On tracking arbitrary crack path with complex variable meshless methods

This study presents a numerical modelling framework based on complex variable meshless methods, which can accurately and efficiently track arbitrary crack paths in two-dimensional linear elastic solids. The key novelty of this work is that the proposed meshless modelling scheme enables a direct elem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering Jg. 399; S. 115402
Hauptverfasser: Li, D.M., Liu, Jia-Hui, Nie, Feng-Hua, Featherston, Carol A., Wu, Zhangming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.09.2022
Elsevier BV
Schlagworte:
ISSN:0045-7825, 1879-2138
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents a numerical modelling framework based on complex variable meshless methods, which can accurately and efficiently track arbitrary crack paths in two-dimensional linear elastic solids. The key novelty of this work is that the proposed meshless modelling scheme enables a direct element-free approximation for the solutions of linear elastic fracture mechanics problems. The complex variable moving least-squares approximation with a group of simple complex polynomial basis is applied to implement this meshless model, with which the fracture problems with both stationary or progressive cracks are considered and studied. The effects of choosing different definitions of weighted complex variable error norm and different forms of complex polynomial basis on the computational accuracy of crack tip fields and crack paths prediction are analysed and discussed. Five benchmark numerical examples were studied to demonstrate the superiority of the present complex variable meshless framework over a standard element-free Galerkin method in tracking arbitrary crack paths in two-dimensional elastic solids.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0045-7825
1879-2138
DOI:10.1016/j.cma.2022.115402