PhyCRNet: Physics-informed convolutional-recurrent network for solving spatiotemporal PDEs

Partial differential equations (PDEs) play a fundamental role in modeling and simulating problems across a wide range of disciplines. Recent advances in deep learning have shown the great potential of physics-informed neural networks (PINNs) to solve PDEs as a basis for data-driven modeling and inve...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering Vol. 389; p. 114399
Main Authors: Ren, Pu, Rao, Chengping, Liu, Yang, Wang, Jian-Xun, Sun, Hao
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.02.2022
Elsevier BV
Subjects:
ISSN:0045-7825, 1879-2138
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Partial differential equations (PDEs) play a fundamental role in modeling and simulating problems across a wide range of disciplines. Recent advances in deep learning have shown the great potential of physics-informed neural networks (PINNs) to solve PDEs as a basis for data-driven modeling and inverse analysis. However, the majority of existing PINN methods, based on fully-connected NNs, pose intrinsic limitations to low-dimensional spatiotemporal parameterizations. Moreover, since the initial/boundary conditions (I/BCs) are softly imposed via penalty, the solution quality heavily relies on hyperparameter tuning. To this end, we propose the novel physics-informed convolutional-recurrent learning architectures (PhyCRNet and PhyCRNet-s) for solving PDEs without any labeled data. Specifically, an encoder–decoder convolutional long short-term memory network is proposed for low-dimensional spatial feature extraction and temporal evolution learning. The loss function is defined as the aggregated discretized PDE residuals, while the I/BCs are hard-encoded in the network to ensure forcible satisfaction (e.g., periodic boundary padding). The networks are further enhanced by autoregressive and residual connections that explicitly simulate time marching. The performance of our proposed methods has been assessed by solving three nonlinear PDEs (e.g., 2D Burgers’ equations, the λ-ω and FitzHugh Nagumo reaction–diffusion equations), and compared against the start-of-the-art baseline algorithms. The numerical results demonstrate the superiority of our proposed methodology in the context of solution accuracy, extrapolability and generalizability. •Presented a novel physics-informed discrete learning strategy for solving PDEs without any labeled data.•Proposed an encoder–decoder convolutional-recurrent scheme for low-dimensional feature learning.•Employed hard-encoding of initial and boundary conditions.•Incorporated autoregressive and residual connections to explicitly simulate time marching.•Demonstrated excellent solution accuracy, extrapolability and generalizability of the proposed methodology.
AbstractList Partial differential equations (PDEs) play a fundamental role in modeling and simulating problems across a wide range of disciplines. Recent advances in deep learning have shown the great potential of physics-informed neural networks (PINNs) to solve PDEs as a basis for data-driven modeling and inverse analysis. However, the majority of existing PINN methods, based on fully-connected NNs, pose intrinsic limitations to low-dimensional spatiotemporal parameterizations. Moreover, since the initial/boundary conditions (I/BCs) are softly imposed via penalty, the solution quality heavily relies on hyperparameter tuning. To this end, we propose the novel physics-informed convolutional-recurrent learning architectures (PhyCRNet and PhyCRNet-s) for solving PDEs without any labeled data. Specifically, an encoder–decoder convolutional long short-term memory network is proposed for low-dimensional spatial feature extraction and temporal evolution learning. The loss function is defined as the aggregated discretized PDE residuals, while the I/BCs are hard-encoded in the network to ensure forcible satisfaction (e.g., periodic boundary padding). The networks are further enhanced by autoregressive and residual connections that explicitly simulate time marching. The performance of our proposed methods has been assessed by solving three nonlinear PDEs (e.g., 2D Burgers’ equations, the λ-ω and FitzHugh Nagumo reaction–diffusion equations), and compared against the start-of-the-art baseline algorithms. The numerical results demonstrate the superiority of our proposed methodology in the context of solution accuracy, extrapolability and generalizability. •Presented a novel physics-informed discrete learning strategy for solving PDEs without any labeled data.•Proposed an encoder–decoder convolutional-recurrent scheme for low-dimensional feature learning.•Employed hard-encoding of initial and boundary conditions.•Incorporated autoregressive and residual connections to explicitly simulate time marching.•Demonstrated excellent solution accuracy, extrapolability and generalizability of the proposed methodology.
Partial differential equations (PDEs) play a fundamental role in modeling and simulating problems across a wide range of disciplines. Recent advances in deep learning have shown the great potential of physics-informed neural networks (PINNs) to solve PDEs as a basis for data-driven modeling and inverse analysis. However, the majority of existing PINN methods, based on fully-connected NNs, pose intrinsic limitations to low-dimensional spatiotemporal parameterizations. Moreover, since the initial/boundary conditions (I/BCs) are softly imposed via penalty, the solution quality heavily relies on hyperparameter tuning. To this end, we propose the novel physics-informed convolutional-recurrent learning architectures (PhyCRNet and PhyCRNet-s) for solving PDEs without any labeled data. Specifically, an encoder–decoder convolutional long short-term memory network is proposed for low-dimensional spatial feature extraction and temporal evolution learning. The loss function is defined as the aggregated discretized PDE residuals, while the I/BCs are hard-encoded in the network to ensure forcible satisfaction (e.g., periodic boundary padding). The networks are further enhanced by autoregressive and residual connections that explicitly simulate time marching. The performance of our proposed methods has been assessed by solving three nonlinear PDEs (e.g., 2D Burgers' equations, the
ArticleNumber 114399
Author Liu, Yang
Wang, Jian-Xun
Sun, Hao
Rao, Chengping
Ren, Pu
Author_xml – sequence: 1
  givenname: Pu
  orcidid: 0000-0002-6354-385X
  surname: Ren
  fullname: Ren, Pu
  email: ren.pu@northeastern.edu
  organization: Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
– sequence: 2
  givenname: Chengping
  surname: Rao
  fullname: Rao, Chengping
  organization: Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
– sequence: 3
  givenname: Yang
  orcidid: 0000-0003-0127-4030
  surname: Liu
  fullname: Liu, Yang
  email: yang1.liu@northeastern.edu
  organization: Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
– sequence: 4
  givenname: Jian-Xun
  surname: Wang
  fullname: Wang, Jian-Xun
  organization: Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
– sequence: 5
  givenname: Hao
  surname: Sun
  fullname: Sun, Hao
  email: haosun@ruc.edu.cn
  organization: Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
BookMark eNp9kE1PAyEQhompiW31B3jbxPOusLssoCdT60ditDF68UKQnVXqFirQmv57aerJQ7kMk7zPZOYZoYF1FhA6JbggmDTn80IvVFHikhSE1JUQB2hIOBN5SSo-QEOMa5ozXtIjNAphjtPjpByit9nnZvL8CPEiS79gdMiN7ZxfQJtpZ9euX0XjrOpzD3rlPdiYWYg_zn9lKZYF16-N_cjCUqVchMXSedVns-tpOEaHneoDnPzVMXq9mb5M7vKHp9v7ydVDrquGx5ySpia8FC1lotGsxhreta5T21HoFMWs0tByxaGiomsp1y3GtOoawdoOBK3G6Gw3d-nd9wpClHO38mnlIMumEgyzWpQpxXYp7V0IHjqpTdzubKNXppcEy61IOZdJpNyKlDuRiST_yKU3C-U3e5nLHQPp8LUBL4M2YNMhJnmMsnVmD_0LFt2Ogw
CitedBy_id crossref_primary_10_1016_j_engappai_2023_106127
crossref_primary_10_1002_nme_7637
crossref_primary_10_1016_j_cma_2024_117102
crossref_primary_10_1038_s41467_024_53165_w
crossref_primary_10_1080_10618562_2023_2260763
crossref_primary_10_1063_5_0266451
crossref_primary_10_1063_5_0285013
crossref_primary_10_3389_fphy_2022_971722
crossref_primary_10_1016_j_jmps_2025_106219
crossref_primary_10_1016_j_physd_2024_134399
crossref_primary_10_1007_s11063_022_10968_6
crossref_primary_10_1016_j_neucom_2025_130578
crossref_primary_10_1016_j_jcp_2023_112438
crossref_primary_10_1016_j_jcp_2025_114235
crossref_primary_10_1038_s41524_022_00712_y
crossref_primary_10_1016_j_cma_2025_118308
crossref_primary_10_1016_j_actaastro_2024_09_027
crossref_primary_10_1140_epjs_s11734_024_01263_7
crossref_primary_10_1186_s40323_025_00283_9
crossref_primary_10_3390_app132413312
crossref_primary_10_1016_j_engfracmech_2024_110675
crossref_primary_10_1016_j_expthermflusci_2025_111562
crossref_primary_10_1080_24725579_2024_2398592
crossref_primary_10_1007_s10489_024_05834_y
crossref_primary_10_1016_j_compgeo_2025_107389
crossref_primary_10_1016_j_eswa_2025_127302
crossref_primary_10_1016_j_cpc_2023_109010
crossref_primary_10_12677_aam_2025_145264
crossref_primary_10_1016_j_engappai_2023_106867
crossref_primary_10_1007_s10483_023_2992_6
crossref_primary_10_2118_225442_PA
crossref_primary_10_3390_math11092016
crossref_primary_10_1038_s41598_025_92900_1
crossref_primary_10_1016_j_engappai_2025_110405
crossref_primary_10_1016_j_mechrescom_2023_104087
crossref_primary_10_1007_s10462_025_11322_7
crossref_primary_10_1016_j_jer_2024_02_011
crossref_primary_10_1016_j_cma_2025_117956
crossref_primary_10_1016_j_ijmecsci_2024_109783
crossref_primary_10_1016_j_compind_2025_104304
crossref_primary_10_1016_j_cma_2024_117035
crossref_primary_10_1016_j_cma_2024_117397
crossref_primary_10_1016_j_watres_2022_118972
crossref_primary_10_1016_j_cma_2025_118025
crossref_primary_10_1016_j_cma_2024_117036
crossref_primary_10_1016_j_cpc_2025_109599
crossref_primary_10_1016_j_commatsci_2024_113518
crossref_primary_10_1016_j_jpowsour_2023_233087
crossref_primary_10_1007_s00371_025_03967_w
crossref_primary_10_1016_j_cma_2024_117274
crossref_primary_10_1016_j_cpc_2025_109757
crossref_primary_10_1038_s42005_024_01521_z
crossref_primary_10_1016_j_jocs_2024_102514
crossref_primary_10_1088_1402_4896_ad7dc0
crossref_primary_10_1109_TGRS_2025_3581638
crossref_primary_10_1109_TMAG_2025_3553236
crossref_primary_10_2118_219773_PA
crossref_primary_10_1016_j_jcp_2022_111510
crossref_primary_10_1016_j_ress_2024_110752
crossref_primary_10_1016_j_tws_2024_112495
crossref_primary_10_1016_j_mechmat_2023_104789
crossref_primary_10_1007_s10462_022_10329_8
crossref_primary_10_1016_j_cma_2023_115902
crossref_primary_10_1371_journal_pone_0315762
crossref_primary_10_1007_s10462_024_10784_5
crossref_primary_10_1016_j_jcp_2024_112761
crossref_primary_10_1016_j_cpc_2025_109582
crossref_primary_10_7498_aps_74_20250707
crossref_primary_10_1007_s10489_024_06195_2
crossref_primary_10_1016_j_dsp_2024_104766
crossref_primary_10_1016_j_engappai_2023_106721
crossref_primary_10_1061_JENMDT_EMENG_7062
crossref_primary_10_1016_j_ast_2023_108740
crossref_primary_10_1088_1572_9494_adcc8e
crossref_primary_10_1016_j_cma_2025_117782
crossref_primary_10_1088_1572_9494_ad1a0e
crossref_primary_10_1016_j_cnsns_2024_107911
crossref_primary_10_3390_e27030275
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104877
crossref_primary_10_1016_j_enganabound_2025_106396
crossref_primary_10_1111_mice_70045
crossref_primary_10_1007_s00466_024_02554_5
crossref_primary_10_1016_j_cpc_2024_109342
crossref_primary_10_1016_j_cpc_2024_109462
crossref_primary_10_1029_2025JH000683
crossref_primary_10_1016_j_ymssp_2024_111297
crossref_primary_10_1016_j_jcp_2024_113284
crossref_primary_10_1002_mp_17554
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1007_s12206_024_0624_9
crossref_primary_10_1016_j_egyai_2025_100553
crossref_primary_10_1016_j_physa_2024_130090
crossref_primary_10_1016_j_asoc_2024_111437
crossref_primary_10_1016_j_jcp_2024_112904
crossref_primary_10_1038_s42003_023_04914_y
crossref_primary_10_1016_j_jcp_2024_113557
crossref_primary_10_1088_1572_9494_ada3ce
crossref_primary_10_3390_w16152138
crossref_primary_10_1016_j_cma_2023_116512
crossref_primary_10_59717_j_xinn_energy_2025_100087
crossref_primary_10_1016_j_earscirev_2025_105276
crossref_primary_10_1016_j_engstruct_2023_117235
crossref_primary_10_1016_j_cpc_2025_109601
crossref_primary_10_1016_j_advwatres_2024_104837
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124392
crossref_primary_10_1038_s42256_023_00685_7
crossref_primary_10_12677_AAM_2024_132069
crossref_primary_10_1016_j_rineng_2025_105440
crossref_primary_10_1016_j_ress_2023_109822
crossref_primary_10_1016_j_ijsolstr_2024_112692
crossref_primary_10_3390_sym16101376
crossref_primary_10_1016_j_compgeo_2024_106801
crossref_primary_10_1109_TNNLS_2025_3545967
crossref_primary_10_1016_j_matcom_2023_10_011
crossref_primary_10_1016_j_cma_2024_117478
crossref_primary_10_1109_ACCESS_2024_3452160
crossref_primary_10_1080_17486025_2025_2502029
crossref_primary_10_1016_j_ces_2025_122001
crossref_primary_10_1016_j_neucom_2025_129917
crossref_primary_10_1080_10407790_2023_2264489
crossref_primary_10_1016_j_physd_2024_134304
crossref_primary_10_1016_j_cma_2023_115944
crossref_primary_10_1007_s11424_024_3349_z
crossref_primary_10_1016_j_oceaneng_2024_118779
crossref_primary_10_1016_j_cja_2024_02_011
crossref_primary_10_1016_j_neucom_2024_128254
crossref_primary_10_1016_j_rse_2024_114425
crossref_primary_10_3390_en16052343
crossref_primary_10_1016_j_jcp_2025_113954
crossref_primary_10_1063_5_0258420
crossref_primary_10_1016_j_jsv_2024_118796
Cites_doi 10.1016/j.cma.2020.113127
10.1109/72.712178
10.1016/j.jcp.2020.109951
10.1016/j.cma.2020.113603
10.1103/PhysRevFluids.4.034602
10.23915/distill.00003
10.1016/j.jcp.2018.10.045
10.1016/j.cma.2021.113706
10.1109/MSP.2017.2693418
10.1016/0893-6080(89)90020-8
10.1016/j.jcp.2019.07.048
10.1126/science.aaw4741
10.1137/19M1274067
10.1615/Int.J.UncertaintyQuantification.2020032978
10.1017/jfm.2018.872
10.1073/pnas.1922210117
10.1145/1409060.1409106
10.1007/s00466-019-01740-0
10.1073/pnas.2100697118
10.1016/j.jcp.2019.05.026
10.1016/j.taml.2020.01.039
10.1016/j.cma.2019.112623
10.1007/s10921-020-00705-1
10.1126/sciadv.1602614
10.1016/j.jcp.2018.04.018
10.1016/j.cma.2021.113722
10.1016/j.cma.2019.112732
10.1137/19M1260141
10.1038/s42256-021-00302-5
10.1109/72.870037
10.1016/j.cma.2020.113226
10.1073/pnas.1302752110
10.1016/j.cma.2018.01.045
10.1016/j.jcp.2012.08.013
10.1016/j.probengmech.2018.10.002
10.1016/j.engstruct.2020.110704
10.1016/j.cma.2019.112791
10.1016/j.jcp.2019.06.042
10.1109/CVPR.2016.207
10.1146/annurev-fluid-010719-060214
10.1007/BF01589116
10.1016/j.cma.2004.10.008
10.1016/S0166-4115(97)80111-2
10.1162/neco.1997.9.8.1735
10.1073/pnas.1718942115
10.1016/j.cma.2019.112790
10.1016/j.cma.2021.113741
10.1007/s40304-018-0127-z
10.1016/j.cma.2020.113500
10.1016/j.cma.2019.112789
10.1109/CVPR.2017.243
10.1073/pnas.1814058116
10.1016/j.jcp.2019.05.024
10.1016/j.jcp.2019.109056
10.1016/j.taml.2020.01.031
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Feb 1, 2022
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Feb 1, 2022
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2021.114399
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2021_114399
S0045782521006514
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c368t-51641829d5796c740cebcc4d57f5efa5073ced8a8e359fd58cd0053f697dfe953
ISICitedReferencesCount 169
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000740320100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Sun Nov 09 08:52:13 EST 2025
Sat Nov 29 07:30:40 EST 2025
Tue Nov 18 21:52:56 EST 2025
Fri Feb 23 02:41:00 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Encoder–decoder
Residual connection
Convolutional-recurrent learning
Partial differential equations
Physics-informed deep learning
Hard-encoding of I/BCs
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-51641829d5796c740cebcc4d57f5efa5073ced8a8e359fd58cd0053f697dfe953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6354-385X
0000-0003-0127-4030
OpenAccessLink https://doi.org/10.1016/j.cma.2021.114399
PQID 2639707492
PQPubID 2045269
ParticipantIDs proquest_journals_2639707492
crossref_citationtrail_10_1016_j_cma_2021_114399
crossref_primary_10_1016_j_cma_2021_114399
elsevier_sciencedirect_doi_10_1016_j_cma_2021_114399
PublicationCentury 2000
PublicationDate 2022-02-01
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Bar-Sinai, Hoyer, Hickey, Brenner (b10) 2019; 116
Jin, Cai, Li, Karniadakis (b26) 2021; 426
Cai, Li, Zheng, Kong, Dao, Karniadakis, Suresh (b33) 2021; 118
Haghighat, Raissi, Moure, Gomez, Juanes (b29) 2021; 379
Raissi, Yazdani, Karniadakis (b18) 2020; 367
Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison, Antiga, Lerer (b75) 2017
Lagaris, Likas, Papageorgiou (b5) 2000; 11
Defferrard, Bresson, Vandergheynst (b84) 2016
Long, Lu, Ma, Dong (b52) 2018
Rao, Sun, Liu (b74) 2021
Qin, Wu, Xiu (b19) 2019; 395
Bresson, Laurent (b81) 2017
Gorodetsky, Jakeman, Geraci, Eldred (b14) 2020; 10
Jordan (b65) 1997
Zhang, Liu, Sun (b38) 2020; 369
Zhang, Lu, Guo, Karniadakis (b30) 2019; 397
T.Q. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, Neural ordinary differential equations, in: NeurIPS, 2018, pp. 6572–6583.
Kissas, Yang, Hwuang, Witschey, Detre, Perdikaris (b32) 2020; 358
Yin, Zheng, Humphrey, Karniadakis (b35) 2021; 375
Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, Stuart, Anandkumar (b54) 2020
Raissi, Wang, Triantafyllou, Karniadakis (b17) 2019; 861
Pfaff, Fortunato, Sanchez-Gonzalez, Battaglia (b59) 2020
Raissi (b16) 2018; 19
Hochreiter, Schmidhuber (b62) 1997; 9
G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.
Lu, Meng, Mao, Karniadakis (b43) 2021; 63
Huan, Marzouk (b6) 2013; 232
Trask, Patel, Gross, Atzberger (b56) 2019
Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (b20) 2020; 362
Sun, Wang (b21) 2020; 10
Zhu, Zabaras (b12) 2018; 366
Brunton, Noack, Koumoutsakos (b13) 2020; 52
Bronstein, Bruna, LeCun, Szlam, Vandergheynst (b82) 2017; 34
Raissi, Perdikaris, Karniadakis (b9) 2019; 378
Li, Kovachki, Azizzadenesheli, Liu, Bhattacharya, Stuart, Anandkumar (b57) 2020
Rao, Sun, Liu (b73) 2021
Zhu, Zabaras, Koutsourelakis, Perdikaris (b50) 2019; 394
Sun, Gao, Pan, Wang (b23) 2020; 361
Lagaris, Likas, Fotiadis (b4) 1998; 9
Zhang, Guo, Karniadakis (b31) 2020; 42
Odena, Dumoulin, Olah (b69) 2016; 1
Rao, Sun, Liu (b22) 2020; 10
Hornik, Stinchcombe, White (b3) 1989; 2
Gao, Sun, Wang (b41) 2020
Graves (b63) 2013
Schaeffer, Caflisch, Hauck, Osher (b61) 2013; 110
Rao, Sun, Liu (b24) 2021; 147
Bhattacharya, Hosseini, Kovachki, Stuart (b42) 2020
Geneva, Zabaras (b47) 2020; 403
Rudy, Brunton, Proctor, Kutz (b79) 2017; 3
Hughes (b1) 2012
Sorteberg, Garasto, Pouplin, Cantwell, Bharath (b51) 2018
Sutskever, Vinyals, Le (b64) 2014
Liu, Nocedal (b77) 1989; 45
Ranade, Hill, Pathak (b48) 2021; 378
Winovich, Ramani, Lin (b46) 2019; 394
Bhatnagar, Afshar, Pan, Duraisamy, Kaushik (b49) 2019; 64
Han, Jentzen, Weinan (b7) 2018; 115
Salimans, Kingma (b72) 2016
Shan, Li, Jia, Tang (b68) 2008; 27
Kipf, Welling (b80) 2016
Zhang, Shields (b11) 2019; 55
Wang, Huan, Garikipati (b15) 2021; 377
Yang, Zafar, Wang, Xiao (b25) 2019; 4
Yu, Fan, Yang, Xu, Wang, Wang, Huang (b71) 2018
Patel, Trask, Wood, Cyr (b45) 2021; 373
Lu, Dao, Kumar, Ramamurty, Karniadakis, Suresh (b36) 2020; 117
S. Seo, C. Meng, Y. Liu, Physics-aware difference graph networks for sparsely-observed dynamics, in: International Conference on Learning Representations, 2019.
Ioffe, Szegedy (b70) 2015
Hughes, Cottrell, Bazilevs (b2) 2005; 194
Battaglia, Hamrick, Bapst, Sanchez-Gonzalez, Zambaldi, Malinowski, Tacchetti, Raposo, Santoro, Faulkner (b83) 2018
Goswami, Yin, Yu, Karniadakis (b86) 2021
Geneva, Zabaras (b53) 2020
Kingma, Ba (b76) 2014
Mao, Jagtap, Karniadakis (b27) 2020; 360
Lu, Jin, Pang, Zhang, Karniadakis (b44) 2021; 3
Zhang, Liu, Sun (b37) 2020; 215
He, Chen (b39) 2020; 363
Shi, Chen, Wang, Yeung, Wong, Woo (b60) 2015; 28
Weinan, Yu (b85) 2018; 6
Wessels, Weißenfels, Wriggers (b28) 2020; 368
Belbute-Peres, Economon, Kolter (b58) 2020
Shukla, Di Leoni, Blackshire, Sparkman, Karniadakis (b34) 2020; 39
Chen, Liu, Sun (b40) 2020
W. Shi, J. Caballero, F. Huszár, J. Totz, A.P. Aitken, R. Bishop, D. Rueckert, Z. Wang, Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1874–1883.
Zhang, Shields (b8) 2018; 334
Gao (10.1016/j.cma.2021.114399_b41) 2020
Hochreiter (10.1016/j.cma.2021.114399_b62) 1997; 9
He (10.1016/j.cma.2021.114399_b39) 2020; 363
10.1016/j.cma.2021.114399_b55
Li (10.1016/j.cma.2021.114399_b57) 2020
Graves (10.1016/j.cma.2021.114399_b63) 2013
Paszke (10.1016/j.cma.2021.114399_b75) 2017
Bar-Sinai (10.1016/j.cma.2021.114399_b10) 2019; 116
Rao (10.1016/j.cma.2021.114399_b73) 2021
Bhatnagar (10.1016/j.cma.2021.114399_b49) 2019; 64
Battaglia (10.1016/j.cma.2021.114399_b83) 2018
Chen (10.1016/j.cma.2021.114399_b40) 2020
Qin (10.1016/j.cma.2021.114399_b19) 2019; 395
Bhattacharya (10.1016/j.cma.2021.114399_b42) 2020
Li (10.1016/j.cma.2021.114399_b54) 2020
Patel (10.1016/j.cma.2021.114399_b45) 2021; 373
Long (10.1016/j.cma.2021.114399_b52) 2018
Odena (10.1016/j.cma.2021.114399_b69) 2016; 1
Yang (10.1016/j.cma.2021.114399_b25) 2019; 4
Gorodetsky (10.1016/j.cma.2021.114399_b14) 2020; 10
Shukla (10.1016/j.cma.2021.114399_b34) 2020; 39
Defferrard (10.1016/j.cma.2021.114399_b84) 2016
Ioffe (10.1016/j.cma.2021.114399_b70) 2015
Goswami (10.1016/j.cma.2021.114399_b86) 2021
Yu (10.1016/j.cma.2021.114399_b71) 2018
Lagaris (10.1016/j.cma.2021.114399_b4) 1998; 9
Raissi (10.1016/j.cma.2021.114399_b18) 2020; 367
Weinan (10.1016/j.cma.2021.114399_b85) 2018; 6
Lu (10.1016/j.cma.2021.114399_b44) 2021; 3
Rao (10.1016/j.cma.2021.114399_b74) 2021
Raissi (10.1016/j.cma.2021.114399_b9) 2019; 378
Raissi (10.1016/j.cma.2021.114399_b17) 2019; 861
Wessels (10.1016/j.cma.2021.114399_b28) 2020; 368
Zhang (10.1016/j.cma.2021.114399_b11) 2019; 55
Yin (10.1016/j.cma.2021.114399_b35) 2021; 375
Liu (10.1016/j.cma.2021.114399_b77) 1989; 45
Kingma (10.1016/j.cma.2021.114399_b76) 2014
Bresson (10.1016/j.cma.2021.114399_b81) 2017
Rao (10.1016/j.cma.2021.114399_b22) 2020; 10
Sorteberg (10.1016/j.cma.2021.114399_b51) 2018
Shan (10.1016/j.cma.2021.114399_b68) 2008; 27
Trask (10.1016/j.cma.2021.114399_b56) 2019
Mao (10.1016/j.cma.2021.114399_b27) 2020; 360
Sun (10.1016/j.cma.2021.114399_b23) 2020; 361
Winovich (10.1016/j.cma.2021.114399_b46) 2019; 394
Zhang (10.1016/j.cma.2021.114399_b38) 2020; 369
Zhu (10.1016/j.cma.2021.114399_b50) 2019; 394
10.1016/j.cma.2021.114399_b78
Hughes (10.1016/j.cma.2021.114399_b1) 2012
Wang (10.1016/j.cma.2021.114399_b15) 2021; 377
Kissas (10.1016/j.cma.2021.114399_b32) 2020; 358
Geneva (10.1016/j.cma.2021.114399_b47) 2020; 403
Jin (10.1016/j.cma.2021.114399_b26) 2021; 426
Hornik (10.1016/j.cma.2021.114399_b3) 1989; 2
Geneva (10.1016/j.cma.2021.114399_b53) 2020
Haghighat (10.1016/j.cma.2021.114399_b29) 2021; 379
Brunton (10.1016/j.cma.2021.114399_b13) 2020; 52
Hughes (10.1016/j.cma.2021.114399_b2) 2005; 194
Zhang (10.1016/j.cma.2021.114399_b8) 2018; 334
Salimans (10.1016/j.cma.2021.114399_b72) 2016
Pfaff (10.1016/j.cma.2021.114399_b59) 2020
Ranade (10.1016/j.cma.2021.114399_b48) 2021; 378
Sutskever (10.1016/j.cma.2021.114399_b64) 2014
Zhu (10.1016/j.cma.2021.114399_b12) 2018; 366
Rudy (10.1016/j.cma.2021.114399_b79) 2017; 3
Lu (10.1016/j.cma.2021.114399_b36) 2020; 117
Zhang (10.1016/j.cma.2021.114399_b31) 2020; 42
10.1016/j.cma.2021.114399_b66
10.1016/j.cma.2021.114399_b67
Shi (10.1016/j.cma.2021.114399_b60) 2015; 28
Kipf (10.1016/j.cma.2021.114399_b80) 2016
Samaniego (10.1016/j.cma.2021.114399_b20) 2020; 362
Raissi (10.1016/j.cma.2021.114399_b16) 2018; 19
Huan (10.1016/j.cma.2021.114399_b6) 2013; 232
Sun (10.1016/j.cma.2021.114399_b21) 2020; 10
Cai (10.1016/j.cma.2021.114399_b33) 2021; 118
Lu (10.1016/j.cma.2021.114399_b43) 2021; 63
Lagaris (10.1016/j.cma.2021.114399_b5) 2000; 11
Zhang (10.1016/j.cma.2021.114399_b37) 2020; 215
Bronstein (10.1016/j.cma.2021.114399_b82) 2017; 34
Han (10.1016/j.cma.2021.114399_b7) 2018; 115
Belbute-Peres (10.1016/j.cma.2021.114399_b58) 2020
Zhang (10.1016/j.cma.2021.114399_b30) 2019; 397
Jordan (10.1016/j.cma.2021.114399_b65) 1997
Schaeffer (10.1016/j.cma.2021.114399_b61) 2013; 110
Rao (10.1016/j.cma.2021.114399_b24) 2021; 147
References_xml – volume: 377
  year: 2021
  ident: b15
  article-title: Variational system identification of the partial differential equations governing microstructure evolution in materials: Inference over sparse and spatially unrelated data
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2019
  ident: b56
  article-title: GMLS-Nets: A framework for learning from unstructured data
– year: 2016
  ident: b72
  article-title: Weight normalization: A simple reparameterization to accelerate training of deep neural networks
– year: 2014
  ident: b64
  article-title: Sequence to sequence learning with neural networks
– volume: 55
  start-page: 54
  year: 2019
  end-page: 66
  ident: b11
  article-title: Efficient Monte Carlo resampling for probability measure changes from Bayesian updating
  publication-title: Probab. Eng. Mech.
– year: 2018
  ident: b71
  article-title: Wide activation for efficient and accurate image super-resolution
– year: 2021
  ident: b74
  article-title: Hard encoding of physics for learning spatiotemporal dynamics
– volume: 426
  year: 2021
  ident: b26
  article-title: NSFnets (Navier-Stokes Flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations
  publication-title: J. Comput. Phys.
– volume: 116
  start-page: 15344
  year: 2019
  end-page: 15349
  ident: b10
  article-title: Learning data-driven discretizations for partial differential equations
  publication-title: Proc. Natl. Acad. Sci.
– volume: 362
  year: 2020
  ident: b20
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 403
  year: 2020
  ident: b47
  article-title: Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks
  publication-title: J. Comput. Phys.
– year: 2014
  ident: b76
  article-title: Adam: A method for stochastic optimization
– volume: 4
  year: 2019
  ident: b25
  article-title: Predictive large-eddy-simulation wall modeling via physics-informed neural networks
  publication-title: Phys. Rev. Fluids
– year: 2020
  ident: b42
  article-title: Model reduction and neural networks for parametric pdes
– volume: 19
  start-page: 932
  year: 2018
  end-page: 955
  ident: b16
  article-title: Deep hidden physics models: Deep learning of nonlinear partial differential equations
  publication-title: J. Mach. Learn. Res.
– start-page: 471
  year: 1997
  end-page: 495
  ident: b65
  article-title: Serial order: A parallel distributed processing approach
  publication-title: Advances in Psychology, Vol. 121
– volume: 861
  start-page: 119
  year: 2019
  end-page: 137
  ident: b17
  article-title: Deep learning of vortex-induced vibrations
  publication-title: J. Fluid Mech.
– volume: 118
  year: 2021
  ident: b33
  article-title: Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease
  publication-title: Proc. Natl. Acad. Sci.
– volume: 363
  year: 2020
  ident: b39
  article-title: A physics-constrained data-driven approach based on locally convex reconstruction for noisy database
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: b3
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
– reference: S. Seo, C. Meng, Y. Liu, Physics-aware difference graph networks for sparsely-observed dynamics, in: International Conference on Learning Representations, 2019.
– volume: 3
  year: 2017
  ident: b79
  article-title: Data-driven discovery of partial differential equations
  publication-title: Sci. Adv.
– volume: 194
  start-page: 4135
  year: 2005
  end-page: 4195
  ident: b2
  article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2020
  ident: b54
  article-title: Fourier neural operator for parametric partial differential equations
– reference: T.Q. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, Neural ordinary differential equations, in: NeurIPS, 2018, pp. 6572–6583.
– volume: 42
  start-page: A639
  year: 2020
  end-page: A665
  ident: b31
  article-title: Learning in modal space: Solving time-dependent stochastic PDEs using physics-informed neural networks
  publication-title: SIAM J. Sci. Comput.
– year: 2020
  ident: b57
  article-title: Neural operator: Graph kernel network for partial differential equations
– volume: 369
  year: 2020
  ident: b38
  article-title: Physics-informed multi-LSTM networks for metamodeling of nonlinear structures
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2020
  ident: b41
  article-title: PhyGeoNet: PHysics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain
  publication-title: J. Comput. Phys.
– start-page: 3208
  year: 2018
  end-page: 3216
  ident: b52
  article-title: PDE-net: Learning PDEs from data
  publication-title: International Conference on Machine Learning
– year: 2018
  ident: b83
  article-title: Relational inductive biases, deep learning, and graph networks
– volume: 39
  start-page: 1
  year: 2020
  end-page: 20
  ident: b34
  article-title: Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks
  publication-title: J. Nondestruct. Eval.
– year: 2020
  ident: b40
  article-title: Physics-informed learning of governing equations from scarce data
– year: 2016
  ident: b84
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– volume: 373
  year: 2021
  ident: b45
  article-title: A physics-informed operator regression framework for extracting data-driven continuum models
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 52
  start-page: 477
  year: 2020
  end-page: 508
  ident: b13
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
– volume: 367
  start-page: 1026
  year: 2020
  end-page: 1030
  ident: b18
  article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
  publication-title: Science
– volume: 63
  start-page: 208
  year: 2021
  end-page: 228
  ident: b43
  article-title: DeepXDE: A Deep learning library for solving differential equations
  publication-title: SIAM Rev.
– reference: G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.
– volume: 334
  start-page: 483
  year: 2018
  end-page: 506
  ident: b8
  article-title: The effect of prior probabilities on quantification and propagation of imprecise probabilities resulting from small datasets
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 360
  year: 2020
  ident: b27
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 64
  start-page: 525
  year: 2019
  end-page: 545
  ident: b49
  article-title: Prediction of aerodynamic flow fields using convolutional neural networks
  publication-title: Comput. Mech.
– year: 2017
  ident: b75
  article-title: Automatic differentiation in pytorch
– volume: 11
  start-page: 1041
  year: 2000
  end-page: 1049
  ident: b5
  article-title: Neural-network methods for boundary value problems with irregular boundaries
  publication-title: IEEE Trans. Neural Netw.
– volume: 397
  year: 2019
  ident: b30
  article-title: Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
  publication-title: J. Comput. Phys.
– volume: 358
  year: 2020
  ident: b32
  article-title: Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2020
  ident: b59
  article-title: Learning mesh-based simulation with graph networks
– volume: 115
  start-page: 8505
  year: 2018
  end-page: 8510
  ident: b7
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proc. Natl. Acad. Sci.
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b9
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 368
  year: 2020
  ident: b28
  article-title: The neural particle method–an updated Lagrangian physics informed neural network for computational fluid dynamics
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2021
  ident: b73
  article-title: Embedding physics to learn spatiotemporal dynamics from sparse data
– volume: 10
  start-page: 161
  year: 2020
  end-page: 169
  ident: b21
  article-title: Physics-constrained bayesian neural network for fluid flow reconstruction with sparse and noisy data
  publication-title: Theor. Appl. Mech. Lett.
– volume: 232
  start-page: 288
  year: 2013
  end-page: 317
  ident: b6
  article-title: Simulation-based optimal Bayesian experimental design for nonlinear systems
  publication-title: J. Comput. Phys.
– volume: 10
  start-page: 207
  year: 2020
  end-page: 212
  ident: b22
  article-title: Physics-informed deep learning for incompressible laminar flows
  publication-title: Theor. Appl. Mech. Lett.
– volume: 215
  year: 2020
  ident: b37
  article-title: Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling
  publication-title: Eng. Struct.
– start-page: 448
  year: 2015
  end-page: 456
  ident: b70
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: International Conference on Machine Learning
– volume: 9
  start-page: 987
  year: 1998
  end-page: 1000
  ident: b4
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
– start-page: 2402
  year: 2020
  end-page: 2411
  ident: b58
  article-title: Combining differentiable PDE solvers and graph neural networks for fluid flow prediction
  publication-title: International Conference on Machine Learning
– volume: 361
  year: 2020
  ident: b23
  article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 394
  start-page: 56
  year: 2019
  end-page: 81
  ident: b50
  article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data
  publication-title: J. Comput. Phys.
– year: 2020
  ident: b53
  article-title: Transformers for modeling physical systems
– volume: 27
  start-page: 1
  year: 2008
  end-page: 7
  ident: b68
  article-title: Fast image/video upsampling
  publication-title: ACM Trans. Graph.
– volume: 6
  start-page: 1
  year: 2018
  end-page: 12
  ident: b85
  article-title: The deep ritz method: a deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun. Math. Stat.
– volume: 45
  start-page: 503
  year: 1989
  end-page: 528
  ident: b77
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
– volume: 147
  year: 2021
  ident: b24
  article-title: Physics-informed deep learning for computational elastodynamics without labeled data
  publication-title: J. Eng. Mech.
– volume: 117
  start-page: 7052
  year: 2020
  end-page: 7062
  ident: b36
  article-title: Extraction of mechanical properties of materials through deep learning from instrumented indentation
  publication-title: Proc. Natl. Acad. Sci.
– year: 2016
  ident: b80
  article-title: Semi-supervised classification with graph convolutional networks
– year: 2018
  ident: b51
  article-title: Approximating the solution to wave propagation using deep neural networks
– year: 2021
  ident: b86
  article-title: A physics-informed variational DeepONet for predicting the crack path in brittle materials
– volume: 34
  start-page: 18
  year: 2017
  end-page: 42
  ident: b82
  article-title: Geometric deep learning: going beyond euclidean data
  publication-title: IEEE Signal Process. Mag.
– volume: 1
  year: 2016
  ident: b69
  article-title: Deconvolution and checkerboard artifacts
  publication-title: Distill
– volume: 379
  year: 2021
  ident: b29
  article-title: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2012
  ident: b1
  article-title: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
– volume: 395
  start-page: 620
  year: 2019
  end-page: 635
  ident: b19
  article-title: Data driven governing equations approximation using deep neural networks
  publication-title: J. Comput. Phys.
– volume: 375
  year: 2021
  ident: b35
  article-title: Non-invasive inference of thrombus material properties with physics-informed neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2017
  ident: b81
  article-title: Residual gated graph convnets
– volume: 394
  start-page: 263
  year: 2019
  end-page: 279
  ident: b46
  article-title: ConvPDE-UQ: COnvolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential equations on varied domains
  publication-title: J. Comput. Phys.
– volume: 3
  start-page: 218
  year: 2021
  end-page: 229
  ident: b44
  article-title: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators
  publication-title: Nat. Mach. Intell.
– year: 2013
  ident: b63
  article-title: Generating sequences with recurrent neural networks
– volume: 366
  start-page: 415
  year: 2018
  end-page: 447
  ident: b12
  article-title: BayesIan deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification
  publication-title: J. Comput. Phys.
– volume: 110
  start-page: 6634
  year: 2013
  end-page: 6639
  ident: b61
  article-title: Sparse dynamics for partial differential equations
  publication-title: Proc. Natl. Acad. Sci.
– reference: W. Shi, J. Caballero, F. Huszár, J. Totz, A.P. Aitken, R. Bishop, D. Rueckert, Z. Wang, Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1874–1883.
– volume: 10
  year: 2020
  ident: b14
  article-title: MFNets: MUlti-fidelity data-driven networks for bayesian learning and prediction
  publication-title: Int. J. Uncertain. Quantif.
– volume: 378
  year: 2021
  ident: b48
  article-title: DiscretizationNet: A Machine-learning based solver for Navier–Stokes equations using finite volume discretization
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b62
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 28
  start-page: 802
  year: 2015
  end-page: 810
  ident: b60
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2018
  ident: 10.1016/j.cma.2021.114399_b83
– volume: 368
  year: 2020
  ident: 10.1016/j.cma.2021.114399_b28
  article-title: The neural particle method–an updated Lagrangian physics informed neural network for computational fluid dynamics
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113127
– year: 2020
  ident: 10.1016/j.cma.2021.114399_b59
– volume: 9
  start-page: 987
  issue: 5
  year: 1998
  ident: 10.1016/j.cma.2021.114399_b4
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.712178
– volume: 426
  year: 2021
  ident: 10.1016/j.cma.2021.114399_b26
  article-title: NSFnets (Navier-Stokes Flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109951
– volume: 375
  year: 2021
  ident: 10.1016/j.cma.2021.114399_b35
  article-title: Non-invasive inference of thrombus material properties with physics-informed neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113603
– year: 2021
  ident: 10.1016/j.cma.2021.114399_b86
– volume: 4
  issue: 3
  year: 2019
  ident: 10.1016/j.cma.2021.114399_b25
  article-title: Predictive large-eddy-simulation wall modeling via physics-informed neural networks
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.4.034602
– year: 2020
  ident: 10.1016/j.cma.2021.114399_b42
– volume: 1
  issue: 10
  year: 2016
  ident: 10.1016/j.cma.2021.114399_b69
  article-title: Deconvolution and checkerboard artifacts
  publication-title: Distill
  doi: 10.23915/distill.00003
– start-page: 3208
  year: 2018
  ident: 10.1016/j.cma.2021.114399_b52
  article-title: PDE-net: Learning PDEs from data
– year: 2014
  ident: 10.1016/j.cma.2021.114399_b64
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.cma.2021.114399_b9
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 377
  year: 2021
  ident: 10.1016/j.cma.2021.114399_b15
  article-title: Variational system identification of the partial differential equations governing microstructure evolution in materials: Inference over sparse and spatially unrelated data
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.113706
– ident: 10.1016/j.cma.2021.114399_b66
– volume: 34
  start-page: 18
  issue: 4
  year: 2017
  ident: 10.1016/j.cma.2021.114399_b82
  article-title: Geometric deep learning: going beyond euclidean data
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2693418
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.cma.2021.114399_b3
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– volume: 397
  year: 2019
  ident: 10.1016/j.cma.2021.114399_b30
  article-title: Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.07.048
– year: 2017
  ident: 10.1016/j.cma.2021.114399_b81
– volume: 367
  start-page: 1026
  issue: 6481
  year: 2020
  ident: 10.1016/j.cma.2021.114399_b18
  article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
  publication-title: Science
  doi: 10.1126/science.aaw4741
– volume: 63
  start-page: 208
  issue: 1
  year: 2021
  ident: 10.1016/j.cma.2021.114399_b43
  article-title: DeepXDE: A Deep learning library for solving differential equations
  publication-title: SIAM Rev.
  doi: 10.1137/19M1274067
– volume: 10
  issue: 6
  year: 2020
  ident: 10.1016/j.cma.2021.114399_b14
  article-title: MFNets: MUlti-fidelity data-driven networks for bayesian learning and prediction
  publication-title: Int. J. Uncertain. Quantif.
  doi: 10.1615/Int.J.UncertaintyQuantification.2020032978
– year: 2013
  ident: 10.1016/j.cma.2021.114399_b63
– year: 2019
  ident: 10.1016/j.cma.2021.114399_b56
– volume: 861
  start-page: 119
  year: 2019
  ident: 10.1016/j.cma.2021.114399_b17
  article-title: Deep learning of vortex-induced vibrations
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2018.872
– volume: 117
  start-page: 7052
  issue: 13
  year: 2020
  ident: 10.1016/j.cma.2021.114399_b36
  article-title: Extraction of mechanical properties of materials through deep learning from instrumented indentation
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1922210117
– volume: 27
  start-page: 1
  issue: 5
  year: 2008
  ident: 10.1016/j.cma.2021.114399_b68
  article-title: Fast image/video upsampling
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1409060.1409106
– volume: 64
  start-page: 525
  issue: 2
  year: 2019
  ident: 10.1016/j.cma.2021.114399_b49
  article-title: Prediction of aerodynamic flow fields using convolutional neural networks
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-019-01740-0
– volume: 118
  issue: 13
  year: 2021
  ident: 10.1016/j.cma.2021.114399_b33
  article-title: Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2100697118
– volume: 394
  start-page: 263
  year: 2019
  ident: 10.1016/j.cma.2021.114399_b46
  article-title: ConvPDE-UQ: COnvolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential equations on varied domains
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.026
– year: 2020
  ident: 10.1016/j.cma.2021.114399_b53
– volume: 10
  start-page: 207
  issue: 3
  year: 2020
  ident: 10.1016/j.cma.2021.114399_b22
  article-title: Physics-informed deep learning for incompressible laminar flows
  publication-title: Theor. Appl. Mech. Lett.
  doi: 10.1016/j.taml.2020.01.039
– volume: 358
  year: 2020
  ident: 10.1016/j.cma.2021.114399_b32
  article-title: Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112623
– year: 2016
  ident: 10.1016/j.cma.2021.114399_b84
– volume: 39
  start-page: 1
  issue: 3
  year: 2020
  ident: 10.1016/j.cma.2021.114399_b34
  article-title: Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks
  publication-title: J. Nondestruct. Eval.
  doi: 10.1007/s10921-020-00705-1
– volume: 3
  issue: 4
  year: 2017
  ident: 10.1016/j.cma.2021.114399_b79
  article-title: Data-driven discovery of partial differential equations
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602614
– volume: 366
  start-page: 415
  year: 2018
  ident: 10.1016/j.cma.2021.114399_b12
  article-title: BayesIan deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.04.018
– volume: 378
  year: 2021
  ident: 10.1016/j.cma.2021.114399_b48
  article-title: DiscretizationNet: A Machine-learning based solver for Navier–Stokes equations using finite volume discretization
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.113722
– volume: 361
  year: 2020
  ident: 10.1016/j.cma.2021.114399_b23
  article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112732
– volume: 42
  start-page: A639
  issue: 2
  year: 2020
  ident: 10.1016/j.cma.2021.114399_b31
  article-title: Learning in modal space: Solving time-dependent stochastic PDEs using physics-informed neural networks
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/19M1260141
– year: 2020
  ident: 10.1016/j.cma.2021.114399_b40
– volume: 3
  start-page: 218
  issue: 3
  year: 2021
  ident: 10.1016/j.cma.2021.114399_b44
  article-title: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00302-5
– volume: 11
  start-page: 1041
  issue: 5
  year: 2000
  ident: 10.1016/j.cma.2021.114399_b5
  article-title: Neural-network methods for boundary value problems with irregular boundaries
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.870037
– volume: 369
  year: 2020
  ident: 10.1016/j.cma.2021.114399_b38
  article-title: Physics-informed multi-LSTM networks for metamodeling of nonlinear structures
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113226
– volume: 110
  start-page: 6634
  issue: 17
  year: 2013
  ident: 10.1016/j.cma.2021.114399_b61
  article-title: Sparse dynamics for partial differential equations
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1302752110
– volume: 334
  start-page: 483
  year: 2018
  ident: 10.1016/j.cma.2021.114399_b8
  article-title: The effect of prior probabilities on quantification and propagation of imprecise probabilities resulting from small datasets
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2018.01.045
– volume: 232
  start-page: 288
  issue: 1
  year: 2013
  ident: 10.1016/j.cma.2021.114399_b6
  article-title: Simulation-based optimal Bayesian experimental design for nonlinear systems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.08.013
– start-page: 2402
  year: 2020
  ident: 10.1016/j.cma.2021.114399_b58
  article-title: Combining differentiable PDE solvers and graph neural networks for fluid flow prediction
– volume: 55
  start-page: 54
  year: 2019
  ident: 10.1016/j.cma.2021.114399_b11
  article-title: Efficient Monte Carlo resampling for probability measure changes from Bayesian updating
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/j.probengmech.2018.10.002
– volume: 19
  start-page: 932
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2021.114399_b16
  article-title: Deep hidden physics models: Deep learning of nonlinear partial differential equations
  publication-title: J. Mach. Learn. Res.
– volume: 215
  year: 2020
  ident: 10.1016/j.cma.2021.114399_b37
  article-title: Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.110704
– volume: 363
  year: 2020
  ident: 10.1016/j.cma.2021.114399_b39
  article-title: A physics-constrained data-driven approach based on locally convex reconstruction for noisy database
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112791
– volume: 147
  issue: 8
  year: 2021
  ident: 10.1016/j.cma.2021.114399_b24
  article-title: Physics-informed deep learning for computational elastodynamics without labeled data
  publication-title: J. Eng. Mech.
– ident: 10.1016/j.cma.2021.114399_b55
– year: 2020
  ident: 10.1016/j.cma.2021.114399_b54
– year: 2014
  ident: 10.1016/j.cma.2021.114399_b76
– year: 2021
  ident: 10.1016/j.cma.2021.114399_b74
– volume: 395
  start-page: 620
  year: 2019
  ident: 10.1016/j.cma.2021.114399_b19
  article-title: Data driven governing equations approximation using deep neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.06.042
– year: 2020
  ident: 10.1016/j.cma.2021.114399_b57
– ident: 10.1016/j.cma.2021.114399_b67
  doi: 10.1109/CVPR.2016.207
– volume: 52
  start-page: 477
  year: 2020
  ident: 10.1016/j.cma.2021.114399_b13
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010719-060214
– volume: 28
  start-page: 802
  year: 2015
  ident: 10.1016/j.cma.2021.114399_b60
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2021
  ident: 10.1016/j.cma.2021.114399_b73
– volume: 45
  start-page: 503
  issue: 1
  year: 1989
  ident: 10.1016/j.cma.2021.114399_b77
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– volume: 194
  start-page: 4135
  issue: 39–41
  year: 2005
  ident: 10.1016/j.cma.2021.114399_b2
  article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2004.10.008
– start-page: 471
  year: 1997
  ident: 10.1016/j.cma.2021.114399_b65
  article-title: Serial order: A parallel distributed processing approach
  doi: 10.1016/S0166-4115(97)80111-2
– year: 2017
  ident: 10.1016/j.cma.2021.114399_b75
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.cma.2021.114399_b62
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 115
  start-page: 8505
  issue: 34
  year: 2018
  ident: 10.1016/j.cma.2021.114399_b7
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1718942115
– volume: 362
  year: 2020
  ident: 10.1016/j.cma.2021.114399_b20
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112790
– volume: 379
  year: 2021
  ident: 10.1016/j.cma.2021.114399_b29
  article-title: A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.113741
– volume: 6
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2021.114399_b85
  article-title: The deep ritz method: a deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun. Math. Stat.
  doi: 10.1007/s40304-018-0127-z
– year: 2012
  ident: 10.1016/j.cma.2021.114399_b1
– start-page: 448
  year: 2015
  ident: 10.1016/j.cma.2021.114399_b70
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– volume: 373
  year: 2021
  ident: 10.1016/j.cma.2021.114399_b45
  article-title: A physics-informed operator regression framework for extracting data-driven continuum models
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113500
– volume: 360
  year: 2020
  ident: 10.1016/j.cma.2021.114399_b27
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112789
– year: 2020
  ident: 10.1016/j.cma.2021.114399_b41
  article-title: PhyGeoNet: PHysics-informed geometry-adaptive convolutional neural networks for solving parameterized steady-state PDEs on irregular domain
  publication-title: J. Comput. Phys.
– year: 2016
  ident: 10.1016/j.cma.2021.114399_b80
– ident: 10.1016/j.cma.2021.114399_b78
  doi: 10.1109/CVPR.2017.243
– volume: 116
  start-page: 15344
  issue: 31
  year: 2019
  ident: 10.1016/j.cma.2021.114399_b10
  article-title: Learning data-driven discretizations for partial differential equations
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1814058116
– year: 2016
  ident: 10.1016/j.cma.2021.114399_b72
– year: 2018
  ident: 10.1016/j.cma.2021.114399_b71
– year: 2018
  ident: 10.1016/j.cma.2021.114399_b51
– volume: 394
  start-page: 56
  year: 2019
  ident: 10.1016/j.cma.2021.114399_b50
  article-title: Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.05.024
– volume: 403
  year: 2020
  ident: 10.1016/j.cma.2021.114399_b47
  article-title: Modeling the dynamics of PDE systems with physics-constrained deep auto-regressive networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109056
– volume: 10
  start-page: 161
  issue: 3
  year: 2020
  ident: 10.1016/j.cma.2021.114399_b21
  article-title: Physics-constrained bayesian neural network for fluid flow reconstruction with sparse and noisy data
  publication-title: Theor. Appl. Mech. Lett.
  doi: 10.1016/j.taml.2020.01.031
SSID ssj0000812
Score 2.7094104
Snippet Partial differential equations (PDEs) play a fundamental role in modeling and simulating problems across a wide range of disciplines. Recent advances in deep...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114399
SubjectTerms Boundary conditions
Burgers equation
Coders
Convolutional-recurrent learning
Deep learning
Encoder–decoder
Feature extraction
Hard-encoding of I/BCs
Machine learning
Mathematical models
Modelling
Neural networks
Partial differential equations
Physics
Physics-informed deep learning
Residual connection
Time marching
Title PhyCRNet: Physics-informed convolutional-recurrent network for solving spatiotemporal PDEs
URI https://dx.doi.org/10.1016/j.cma.2021.114399
https://www.proquest.com/docview/2639707492
Volume 389
WOSCitedRecordID wos000740320100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKBhI8cClDDAbyA-IBZJQmcePwNo1OMFWlQh1EvFiJL9qmEkrTTuMf8LM5vqRJK1bBAy9R6zoX9ftyfHx8_B2EXggDcpJqEkgVk1jGISmkjAgtdBHTJBBaMVtsIhmNWJal407nV70X5nKalCW7ukpn_xVqaAOwzdbZf4B7dVFogM8AOhwBdjj-FfDjs59Hn0bKhvxsfqeoiJNHVdImmfu751MyN8F2K89Uumxwm3QIj-eiDDbZ2mtXTV-P3w2qtitb14PwRahtXm3ufdpvymworgWgVaN5uFrfcdZuvGzWmVzM9gw6z1odh-dLO0rkTdMXH-I-AWaTbFm2Axcw5w3WkkCaHTWf2wY6pgScFto20JErMuRNbO-Pht_FIC7eCCsmFfaMBnLkSi-ti2yPPvLj0-GQTwbZ5OXsBzH1x8w6vS_GcgPthglNwT7uHn4YZCfNqM56TnneP2C9Qm5zBTfuep2PszHaWxdmch_d9XMPfOg48wB1VNlF9_w8BHsrX3XRnZZIZRfd8iR6iL7W1HqLN4mFryEW9sTC0A17YuF1YmFDrD10ejyYHL0nvjYHEVGfLQiFaTZMTVNp9jKLJA6EKoSI4aumSucwy4iEkixnKqKplpQJaey97qeJ1Cql0SO0U34v1WOE-1r0KDMStWEE19G5LDSck4iCBQXL430U1P8mF1643tRPmfI6Q_GCAwDcAMAdAPvo1eqUmVNt2dY5riHi3u107iQHcm077aCGk_vXv-KhWScHrzwNn2z_-Sm63bwTB2hnMV-qZ-imuFycV_Pnnny_ATk2rqk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PhyCRNet%3A+Physics-informed+convolutional-recurrent+network+for+solving+spatiotemporal+PDEs&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Ren%2C+Pu&rft.au=Rao%2C+Chengping&rft.au=Liu%2C+Yang&rft.au=Wang%2C+Jian-Xun&rft.date=2022-02-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=389&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2021.114399&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon