoWMnFh6zIEWTVSWx1K1_jIvfaUqeqFtYFQdoQvg_a64j6hpxKckh4lgtNJPIeNdt7GXWAuqFpXSqElmuoonY0HQZcHMciE5orjExDjFhk_wJhTNY3vho9op8MiG1pkkxd5AsW613WG8fgHvbq5-2bZX5-kXOvEiL933Rs5xQzyoDO8UVKhsGzqCbxZN-NJpucZ28b5CmkUlfxGC7p6cffZX8PD08OpOfk0-_wSNrFBUlwbb_ZgY7lYxX144H8gGy1e9efkFyO1Dlo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+best+linear+unbiased+estimators+for+the+simple+linear+regression+model+using+double+ranked+set+sampling+schemes&rft.jtitle=Communications+in+statistics.+Theory+and+methods&rft.au=Haq%2C+Abdul&rft.au=Brown%2C+Jennifer&rft.au=Moltchanova%2C+Elena&rft.date=2016-06-17&rft.issn=0361-0926&rft.eissn=1532-415X&rft.volume=45&rft.issue=12&rft.spage=3541&rft.epage=3561&rft_id=info:doi/10.1080%2F03610926.2014.904350&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0926&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0926&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0926&client=summon |