A combinatorial approach to Golomb forests

Optimal binary prefix-free codes for infinite sources with geometrically distributed frequencies, e.g., P={p i(1−p)} i=0 ∞, 0<p<1 , were first (implicitly) suggested by Golomb over 30 years ago in the context of run-length encodings. Ten years later Gallager and Van Voorhis exhibited such opti...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical computer science Ročník 263; číslo 1; s. 283 - 304
Hlavní autor: Golin, Mordecai J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 2001
Elsevier
Témata:
ISSN:0304-3975, 1879-2294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Optimal binary prefix-free codes for infinite sources with geometrically distributed frequencies, e.g., P={p i(1−p)} i=0 ∞, 0<p<1 , were first (implicitly) suggested by Golomb over 30 years ago in the context of run-length encodings. Ten years later Gallager and Van Voorhis exhibited such optimal codes for all values of p. These codes were derived by using the Huffman encoding algorithm to build optimal codes for finite sources and then showing that the finite codes converge in a very specific sense to the infinite one. In this note, we present a new combinatorial approach to solve the same problem, one that does not use the Huffman algorithm, but instead treats a coding tree as an infinite sequence of integers and derives properties of the sequence. One consequence of this new approach is a complete characterization of all of the optimal codes; in particular, it shows that for all p,0<p<1, except for an easily describable countable set, there is a unique optimal code, but for each p in this countable set there are an uncountable number of optimal codes. Another consequence is a derivation of infinite codes for geometric sources when the encoding alphabet is no longer restricted to be the binary one. A final consequence is the extension of the results to optimal forests instead of being restricted to optimal trees.
AbstractList Optimal binary prefix-free codes for infinite sources with geometrically distributed frequencies, e.g., P={p i(1−p)} i=0 ∞, 0<p<1 , were first (implicitly) suggested by Golomb over 30 years ago in the context of run-length encodings. Ten years later Gallager and Van Voorhis exhibited such optimal codes for all values of p. These codes were derived by using the Huffman encoding algorithm to build optimal codes for finite sources and then showing that the finite codes converge in a very specific sense to the infinite one. In this note, we present a new combinatorial approach to solve the same problem, one that does not use the Huffman algorithm, but instead treats a coding tree as an infinite sequence of integers and derives properties of the sequence. One consequence of this new approach is a complete characterization of all of the optimal codes; in particular, it shows that for all p,0<p<1, except for an easily describable countable set, there is a unique optimal code, but for each p in this countable set there are an uncountable number of optimal codes. Another consequence is a derivation of infinite codes for geometric sources when the encoding alphabet is no longer restricted to be the binary one. A final consequence is the extension of the results to optimal forests instead of being restricted to optimal trees.
Optimal binary prefix-free codes for infinite sources with geometrically distributed frequencies, e.g., P = {p super(i)(1 - p)} super( arrow down )b sub(i) super(!) sub(=) sub(0), 0 < p < 1, were first (implicitly) suggested by Golomb over 30 years ago in the context of run-length encodings. Ten years later Gallager and Van Voorhis exhibited such optimal codes for all values of p. These codes were derived by using the Huffman encoding algorithm to build optimal codes for finite sources and then showing that the finite codes converge in a very specific sense to the infinite one. In this note, we present a new combinatorial approach to solve the same problem, one that does not use the Huffman algorithm, but instead treats a coding tree as an infinite sequence of integers and derives properties of the sequence. One consequence of this new approach is a complete characterization of all of the optimal codes; in particular, it shows that for all p, 0 < p < 1, except for an easily describable countable set, there is a unique optimal code, but for each p in this countable set there are an uncountable number of optimal codes. Another consequence is a derivation of infinite codes for geometric sources when the encoding alphabet is no longer restricted to be the binary one. A final consequence is the extension of the results to optimal forests instead of being restricted to optimal trees. copyright 2001 Elsevier Science B.V. All rights reserved.
Author Golin, Mordecai J.
Author_xml – sequence: 1
  givenname: Mordecai J.
  surname: Golin
  fullname: Golin, Mordecai J.
  email: golin@cs.ust.hk
  organization: Department of Computer Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14110598$$DView record in Pascal Francis
BookMark eNqFkE1LAzEQhoNUsK3-BGEvigqrk8_d4EFK0SoUPKjnkKYJRrabmmwF_73pBwpeGgKByfPODM8A9drQWoROMVxjwOLmBSiwksqKXwBcAhAOJTtAfVxXsiREsh7q_yJHaJDSB-TDK9FHV6PChMXMt7oL0eum0MtlDNq8F10oJqHJf4UL0aYuHaNDp5tkT3bvEL093L-OH8vp8-RpPJqWhoq6KwURhlImmNRSCFZjDsZQ7fJ1jJK6YjNicK5Ii1mtgWIKhgviZO2qimA6ROfbvnmRz1WerBY-Gds0urVhlRQRQmBOqwye7UCdjG5c1K3xSS2jX-j4rTDDGLisM8e3nIkhpWjdHwJqbVBtDKq1HgWgNgYVy7nbfznjO9350HZR-2Zv-m6bttnVl7dRJeNta-zcR2s6NQ9-T4cfC2GJUQ
CODEN TCSCDI
CitedBy_id crossref_primary_10_1109_TIT_2007_915696
Cites_doi 10.1109/ISIT.1997.612986
10.1109/TIT.1975.1055357
10.1109/TIT.1966.1053907
10.1287/opre.32.2.423
10.1109/TIT.1978.1055813
10.1016/0378-3758(90)90039-W
10.1109/ISIT.1997.612985
10.1016/0016-0032(94)90099-X
10.1109/JRPROC.1952.273898
10.1109/18.641571
10.1109/18.490559
10.1080/01621459.1974.10480141
ContentType Journal Article
Copyright 2001 Elsevier Science B.V.
2002 INIST-CNRS
Copyright_xml – notice: 2001 Elsevier Science B.V.
– notice: 2002 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/S0304-3975(00)00250-4
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
EndPage 304
ExternalDocumentID 14110598
10_1016_S0304_3975_00_00250_4
S0304397500002504
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TAE
TN5
WH7
WUQ
XJT
YNT
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c368t-626c334649a96648150cc3af3aff432874b2c1c3a9e148a03130c562f98f77213
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000170245800027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Sun Nov 09 13:37:09 EST 2025
Mon Jul 21 09:17:56 EDT 2025
Tue Nov 18 22:01:32 EST 2025
Sat Nov 29 06:16:33 EST 2025
Fri Feb 23 02:23:13 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Combinatorial method
Optimal forest
Tree(graph)
Golomb forest
Coding
Probability distribution
Graph theory
Hoffman encoding problem
Convergence
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-626c334649a96648150cc3af3aff432874b2c1c3a9e148a03130c562f98f77213
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/S0304-3975(00)00250-4
PQID 26661537
PQPubID 23500
PageCount 22
ParticipantIDs proquest_miscellaneous_26661537
pascalfrancis_primary_14110598
crossref_primary_10_1016_S0304_3975_00_00250_4
crossref_citationtrail_10_1016_S0304_3975_00_00250_4
elsevier_sciencedirect_doi_10_1016_S0304_3975_00_00250_4
PublicationCentury 2000
PublicationDate 2001-00-00
PublicationDateYYYYMMDD 2001-01-01
PublicationDate_xml – year: 2001
  text: 2001-00-00
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Theoretical computer science
PublicationYear 2001
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References R.G. Gallager, D.C. Van Voorhis, Optimal source codes for geometrically distributed integer alphabets, IEEE Trans. Inform. Theory March 1975 228–230.
Abrahams (BIB1) 1994; 331B
Humblet (BIB7) 1978; IT-24
S.W. Golomb Run length encodings IEEE Tran. Informat. Theory IT-12 (1966) 399–401.
N. Merhav, G. Seroussi, M.J. Weinberger, Optimal prefix codes for two-sided geometric distributions (Abstract), Proc. Internat. Sympos. on Information Theory, 1997, p. 71.
N. Merhav, G. Seroussi, M.J. Weinberger, Universal probability assignment in the class of two-sided geometric distributions (Abstract), Proc. Internat. Symp. on Information Theory, 1997, p. 70.
J. Abrahams, Code and parse trees for lossless source encoding, Sequences 1997 (1997).
Hwang (BIB8) 1974; 69
Kato, Sun Han H. Nagaoka (BIB10) 1996; 42
Yao, Hwang (BIB15) 1990; 24
Huffman (BIB6) 1952; 40
A. Kato, Huffman-like optimal prefix codes and search codes for infinite alphabets, Manuscript, January 20, 1997.
Sedgewick (BIB14) 1983
Hassan (BIB5) 1984; 32
Linder, Tarokh, Zeger (BIB11) 1997; 43
10.1016/S0304-3975(00)00250-4_BIB9
Hwang (10.1016/S0304-3975(00)00250-4_BIB8) 1974; 69
10.1016/S0304-3975(00)00250-4_BIB4
10.1016/S0304-3975(00)00250-4_BIB2
10.1016/S0304-3975(00)00250-4_BIB3
Abrahams (10.1016/S0304-3975(00)00250-4_BIB1) 1994; 331B
Humblet (10.1016/S0304-3975(00)00250-4_BIB7) 1978; IT-24
Sedgewick (10.1016/S0304-3975(00)00250-4_BIB14) 1983
10.1016/S0304-3975(00)00250-4_BIB12
10.1016/S0304-3975(00)00250-4_BIB13
Linder (10.1016/S0304-3975(00)00250-4_BIB11) 1997; 43
Hassan (10.1016/S0304-3975(00)00250-4_BIB5) 1984; 32
Kato (10.1016/S0304-3975(00)00250-4_BIB10) 1996; 42
Yao (10.1016/S0304-3975(00)00250-4_BIB15) 1990; 24
Huffman (10.1016/S0304-3975(00)00250-4_BIB6) 1952; 40
References_xml – volume: 331B
  start-page: 265
  year: 1994
  end-page: 271
  ident: BIB1
  article-title: Huffman-type codes for infinite source distributions
  publication-title: J. Franklin Inst.
– reference: R.G. Gallager, D.C. Van Voorhis, Optimal source codes for geometrically distributed integer alphabets, IEEE Trans. Inform. Theory March 1975 228–230.
– volume: 69
  start-page: 146
  year: 1974
  end-page: 150
  ident: BIB8
  article-title: On finding a single defective in binomial group testing
  publication-title: J. Amer. Statist. Assoc.
– reference: S.W. Golomb Run length encodings IEEE Tran. Informat. Theory IT-12 (1966) 399–401.
– volume: 24
  start-page: 167
  year: 1990
  end-page: 175
  ident: BIB15
  article-title: On optimal nested group testing algorithms
  publication-title: J. Statist. Plann. Inference
– volume: 32
  start-page: 423
  year: 1984
  end-page: 439
  ident: BIB5
  article-title: A dichotomous search for a geometric random variable
  publication-title: Oper. Res.
– reference: A. Kato, Huffman-like optimal prefix codes and search codes for infinite alphabets, Manuscript, January 20, 1997.
– reference: N. Merhav, G. Seroussi, M.J. Weinberger, Universal probability assignment in the class of two-sided geometric distributions (Abstract), Proc. Internat. Symp. on Information Theory, 1997, p. 70.
– year: 1983
  ident: BIB14
  publication-title: Algorithms
– reference: N. Merhav, G. Seroussi, M.J. Weinberger, Optimal prefix codes for two-sided geometric distributions (Abstract), Proc. Internat. Sympos. on Information Theory, 1997, p. 71.
– reference: J. Abrahams, Code and parse trees for lossless source encoding, Sequences 1997 (1997).
– volume: 43
  start-page: 2026
  year: 1997
  end-page: 2028
  ident: BIB11
  article-title: Existence of optimal prefix codes for infinite source alphabets
  publication-title: IEEE Trans. Inform. Theory
– volume: IT-24
  start-page: 110
  year: 1978
  end-page: 112
  ident: BIB7
  article-title: Optimal source coding for a class of integer alphabets
  publication-title: IEEE Trans. Inform. Theory
– volume: 42
  start-page: 977
  year: 1996
  end-page: 984
  ident: BIB10
  article-title: Huffman coding with an infinite alphabet
  publication-title: IEEE Trans. Inform. Theory
– volume: 40
  start-page: 1098
  year: 1952
  end-page: 1101
  ident: BIB6
  article-title: A method for the construction of minimum-redundancy codes
  publication-title: Proc. IRE
– year: 1983
  ident: 10.1016/S0304-3975(00)00250-4_BIB14
– ident: 10.1016/S0304-3975(00)00250-4_BIB2
– ident: 10.1016/S0304-3975(00)00250-4_BIB12
  doi: 10.1109/ISIT.1997.612986
– ident: 10.1016/S0304-3975(00)00250-4_BIB9
– ident: 10.1016/S0304-3975(00)00250-4_BIB3
  doi: 10.1109/TIT.1975.1055357
– ident: 10.1016/S0304-3975(00)00250-4_BIB4
  doi: 10.1109/TIT.1966.1053907
– volume: 32
  start-page: 423
  issue: 2
  year: 1984
  ident: 10.1016/S0304-3975(00)00250-4_BIB5
  article-title: A dichotomous search for a geometric random variable
  publication-title: Oper. Res.
  doi: 10.1287/opre.32.2.423
– volume: IT-24
  start-page: 110
  issue: 1
  year: 1978
  ident: 10.1016/S0304-3975(00)00250-4_BIB7
  article-title: Optimal source coding for a class of integer alphabets
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1978.1055813
– volume: 24
  start-page: 167
  year: 1990
  ident: 10.1016/S0304-3975(00)00250-4_BIB15
  article-title: On optimal nested group testing algorithms
  publication-title: J. Statist. Plann. Inference
  doi: 10.1016/0378-3758(90)90039-W
– ident: 10.1016/S0304-3975(00)00250-4_BIB13
  doi: 10.1109/ISIT.1997.612985
– volume: 331B
  start-page: 265
  issue: 3
  year: 1994
  ident: 10.1016/S0304-3975(00)00250-4_BIB1
  article-title: Huffman-type codes for infinite source distributions
  publication-title: J. Franklin Inst.
  doi: 10.1016/0016-0032(94)90099-X
– volume: 40
  start-page: 1098
  year: 1952
  ident: 10.1016/S0304-3975(00)00250-4_BIB6
  article-title: A method for the construction of minimum-redundancy codes
  publication-title: Proc. IRE
  doi: 10.1109/JRPROC.1952.273898
– volume: 43
  start-page: 2026
  issue: 6
  year: 1997
  ident: 10.1016/S0304-3975(00)00250-4_BIB11
  article-title: Existence of optimal prefix codes for infinite source alphabets
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.641571
– volume: 42
  start-page: 977
  issue: 3
  year: 1996
  ident: 10.1016/S0304-3975(00)00250-4_BIB10
  article-title: Huffman coding with an infinite alphabet
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.490559
– volume: 69
  start-page: 146
  issue: 345
  year: 1974
  ident: 10.1016/S0304-3975(00)00250-4_BIB8
  article-title: On finding a single defective in binomial group testing
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1974.10480141
SSID ssj0000576
Score 1.6304352
Snippet Optimal binary prefix-free codes for infinite sources with geometrically distributed frequencies, e.g., P={p i(1−p)} i=0 ∞, 0<p<1 , were first (implicitly)...
Optimal binary prefix-free codes for infinite sources with geometrically distributed frequencies, e.g., P = {p super(i)(1 - p)} super( arrow down )b sub(i)...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 283
SubjectTerms Combinatorics
Combinatorics. Ordered structures
Exact sciences and technology
Graph theory
Mathematics
Sciences and techniques of general use
Title A combinatorial approach to Golomb forests
URI https://dx.doi.org/10.1016/S0304-3975(00)00250-4
https://www.proquest.com/docview/26661537
Volume 263
WOSCitedRecordID wos000170245800027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9NAEB-054OH-HEq1o8zDyLqEU2yaZN9LNLzg14VzEnfls1cAgdnWi89uT_fme4kaTmk-iCEEJZsluxvmf3Nzu78AF5gWeYWB-jroUU_jgLrax7LhbVhaTHAYrWg_32STKfpbKa_ijRivZITSKoqvbzUi_8KNZUR2Hx09h_gbj9KBfRMoNOdYKf7XwE_4m3i5O-yN83L4U3WcGaZH8jU_ch5ayFNBvU6Mc3WDjSiKD0cyPTY7tGZi7r7kQSTmtWCcM2cKI6BaKdT0ti-SKzL6cZJRLFlTmFGpkXlVIKvWFzn_H9rv068mOWl9YpcyQGejSzX0y_m8HgyMdl4lr1c_PRZAIwD5aKGch12omSggx7sjD6NZ5-7aXWQuMCzNNQdx3rXtf4qCF5Ly38iGrcWtqa-LJ1uyZUpeMUrsrtwWxwCb-SAvAfXimoP7jRiG57Y3j3YPWoT7Nb34c3I20DZa1D2lnPPoewJyg_g-HCcvf_oi-yFj2qYLn1yMVGpeBhrS74oJ9MJEJUt6SpjxfoEeYQhleiCfFnLyTcDJBpb6rQkXylUD6FXzaviEXgYE7uLTkKdqyTWBeY5sePEYpmoMA_Dkz7ETR8ZlJzwLE1yZrrNf9S1hrvWBJxIlrrWxH1421ZbuKQo2yqkDQBGhq5jbIaG0baq-xuAdQ3yvw102ofnDYKGTCPHu2xVzC9qQ9yT3Znk8dY3nsBNt7eQr6fQW55fFM_gBv5antbn-zISfwMYYnvJ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+combinatorial+approach+to+Golomb+forests&rft.jtitle=Theoretical+computer+science&rft.au=Golin%2C+M+J&rft.date=2001&rft.issn=0304-3975&rft.volume=263&rft.issue=1-2&rft.spage=283&rft.epage=304&rft_id=info:doi/10.1016%2FS0304-3975%2800%2900250-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon