The normalized least-squares order-recursive lattice smoother
This paper introduces a variance- and angle-normalized version of the least-squares order-recursive lattice (LSORL) smoother, say the normalized LSORL smoother, via a geometric approach. The normalized LSORL smoother has excellent round-off noise properties and inherits all the other advantages of t...
Uloženo v:
| Vydáno v: | Signal processing Ročník 82; číslo 6; s. 895 - 905 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.06.2002
Elsevier Science |
| Témata: | |
| ISSN: | 0165-1684, 1872-7557 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper introduces a variance- and angle-normalized version of the least-squares order-recursive lattice (LSORL) smoother,
say the normalized LSORL smoother, via a geometric approach. The normalized LSORL smoother has excellent round-off noise properties and inherits all the other advantages of the normalized LSORL as well. Simulation results show that the normalized LSORL smoother outperforms the existing LSORL and QRD-based least-squares lattice smoother algorithms when finite-precision arithmetic is used. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0165-1684 1872-7557 |
| DOI: | 10.1016/S0165-1684(02)00199-8 |