Poincaré-Bertrand transformation formula of Cauchy-type singular integrals in Clifford analysis

This article studies the Poincaré-Bertrand transformation formula of Cauchy-type singular integrals of double multi-variables Clifford functions. First, it discusses some properties for several singular integrals about Clifford functions, and then proves the existence, for Cauchy principal value, of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Complex variables and elliptic equations Ročník 57; číslo 2-4; s. 197 - 217
Hlavní autoři: Qiao, Yuying, Xu, Yongzhi, Yang, Heju
Médium: Journal Article
Jazyk:angličtina
Vydáno: Colchester Taylor & Francis Group 01.02.2012
Taylor & Francis Ltd
Témata:
ISSN:1747-6933, 1747-6941
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article studies the Poincaré-Bertrand transformation formula of Cauchy-type singular integrals of double multi-variables Clifford functions. First, it discusses some properties for several singular integrals about Clifford functions, and then proves the existence, for Cauchy principal value, of some Cauchy-type singular integrals with a parameter. Finally, it confirms the Poincaré-Bertrand transformation formula.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1747-6933
1747-6941
DOI:10.1080/17476933.2011.593098