The normalized least-squares order-recursive lattice smoother
This paper introduces a variance- and angle-normalized version of the least-squares order-recursive lattice (LSORL) smoother, say the normalized LSORL smoother, via a geometric approach. The normalized LSORL smoother has excellent round-off noise properties and inherits all the other advantages of t...
Uložené v:
| Vydané v: | Signal processing Ročník 82; číslo 6; s. 895 - 905 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
01.06.2002
Elsevier Science |
| Predmet: | |
| ISSN: | 0165-1684, 1872-7557 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper introduces a variance- and angle-normalized version of the least-squares order-recursive lattice (LSORL) smoother,
say the normalized LSORL smoother, via a geometric approach. The normalized LSORL smoother has excellent round-off noise properties and inherits all the other advantages of the normalized LSORL as well. Simulation results show that the normalized LSORL smoother outperforms the existing LSORL and QRD-based least-squares lattice smoother algorithms when finite-precision arithmetic is used. |
|---|---|
| AbstractList | This paper introduces a variance- and angle-normalized version of the least-squares order-recursive lattice (LSORL) smoother,
say the normalized LSORL smoother, via a geometric approach. The normalized LSORL smoother has excellent round-off noise properties and inherits all the other advantages of the normalized LSORL as well. Simulation results show that the normalized LSORL smoother outperforms the existing LSORL and QRD-based least-squares lattice smoother algorithms when finite-precision arithmetic is used. This paper introduces a variance- and angle-normalized version of the least-squares order-recursive lattice (LSORL) smoother, say the normalized LSORL smoother, via a geometric approach. The normalized LSORL smoother has excellent round-off noise properties and inherits all the other advantages of the normalized LSORL as well. Simulation results show that the normalized LSORL smoother outperforms the existing LSORL and QRD-based least-squares lattice smoother algorithms when finite-precision arithmetic is used. copyright 2002 Elsevier Science B.V. All rights reserved. |
| Author | Park, PooGyeon Kim, Dong Kyoo |
| Author_xml | – sequence: 1 givenname: Dong Kyoo surname: Kim fullname: Kim, Dong Kyoo email: kdk@postech.edu – sequence: 2 givenname: PooGyeon surname: Park fullname: Park, PooGyeon email: ppg@postech.ac.kr |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13694668$$DView record in Pascal Francis |
| BookMark | eNqFkM9LwzAUgINMcJv-CUIvih6qSdqmKSIiw18w8ODu4S19ZZG22ZJsoH-97TYUvOzy3uX7HrxvRAatbZGQc0ZvGGXi9qMbWcyETK8ov6aUFUUsj8iQyZzHeZblAzL8RU7IyPtP2lGJoENyP1tg1FrXQG2-sYxqBB9iv1qDQx9ZV6KLHeq182aDUQ0hGI2Rb6wNC3Sn5LiC2uPZfo_J7PlpNnmNp-8vb5PHaawTIUMssGASuBZCMw4gOC2SNEcutQSK85JzrVlJS55VGgVLGc-EmAOveJkVc5qMyeXu7NLZ1Rp9UI3xGusaWrRrr3ieCy6p7MCLPQheQ105aLXxaulMA-5LdS8XqRA9l-047az3Dqs_hKq-qdo2VX0wRbnaNlW9d_fP0yZAMLYNDkx90H7Y2dil2hh0ymuDrcbSdImDKq05cOEH_q6SYw |
| CODEN | SPRODR |
| CitedBy_id | crossref_primary_10_1007_s11227_012_0753_2 crossref_primary_10_1109_LSP_2005_860548 |
| Cites_doi | 10.1109/TASSP.1975.1162680 10.1109/TASSP.1981.1163600 10.1109/CDC.1977.271730 10.1109/78.757234 10.1109/ICASSP.1978.1170433 10.1016/0165-1684(86)90044-7 10.1109/ICASSP.1978.1170536 10.1109/TCS.1981.1085020 10.1109/PROC.1982.12407 10.1145/1478786.1478840 10.1109/TCOM.1981.1094968 10.1109/ICASSP.1981.1171234 10.1109/78.382393 |
| ContentType | Journal Article |
| Copyright | 2002 2002 INIST-CNRS |
| Copyright_xml | – notice: 2002 – notice: 2002 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SP 8FD L7M |
| DOI | 10.1016/S0165-1684(02)00199-8 |
| DatabaseName | CrossRef Pascal-Francis Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1872-7557 |
| EndPage | 905 |
| ExternalDocumentID | 13694668 10_1016_S0165_1684_02_00199_8 S0165168402001998 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c368t-6e918a2c66c12aa6209347e28c8a0ebd22cc1d0d25fce61412566ba2f2d59b03 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000176255800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0165-1684 |
| IngestDate | Mon Sep 29 06:33:17 EDT 2025 Mon Jul 21 09:14:43 EDT 2025 Sat Nov 29 02:13:07 EST 2025 Tue Nov 18 20:56:43 EST 2025 Fri Feb 23 02:26:43 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Least-squares lattice algorithms Smoothing algorithms Order-recursive structures Adaptive filters Geometric interpretation Normalized LSORL smoothers Finite precision arithmetic Simulation Least squares method Adaptive filtering Recursive method Signal processing Geometrical method Algorithm Lattice structure |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c368t-6e918a2c66c12aa6209347e28c8a0ebd22cc1d0d25fce61412566ba2f2d59b03 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 27762808 |
| PQPubID | 23500 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_27762808 pascalfrancis_primary_13694668 crossref_primary_10_1016_S0165_1684_02_00199_8 crossref_citationtrail_10_1016_S0165_1684_02_00199_8 elsevier_sciencedirect_doi_10_1016_S0165_1684_02_00199_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2002-06-01 |
| PublicationDateYYYYMMDD | 2002-06-01 |
| PublicationDate_xml | – month: 06 year: 2002 text: 2002-06-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Signal processing |
| PublicationYear | 2002 |
| Publisher | Elsevier B.V Elsevier Science |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science |
| References | L.J. Griffiths, An adaptive lattice structure for noise-cancelling applications, Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing, Tulsa, OK, April 1978, pp. 87–90. J.S. Walther, A unified algorithm for elementary functions, Proceedings of the Joint Spring Computer Conference, 1971, pp. 379–385, New Jersey, Atlantic City. E.H. Satorius, J.D. Pack, Application of least squares lattice algorithms to adaptive equalization, IEEE Trans. Commun. COM-29 (2) (1981) 136–142. Friedlander (BIB4) August 1982; 70 M. Morf, A. Vieira, D.T. Lee, Ladder forms for identification and speech processing, in: Proceedings of the IEEE Conference on Decision Control, December 1977, New Orleans, LA, 1074–1078. Yuan, Stuller (BIB14) 1995; 43 Reddy, Egardt, Kailath (BIB10) June 1981; ASSP-29 Carayannis, Manolakis, Kalouptsidis (BIB2) June 1986; 10 Lee, Morf, Friedlander (BIB8) June 1981; CAS-28 Yuan (BIB13) 1999; 47 T.E. Carter, Study of an adaptive lattice structure for linear prediction analysis of speech, Proceedings of the IEEE Conference on Acoustics, Speech, Signal Processing, Tulsa, OK, April 1978, pp. 27–30. Haykin (BIB7) 1996 H.M. Amhed, M. Morf, D.T. Lee, P.H. Ang, A VLSI speech analysis chip set based on square root normalized LSORL form, Proceedings of the ICASSP, 1981, ASSP-81, pp. 648–653. A.H. Gray Jr., J.D. Markel, A normalized digital filter structure, IEEE Trans. Acoust. Speech Signal Process. ASSP-23 (3) (1975) 268–277. 10.1016/S0165-1684(02)00199-8_BIB3 10.1016/S0165-1684(02)00199-8_BIB5 Haykin (10.1016/S0165-1684(02)00199-8_BIB7) 1996 Carayannis (10.1016/S0165-1684(02)00199-8_BIB2) 1986; 10 10.1016/S0165-1684(02)00199-8_BIB6 10.1016/S0165-1684(02)00199-8_BIB9 10.1016/S0165-1684(02)00199-8_BIB12 10.1016/S0165-1684(02)00199-8_BIB11 Yuan (10.1016/S0165-1684(02)00199-8_BIB14) 1995; 43 Friedlander (10.1016/S0165-1684(02)00199-8_BIB4) 1982; 70 Lee (10.1016/S0165-1684(02)00199-8_BIB8) 1981; CAS-28 Yuan (10.1016/S0165-1684(02)00199-8_BIB13) 1999; 47 Reddy (10.1016/S0165-1684(02)00199-8_BIB10) 1981; ASSP-29 10.1016/S0165-1684(02)00199-8_BIB1 |
| References_xml | – reference: H.M. Amhed, M. Morf, D.T. Lee, P.H. Ang, A VLSI speech analysis chip set based on square root normalized LSORL form, Proceedings of the ICASSP, 1981, ASSP-81, pp. 648–653. – reference: L.J. Griffiths, An adaptive lattice structure for noise-cancelling applications, Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing, Tulsa, OK, April 1978, pp. 87–90. – reference: A.H. Gray Jr., J.D. Markel, A normalized digital filter structure, IEEE Trans. Acoust. Speech Signal Process. ASSP-23 (3) (1975) 268–277. – volume: 70 start-page: 829 year: August 1982 end-page: 867 ident: BIB4 article-title: Lattice filters for adaptive processing publication-title: Proc. IEEE – volume: 43 start-page: 1058 year: 1995 end-page: 1067 ident: BIB14 article-title: Least squares order-recursive lattice smoothers publication-title: IEEE Trans. Signal Process. – reference: J.S. Walther, A unified algorithm for elementary functions, Proceedings of the Joint Spring Computer Conference, 1971, pp. 379–385, New Jersey, Atlantic City. – volume: 47 start-page: 1414 year: 1999 end-page: 1420 ident: BIB13 article-title: A modified QRD for smoothing and a QRD-LSL smoothing algorithm publication-title: IEEE Trans. Signal Process. – reference: T.E. Carter, Study of an adaptive lattice structure for linear prediction analysis of speech, Proceedings of the IEEE Conference on Acoustics, Speech, Signal Processing, Tulsa, OK, April 1978, pp. 27–30. – volume: CAS-28 start-page: 467 year: June 1981 end-page: 481 ident: BIB8 article-title: Recursive least squares LSORL estimation algorithms publication-title: IEEE Trans. Circuits and Systems – reference: M. Morf, A. Vieira, D.T. Lee, Ladder forms for identification and speech processing, in: Proceedings of the IEEE Conference on Decision Control, December 1977, New Orleans, LA, 1074–1078. – volume: ASSP-29 start-page: 702 year: June 1981 end-page: 710 ident: BIB10 article-title: Optimized lattice-form adaptive line enhancer for a sinusoidal signal in broad-band noise publication-title: IEEE Trans. Acoust. Speech Signal Process. – volume: 10 start-page: 335 year: June 1986 end-page: 368 ident: BIB2 article-title: A unified view of parametric processing algorithms for prewindowed signals publication-title: Singal Process. – year: 1996 ident: BIB7 publication-title: Adaptive Filter Theory – reference: E.H. Satorius, J.D. Pack, Application of least squares lattice algorithms to adaptive equalization, IEEE Trans. Commun. COM-29 (2) (1981) 136–142. – ident: 10.1016/S0165-1684(02)00199-8_BIB5 doi: 10.1109/TASSP.1975.1162680 – volume: ASSP-29 start-page: 702 year: 1981 ident: 10.1016/S0165-1684(02)00199-8_BIB10 article-title: Optimized lattice-form adaptive line enhancer for a sinusoidal signal in broad-band noise publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1981.1163600 – ident: 10.1016/S0165-1684(02)00199-8_BIB9 doi: 10.1109/CDC.1977.271730 – volume: 47 start-page: 1414 issue: 5 year: 1999 ident: 10.1016/S0165-1684(02)00199-8_BIB13 article-title: A modified QRD for smoothing and a QRD-LSL smoothing algorithm publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.757234 – ident: 10.1016/S0165-1684(02)00199-8_BIB3 doi: 10.1109/ICASSP.1978.1170433 – volume: 10 start-page: 335 issue: 4 year: 1986 ident: 10.1016/S0165-1684(02)00199-8_BIB2 article-title: A unified view of parametric processing algorithms for prewindowed signals publication-title: Singal Process. doi: 10.1016/0165-1684(86)90044-7 – ident: 10.1016/S0165-1684(02)00199-8_BIB6 doi: 10.1109/ICASSP.1978.1170536 – year: 1996 ident: 10.1016/S0165-1684(02)00199-8_BIB7 – volume: CAS-28 start-page: 467 issue: 6 year: 1981 ident: 10.1016/S0165-1684(02)00199-8_BIB8 article-title: Recursive least squares LSORL estimation algorithms publication-title: IEEE Trans. Circuits and Systems doi: 10.1109/TCS.1981.1085020 – volume: 70 start-page: 829 issue: 8 year: 1982 ident: 10.1016/S0165-1684(02)00199-8_BIB4 article-title: Lattice filters for adaptive processing publication-title: Proc. IEEE doi: 10.1109/PROC.1982.12407 – ident: 10.1016/S0165-1684(02)00199-8_BIB12 doi: 10.1145/1478786.1478840 – ident: 10.1016/S0165-1684(02)00199-8_BIB11 doi: 10.1109/TCOM.1981.1094968 – ident: 10.1016/S0165-1684(02)00199-8_BIB1 doi: 10.1109/ICASSP.1981.1171234 – volume: 43 start-page: 1058 year: 1995 ident: 10.1016/S0165-1684(02)00199-8_BIB14 article-title: Least squares order-recursive lattice smoothers publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.382393 |
| SSID | ssj0001360 |
| Score | 1.6626502 |
| Snippet | This paper introduces a variance- and angle-normalized version of the least-squares order-recursive lattice (LSORL) smoother,
say the normalized LSORL... This paper introduces a variance- and angle-normalized version of the least-squares order-recursive lattice (LSORL) smoother, say the normalized LSORL... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 895 |
| SubjectTerms | Adaptive filters Applied sciences Detection, estimation, filtering, equalization, prediction Exact sciences and technology Finite precision arithmetic Geometric interpretation Information, signal and communications theory Least-squares lattice algorithms Normalized LSORL smoothers Order-recursive structures Signal and communications theory Signal, noise Smoothing algorithms Telecommunications and information theory |
| Title | The normalized least-squares order-recursive lattice smoother |
| URI | https://dx.doi.org/10.1016/S0165-1684(02)00199-8 https://www.proquest.com/docview/27762808 |
| Volume | 82 |
| WOSCitedRecordID | wos000176255800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1872-7557 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001360 issn: 0165-1684 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QBCiKcoj5IDB1BlcCaJYx8rKG9VlbpCe7Mcx0ErLcl2s1u1_HrGifNoKyg9cImiKHaszJeZL_aMP0JeGtBhkeiE6lxbGkcQ0syiM2SWWZ2ZhGdNguz3b-n-vphO5YHX76wbOYG0LMXJiVz8V1PjNTS2K529grn7TvECnqPR8Yhmx-M_G750THQ--4Vscu7EeWh9tHaFRjvNTpt06SbZm7z1uV657Led-mfVlGKNuerh7Iejqou2lKALcbpXYH7vZIq-nlbVsAzV5l0fVNXHU-vt3c0owJD51E0y8oSGvJVu67ykgBEaxi5PtCKZPnrKpoj6omNu5wgO-66RPrutX6WjmJKKIRp1K_DnglSfOjjKSuOJcl0pBqrpRonrZBPSRKJ329z9vDf90sfkMGrqxfvHD7Vcb4cxvWLw2o_nTyzl9kLX-O0UrejJhfjdkJLJXXLH_00Euy0K7pFrtrxPbo32mHxAHB6CAQ_BGTwE5_AQeDwEHR4eksmHvcm7T9RrZlATcbGi3MpQaDCcmxC05sBkFKcWhBGa2SwHMCbMWQ5JYSxSM-S3nGcaCsgTmbHoEdkoq9I-JkFqmI2QrhYig9iYTIo8hzBMC54bERXxFom7V6SM30_eyZrM1V9NtEXe9M0W7YYqlzUQ3ftXnhW2bE8hti5run3GXsMDI-50FfCGF50BFbpVt1amS1utawUpsgTBxJOrDvcpuTl8U8_Ixmq5ts_JDXO8mtXLbY_L35gBk70 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+normalized+least-squares+order-recursive+lattice+smoother&rft.jtitle=Signal+processing&rft.au=Kim%2C+Dong+Kyoo&rft.au=Park%2C+PooGyeon&rft.date=2002-06-01&rft.issn=0165-1684&rft.volume=82&rft.issue=6&rft.spage=895&rft.epage=905&rft_id=info:doi/10.1016%2FS0165-1684%2802%2900199-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0165_1684_02_00199_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |