A novel hybrid machine learning model for rapid assessment of wave and storm surge responses over an extended coastal region
Storm surge and waves are responsible for a substantial portion of tropical and extratropical cyclones-related damages. While high-fidelity numerical models have significantly advanced the simulation accuracy of storm surge and waves, they are not practical to be employed for probabilistic analysis,...
Gespeichert in:
| Veröffentlicht in: | Coastal engineering (Amsterdam) Jg. 190; S. 104503 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.06.2024
|
| Schlagworte: | |
| ISSN: | 0378-3839, 1872-7379 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Storm surge and waves are responsible for a substantial portion of tropical and extratropical cyclones-related damages. While high-fidelity numerical models have significantly advanced the simulation accuracy of storm surge and waves, they are not practical to be employed for probabilistic analysis, risk assessment or rapid prediction due to their high computational demands. In this study, a novel hybrid model combining dimensionality reduction and data-driven techniques is developed for rapid assessment of waves and storm surge responses over an extended coastal region. Specifically, the hybrid model simultaneously identifies a low-dimensional representation of the high-dimensional spatial system based on a deep autoencoder (DAE) while mapping the storm parameters to the obtained low-dimensional latent space using a deep neural network (DNN). To train the hybrid model, a combined weighted loss function is designed to encourage a balance between DAE and DNN training and achieve the best accuracy. The performance of the hybrid model is evaluated through a case study using the synthetic data from the North Atlantic Comprehensive Coastal Study (NACCS) covering critical regions within New York and New Jersey. In addition, the proposed approach is compared with two decoupled models where the regression model is based on DNN and the reduction techniques are either principal component analysis (PCA) or DAE which are trained separately from the DNN model. High accuracy and computational efficiency are observed for the hybrid model which could be readily implemented as part of early warning systems or probabilistic risk assessment of waves and storm surge.
•A novel hybrid model is proposed which can rapidly estimate waves and storm surge responses over an extended coastal region.•The proposed model combines a deep autoencoder (DAE) and a deep neural network (DNN).•The developed model is trained simultaneously based on a designed weighted loss function.•The model was comprehensively tested and validated.•The performance of the hybrid model was compared with conventional decoupled models. |
|---|---|
| AbstractList | Storm surge and waves are responsible for a substantial portion of tropical and extratropical cyclones-related damages. While high-fidelity numerical models have significantly advanced the simulation accuracy of storm surge and waves, they are not practical to be employed for probabilistic analysis, risk assessment or rapid prediction due to their high computational demands. In this study, a novel hybrid model combining dimensionality reduction and data-driven techniques is developed for rapid assessment of waves and storm surge responses over an extended coastal region. Specifically, the hybrid model simultaneously identifies a low-dimensional representation of the high-dimensional spatial system based on a deep autoencoder (DAE) while mapping the storm parameters to the obtained low-dimensional latent space using a deep neural network (DNN). To train the hybrid model, a combined weighted loss function is designed to encourage a balance between DAE and DNN training and achieve the best accuracy. The performance of the hybrid model is evaluated through a case study using the synthetic data from the North Atlantic Comprehensive Coastal Study (NACCS) covering critical regions within New York and New Jersey. In addition, the proposed approach is compared with two decoupled models where the regression model is based on DNN and the reduction techniques are either principal component analysis (PCA) or DAE which are trained separately from the DNN model. High accuracy and computational efficiency are observed for the hybrid model which could be readily implemented as part of early warning systems or probabilistic risk assessment of waves and storm surge.
•A novel hybrid model is proposed which can rapidly estimate waves and storm surge responses over an extended coastal region.•The proposed model combines a deep autoencoder (DAE) and a deep neural network (DNN).•The developed model is trained simultaneously based on a designed weighted loss function.•The model was comprehensively tested and validated.•The performance of the hybrid model was compared with conventional decoupled models. |
| ArticleNumber | 104503 |
| Author | Snaiki, Reda Saviz Naeini, Saeed |
| Author_xml | – sequence: 1 givenname: Saeed surname: Saviz Naeini fullname: Saviz Naeini, Saeed – sequence: 2 givenname: Reda orcidid: 0000-0003-4326-3655 surname: Snaiki fullname: Snaiki, Reda email: reda.snaiki@etsmtl.ca |
| BookMark | eNqNkN1KAzEQhYMoWKvvkBfYmt3sT_ZGqMU_KHij12E2mW1TdpOSxKrgw5vSguCNzs3AzJmPM-eCnFpnkRCas1nO8vp6M1MOQoQB7WpWsKJM47Ji_IRMctEUWcOb9pRMGG9ExgVvz8lFCBuWqhbVhHzNqXU7HOj6s_NG0xHU2likA4K3xq7o6HTa9s5TD9skgBAwhBFtpK6n77BDClbTEJ0faXjzK6Qew9bZJKOJ7NOa4kdEq1HTo9ckWRlnL8lZD0PAq2Ofktf7u5fFY7Z8fnhazJeZ4rWIWQkKe86EUG2jdYktKCXKroKi1pjrqhd1yVmHbSmw4HndtDX0rGtL3lSdzoFPyc2Bq7wLwWMvlYkQk4PowQwyZ3KfpdzInyzlPkt5yDIBxC_A1psR_Od_Tm8Pp5ge3Bn0MiiDVqE2HlWU2pm_Id-PIJqS |
| CitedBy_id | crossref_primary_10_1016_j_ocemod_2024_102384 crossref_primary_10_1007_s11069_025_07428_4 crossref_primary_10_1140_epjs_s11734_024_01357_2 crossref_primary_10_1016_j_coldregions_2024_104247 crossref_primary_10_1109_JSTARS_2025_3601541 crossref_primary_10_1029_2025JH000650 crossref_primary_10_1016_j_coastaleng_2024_104573 crossref_primary_10_1111_mice_13488 |
| Cites_doi | 10.1038/s42254-021-00314-5 10.1162/neco.1989.1.4.541 10.1561/2400000035 10.5194/nhess-12-3799-2012 10.1016/j.oceaneng.2020.107298 10.1007/s11069-014-1508-6 10.1016/j.neucom.2013.09.055 10.1007/s12237-008-9089-9 10.1016/j.oceano.2017.03.007 10.1016/S1385-1101(03)00024-8 10.1007/s11069-016-2193-4 10.3390/rs14215569 10.1016/j.engstruct.2023.115673 10.1016/j.aqpro.2015.02.059 10.3389/fbioe.2020.00429 10.3390/jmse10040551 10.1016/j.apor.2020.102339 10.1038/323533a0 10.3390/atmos13050757 10.1175/2008JPO4066.1 10.1073/pnas.1906995116 10.1016/j.piutam.2017.09.005 10.1016/j.jweia.2019.103983 10.1007/s11069-009-9378-z 10.1016/j.ocemod.2009.12.007 10.1007/s11069-018-3470-1 10.1016/j.jhydrol.2018.01.014 10.1080/21664250.2020.1868736 10.1016/j.oceaneng.2009.07.012 10.1007/s11069-009-9381-4 10.3389/fmars.2020.00260 10.1109/TNN.2002.804317 10.3389/fmars.2021.715557 10.1016/j.oceaneng.2005.04.012 10.1007/s11069-012-0520-y 10.1016/j.coastaleng.2021.104024 10.1175/1520-0442(2000)013<1748:TCSAAT>2.0.CO;2 10.1007/s11069-015-2111-1 10.1063/5.0081858 10.54302/mausam.v17i3.5723 10.1109/JPROC.2017.2761740 10.1177/0361198120917671 10.1016/j.asoc.2020.106184 10.1016/j.cma.2013.03.012 10.3389/fbuil.2020.549106 10.1029/2022JD037617 10.1029/2011JD017126 10.1029/2020JD033266 10.1016/j.engappai.2022.105535 10.1016/j.oceaneng.2021.108795 10.1029/98JC02622 10.3390/jmse2010226 10.1002/wics.101 10.1007/s11069-021-04881-9 10.2112/SI95-235.1 10.1029/2009JD013630 10.1175/2009JAMC2189.1 10.1016/0893-6080(88)90021-4 10.3389/fbuil.2022.811460 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors |
| Copyright_xml | – notice: 2024 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.coastaleng.2024.104503 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1872-7379 |
| ExternalDocumentID | 10_1016_j_coastaleng_2024_104503 S0378383924000516 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 6TJ 6TS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFYP ABLST ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE J1W JJJVA KCYFY KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSJ SST SSZ T5K TN5 WUQ XJT XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c368t-4acef3088c97dd4e9acc84b5a26de1d5f86430be948e2316796af0b94375bd1a3 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001206675800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-3839 |
| IngestDate | Tue Nov 18 21:18:56 EST 2025 Sat Nov 29 07:14:02 EST 2025 Sat Apr 27 15:44:45 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Storm surge Significant wave height Deep autoencoder |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c368t-4acef3088c97dd4e9acc84b5a26de1d5f86430be948e2316796af0b94375bd1a3 |
| ORCID | 0000-0003-4326-3655 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.coastaleng.2024.104503 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_coastaleng_2024_104503 crossref_primary_10_1016_j_coastaleng_2024_104503 elsevier_sciencedirect_doi_10_1016_j_coastaleng_2024_104503 |
| PublicationCentury | 2000 |
| PublicationDate | June 2024 2024-06-00 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Coastal engineering (Amsterdam) |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (bib40) 1989; 1 Larochelle, Bengio, Louradour, Lamblin (bib39) 2009; 10 Snaiki, Parida (bib63) 2023; 69 French, Mawdsley, Fujiyama, Achuthan (bib23) 2017; 25 Lockwood, Lin, Oppenheimer, Lai (bib48) 2022; 127 Wang, Loftis, Liu, Forrest, Zhang (bib75) 2014; 2 Cialone, Massey, Anderson, Grzegorzewski, Jensen, Cialone, Mark, Pevey, Gunkel, McAlpin (bib18) 2015 Irish, Resio (bib29) 2010; 37 Callens, Morichon, Abadie, Delpey, Liquet (bib14) 2020; 104 Colle, Rojowsky, Buonaito (bib19) 2010; 49 Xiao, Yang, Wang, Sun, Wigmosta, Judi (bib78) 2021; 8 Dinan (bib20) 2016 Grossberg (bib25) 1988; 1 Snaiki, Wu (bib66) 2022; 13 Sztobryn (bib69) 2003; 49 Booij, Ris, Holthuijsen (bib12) 1999; 104 Al Kajbaf, Bensi (bib3) 2020; 91 Taflanidis, Jia, Kennedy, Smith (bib71) 2013; 66 Zhang, Taflanidis, Nadal-Caraballo, Melby, Diop (bib80) 2018; 94 Chen, Liu, Hsu (bib17) 2012; 12 Wu, Snaiki (bib77) 2022; 8 Chen, Wang, Tawes (bib16) 2008; 31 Portnova-Fahreeva, Rizzoglio, Nisky, Casadio, Mussa-Ivaldi, Rombokas (bib55) 2020; 8 Bai, Xu (bib5) 2022; 34 Blake, Kimberlain, Berg, Cangialosi, Beven Ii (bib11) 2013; 12 Lin, Chavas (bib44) 2012; 117 Irish, Resio, Cialone (bib30) 2009; 51 Igarashi, Tajima (bib28) 2021; 63 Bretschneider (bib13) 1967; vol. 4 Jia, Taflanidis (bib32) 2013; 261–262 Rao, Mazumdar (bib57) 1966; 17 Leung, Lam, Ling, Tam (bib43) 2003; 14 Bass, Bedient (bib8) 2018; 558 Kyprioti, Taflanidis, Plumlee, Asher, Spiller, Luettich, Blanton, Kijewski-Correa, Kennedy, Schmied (bib38) 2021; 109 Kijewski-Correa, Taflanidis, Vardeman, Sweet, Zhang, Snaiki (bib35) 2020; 6 Ramos-Valle, Curchitser, Bruyère, McOwen (bib56) 2021; 126 Zhang, Douglas, Leatherman (bib81) 2000; 13 Bajo, Umgiesser (bib6) 2010; 33 Ruder (bib58) 2016 Kyprioti, Taflanidis, Nadal-Caraballo, Yawn, Aucoin (bib37) 2022; 10 Liou, Cheng, Liou, Liou (bib46) 2014; 139 Hashemi, Spaulding, Shaw, Farhadi, Lewis (bib27) 2016; 82 Sze, Chen, Yang, Emer (bib68) 2017; 105 Song, Han, Meng, Wang, Wei, Peng (bib67) 2022; 1931 Abdi, Williams (bib1) 2010; 2 Lee, Irish, Bensi, Marcy (bib41) 2021; 170 Gao, Li, Hu, Suganthan, Yuen (bib24) 2023; 117 Rumelhart, Hinton, Williams (bib59) 1986; 323 Saviz, Snaiki (bib60) 2022 Berbić, Ocvirk, Carević, Lončar (bib9) 2017; 59 Plumlee, Asher, Chang, Bilskie (bib54) 2021 Van Der Maaten, Postma, Van den Herik (bib73) 2009; 10 Luettich, Westerink (bib50) 2004; vol. 20 Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (bib34) 2021; 3 Bezuglov, Blanton, Santiago (bib10) 2016 Liu, Arnon, Lazarus, Strong, Barrett, Kochenderfer (bib47) 2021; 4 Naeini, Snaiki (bib53) 2024; 295 Snaiki, Parida (bib62) 2023; 280 Snaiki, Wu, Whittaker, Atkinson (bib65) 2020; 2674 Fan, Xiao, Dong (bib21) 2020; 205 Atteia, Collins, Algarni, Samee (bib4) 2022; 14 Wamsley, Cialone, Smith, Ebersole, Grzegorzewski (bib74) 2009; 51 Champion, Lusch, Kutz, Brunton (bib15) 2019; 116 Tadesse, Wahl, Cid (bib70) 2020; 7 Wetzel (bib76) 2017; 96 Bardenet, Brendel, Kégl, Sebag (bib7) 2013 Kim, Melby, Nadal-Caraballo, Ratcliff (bib36) 2015; 76 Lin, Emanuel, Smith, Vanmarcke (bib45) 2010; 115 Snaiki, Wu (bib64) 2019; 194 Smith, Resio, Zundel (bib61) 1999 Lee (bib42) 2006; 33 Meng, Song, Xu, Xie, Li (bib51) 2021; 234 Adeli, Sun, Wang, Taflanidis (bib2) 2022 Jelesnianski (bib31) 1992; vol. 48 Zhang, Weng, Chen, Hsieh, Daniel (bib79) 2018 Thomas, Dwarakish (bib72) 2015; 4 Jia, Taflanidis, Nadal-Caraballo, Melby, Kennedy, Smith (bib33) 2016; 81 Nadal-Caraballo, Campbell, Gonzalez, Torres, Melby, Taflanidis (bib52) 2020; 95 Hanson, Forte, Blanton, Gravens, Vickery (bib26) 2013 Luettich, Richard, Westerink, Scheffner (bib49) 1992 Fan, Ginis, Hara (bib22) 2009; 39 Gao (10.1016/j.coastaleng.2024.104503_bib24) 2023; 117 Kyprioti (10.1016/j.coastaleng.2024.104503_bib37) 2022; 10 Lee (10.1016/j.coastaleng.2024.104503_bib42) 2006; 33 Jia (10.1016/j.coastaleng.2024.104503_bib32) 2013; 261–262 Liu (10.1016/j.coastaleng.2024.104503_bib47) 2021; 4 Larochelle (10.1016/j.coastaleng.2024.104503_bib39) 2009; 10 Rumelhart (10.1016/j.coastaleng.2024.104503_bib59) 1986; 323 Adeli (10.1016/j.coastaleng.2024.104503_bib2) 2022 Smith (10.1016/j.coastaleng.2024.104503_bib61) 1999 Cialone (10.1016/j.coastaleng.2024.104503_bib18) 2015 Champion (10.1016/j.coastaleng.2024.104503_bib15) 2019; 116 Lin (10.1016/j.coastaleng.2024.104503_bib44) 2012; 117 Berbić (10.1016/j.coastaleng.2024.104503_bib9) 2017; 59 Luettich (10.1016/j.coastaleng.2024.104503_bib50) 2004; vol. 20 Zhang (10.1016/j.coastaleng.2024.104503_bib81) 2000; 13 Van Der Maaten (10.1016/j.coastaleng.2024.104503_bib73) 2009; 10 Karniadakis (10.1016/j.coastaleng.2024.104503_bib34) 2021; 3 Jelesnianski (10.1016/j.coastaleng.2024.104503_bib31) 1992; vol. 48 Saviz (10.1016/j.coastaleng.2024.104503_bib60) 2022 Portnova-Fahreeva (10.1016/j.coastaleng.2024.104503_bib55) 2020; 8 Sztobryn (10.1016/j.coastaleng.2024.104503_bib69) 2003; 49 Sze (10.1016/j.coastaleng.2024.104503_bib68) 2017; 105 Wamsley (10.1016/j.coastaleng.2024.104503_bib74) 2009; 51 Liou (10.1016/j.coastaleng.2024.104503_bib46) 2014; 139 Snaiki (10.1016/j.coastaleng.2024.104503_bib64) 2019; 194 Abdi (10.1016/j.coastaleng.2024.104503_bib1) 2010; 2 Blake (10.1016/j.coastaleng.2024.104503_bib11) 2013; 12 Plumlee (10.1016/j.coastaleng.2024.104503_bib54) 2021 Callens (10.1016/j.coastaleng.2024.104503_bib14) 2020; 104 Irish (10.1016/j.coastaleng.2024.104503_bib30) 2009; 51 Meng (10.1016/j.coastaleng.2024.104503_bib51) 2021; 234 Zhang (10.1016/j.coastaleng.2024.104503_bib80) 2018; 94 Tadesse (10.1016/j.coastaleng.2024.104503_bib70) 2020; 7 Zhang (10.1016/j.coastaleng.2024.104503_bib79) 2018 Wang (10.1016/j.coastaleng.2024.104503_bib75) 2014; 2 Xiao (10.1016/j.coastaleng.2024.104503_bib78) 2021; 8 Kyprioti (10.1016/j.coastaleng.2024.104503_bib38) 2021; 109 Chen (10.1016/j.coastaleng.2024.104503_bib17) 2012; 12 Wetzel (10.1016/j.coastaleng.2024.104503_bib76) 2017; 96 Colle (10.1016/j.coastaleng.2024.104503_bib19) 2010; 49 Lin (10.1016/j.coastaleng.2024.104503_bib45) 2010; 115 Kijewski-Correa (10.1016/j.coastaleng.2024.104503_bib35) 2020; 6 Snaiki (10.1016/j.coastaleng.2024.104503_bib66) 2022; 13 Bai (10.1016/j.coastaleng.2024.104503_bib5) 2022; 34 Luettich (10.1016/j.coastaleng.2024.104503_bib49) 1992 Ramos-Valle (10.1016/j.coastaleng.2024.104503_bib56) 2021; 126 Bass (10.1016/j.coastaleng.2024.104503_bib8) 2018; 558 Kim (10.1016/j.coastaleng.2024.104503_bib36) 2015; 76 Nadal-Caraballo (10.1016/j.coastaleng.2024.104503_bib52) 2020; 95 Snaiki (10.1016/j.coastaleng.2024.104503_bib65) 2020; 2674 Naeini (10.1016/j.coastaleng.2024.104503_bib53) 2024; 295 Lee (10.1016/j.coastaleng.2024.104503_bib41) 2021; 170 Dinan (10.1016/j.coastaleng.2024.104503_bib20) 2016 Bezuglov (10.1016/j.coastaleng.2024.104503_bib10) 2016 Taflanidis (10.1016/j.coastaleng.2024.104503_bib71) 2013; 66 Fan (10.1016/j.coastaleng.2024.104503_bib22) 2009; 39 Wu (10.1016/j.coastaleng.2024.104503_bib77) 2022; 8 Bardenet (10.1016/j.coastaleng.2024.104503_bib7) 2013 Al Kajbaf (10.1016/j.coastaleng.2024.104503_bib3) 2020; 91 Leung (10.1016/j.coastaleng.2024.104503_bib43) 2003; 14 Ruder (10.1016/j.coastaleng.2024.104503_bib58) 2016 Snaiki (10.1016/j.coastaleng.2024.104503_bib62) 2023; 280 Thomas (10.1016/j.coastaleng.2024.104503_bib72) 2015; 4 Chen (10.1016/j.coastaleng.2024.104503_bib16) 2008; 31 Grossberg (10.1016/j.coastaleng.2024.104503_bib25) 1988; 1 Lockwood (10.1016/j.coastaleng.2024.104503_bib48) 2022; 127 Rao (10.1016/j.coastaleng.2024.104503_bib57) 1966; 17 Atteia (10.1016/j.coastaleng.2024.104503_bib4) 2022; 14 Igarashi (10.1016/j.coastaleng.2024.104503_bib28) 2021; 63 Irish (10.1016/j.coastaleng.2024.104503_bib29) 2010; 37 Jia (10.1016/j.coastaleng.2024.104503_bib33) 2016; 81 Bajo (10.1016/j.coastaleng.2024.104503_bib6) 2010; 33 French (10.1016/j.coastaleng.2024.104503_bib23) 2017; 25 Booij (10.1016/j.coastaleng.2024.104503_bib12) 1999; 104 Song (10.1016/j.coastaleng.2024.104503_bib67) 2022; 1931 Fan (10.1016/j.coastaleng.2024.104503_bib21) 2020; 205 Hanson (10.1016/j.coastaleng.2024.104503_bib26) 2013 Bretschneider (10.1016/j.coastaleng.2024.104503_bib13) 1967; vol. 4 LeCun (10.1016/j.coastaleng.2024.104503_bib40) 1989; 1 Hashemi (10.1016/j.coastaleng.2024.104503_bib27) 2016; 82 Snaiki (10.1016/j.coastaleng.2024.104503_bib63) 2023; 69 |
| References_xml | – volume: 82 start-page: 471 year: 2016 end-page: 491 ident: bib27 article-title: An efficient artificial intelligence model for prediction of tropical storm surge publication-title: Nat. Hazards – volume: 7 start-page: 260 year: 2020 ident: bib70 article-title: Data-driven modeling of global storm surges publication-title: Front. Mar. Sci. – volume: 1 start-page: 17 year: 1988 end-page: 61 ident: bib25 article-title: Nonlinear neural networks: principles, mechanisms, and architectures publication-title: Neural Network. – volume: 51 start-page: 183 year: 2009 end-page: 205 ident: bib30 article-title: A surge response function approach to coastal hazard assessment. Part 2: quantification of spatial attributes of response functions publication-title: Nat. Hazards – volume: 13 start-page: 757 year: 2022 ident: bib66 article-title: Knowledge-enhanced deep learning for simulation of extratropical cyclone wind risk publication-title: Atmosphere – volume: 12 start-page: 1 year: 2013 end-page: 10 ident: bib11 article-title: Tropical cyclone report: hurricane sandy publication-title: National Hurricane Center – volume: 261–262 start-page: 24 year: 2013 end-page: 38 ident: bib32 article-title: Kriging metamodeling for approximation of high-dimensional wave and surge responses in real-time storm/hurricane risk assessment publication-title: Comput. Methods Appl. Mech. Eng. – volume: 96 year: 2017 ident: bib76 article-title: Unsupervised learning of phase transitions: from principal component analysis to variational autoencoders publication-title: Phys. Rev. – volume: 14 start-page: 79 year: 2003 end-page: 88 ident: bib43 article-title: Tuning of the structure and parameters of a neural network using an improved genetic algorithm publication-title: IEEE Trans. Neural Network. – volume: 139 start-page: 84 year: 2014 end-page: 96 ident: bib46 article-title: Autoencoder for words publication-title: Neurocomputing – volume: 3 start-page: 422 year: 2021 end-page: 440 ident: bib34 article-title: Physics-informed machine learning publication-title: Nature Reviews Physics – year: 2016 ident: bib58 article-title: An Overview of Gradient Descent Optimization Algorithms – year: 1992 ident: bib49 article-title: ADCIRC : an Advanced Three-Dimensional Circulation Model for Shelves, Coasts, and Estuaries. Report 1, Theory and Methodology of ADCIRC-2DD1 and ADCIRC-3DL – volume: 558 start-page: 159 year: 2018 end-page: 173 ident: bib8 article-title: Surrogate modeling of joint flood risk across coastal watersheds publication-title: J. Hydrol. – volume: vol. 4 start-page: 341 year: 1967 end-page: 418 ident: bib13 article-title: Storm surges publication-title: Advances in Hydroscience – volume: 2 start-page: 226 year: 2014 end-page: 246 ident: bib75 article-title: The storm surge and sub-grid inundation modeling in New York City during Hurricane Sandy publication-title: J. Mar. Sci. Eng. – year: 2015 ident: bib18 article-title: North Atlantic Coast Comprehensive Study (NACCS) Coastal Storm Model Simulations: Waves and Water Levels – year: 2016 ident: bib20 article-title: Potential increases in hurricane damage in the United States: implications for the federal budget publication-title: Congress of the United States – volume: 49 start-page: 85 year: 2010 end-page: 100 ident: bib19 article-title: New York City storm surges: climatology and an analysis of the wind and cyclone evolution publication-title: J. Appl. Meteorol. Climatol. – volume: 33 start-page: 483 year: 2006 end-page: 494 ident: bib42 article-title: Neural network prediction of a storm surge publication-title: Ocean Eng. – volume: 66 start-page: 955 year: 2013 end-page: 983 ident: bib71 article-title: Implementation/optimization of moving least squares response surfaces for approximation of hurricane/storm surge and wave responses publication-title: Nat. Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards – volume: 10 start-page: 551 year: 2022 ident: bib37 article-title: Integration of node classification in storm surge surrogate modeling publication-title: J. Mar. Sci. Eng. – volume: vol. 20 year: 2004 ident: bib50 publication-title: Formulation and Numerical Implementation of the 2D/3D ADCIRC Finite Element Model Version 44. XX – volume: 10 start-page: 13 year: 2009 ident: bib73 article-title: Dimensionality reduction: a comparative review publication-title: J. Mach. Learn. Res. – volume: 91 year: 2020 ident: bib3 article-title: Application of surrogate models in estimation of storm surge: a comparative assessment publication-title: Appl. Soft Comput. – volume: 33 start-page: 1 year: 2010 end-page: 9 ident: bib6 article-title: Storm surge forecast through a combination of dynamic and neural network models publication-title: Ocean Model. – start-page: 199 year: 2013 end-page: 207 ident: bib7 article-title: Collaborative hyperparameter tuning publication-title: International Conference on Machine Learning – volume: 37 start-page: 69 year: 2010 end-page: 81 ident: bib29 article-title: A hydrodynamics-based surge scale for hurricanes publication-title: Ocean Eng. – volume: 205 year: 2020 ident: bib21 article-title: A novel model to predict significant wave height based on long short-term memory network publication-title: Ocean Eng. – volume: 59 start-page: 331 year: 2017 end-page: 349 ident: bib9 article-title: Application of neural networks and support vector machine for significant wave height prediction publication-title: Oceanologia – volume: 104 year: 2020 ident: bib14 article-title: Using Random forest and Gradient boosting trees to improve wave forecast at a specific location publication-title: Appl. Ocean Res. – volume: 17 start-page: 333 year: 1966 end-page: 346 ident: bib57 article-title: A technique for forecasting storm waves publication-title: Mausam – volume: 194 year: 2019 ident: bib64 article-title: Knowledge-enhanced deep learning for simulation of tropical cyclone boundary-layer winds publication-title: J. Wind Eng. Ind. Aerod. – volume: 280 year: 2023 ident: bib62 article-title: A data-driven physics-informed stochastic framework for hurricane-induced risk estimation of transmission tower-line systems under a changing climate publication-title: Eng. Struct. – volume: 1 start-page: 541 year: 1989 end-page: 551 ident: bib40 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. – volume: 116 start-page: 22445 year: 2019 end-page: 22451 ident: bib15 article-title: Data-driven discovery of coordinates and governing equations publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 year: 2009 ident: bib39 article-title: Exploring strategies for training deep neural networks publication-title: J. Mach. Learn. Res. – year: 1999 ident: bib61 article-title: STWAVE: Steady-State Spectral Wave Model. Report 1. User's Manual for STWAVE Version 2.0 – year: 2013 ident: bib26 article-title: Coastal Storm Surge Analysis: Storm Surge Results – year: 2016 ident: bib10 article-title: Multi-output Artificial Neural Network for Storm Surge Prediction in north carolina – volume: 104 start-page: 7649 year: 1999 end-page: 7666 ident: bib12 article-title: A third-generation wave model for coastal regions: 1. Model description and validation publication-title: J. Geophys. Res.: Oceans – volume: 34 year: 2022 ident: bib5 article-title: Accurate storm surge forecasting using the encoder–decoder long short term memory recurrent neural network publication-title: Phys. Fluids – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: bib59 article-title: Learning representations by back-propagating errors publication-title: Nature – volume: 127 year: 2022 ident: bib48 article-title: Using neural networks to predict hurricane storm surge and to assess the sensitivity of surge to storm characteristics publication-title: J. Geophys. Res. Atmos. – volume: 39 start-page: 1019 year: 2009 end-page: 1034 ident: bib22 article-title: The effect of wind–wave–current interaction on air–sea momentum fluxes and ocean response in tropical cyclones publication-title: J. Phys. Oceanogr. – volume: 117 year: 2012 ident: bib44 article-title: On hurricane parametric wind and applications in storm surge modeling publication-title: J. Geophys. Res. Atmos. – volume: 69 year: 2023 ident: bib63 article-title: Climate change effects on loss assessment and mitigation of residential buildings due to hurricane wind publication-title: J. Build. Eng. – volume: 63 start-page: 68 year: 2021 end-page: 82 ident: bib28 article-title: Application of recurrent neural network for prediction of the time-varying storm surge publication-title: Coast Eng. J. – volume: 115 year: 2010 ident: bib45 article-title: Risk assessment of hurricane storm surge for New York City publication-title: J. Geophys. Res. Atmos. – volume: 14 start-page: 5569 year: 2022 ident: bib4 article-title: Deep-learning-based feature Extraction approach for significant wave height prediction in SAR mode altimeter data publication-title: Rem. Sens. – volume: 8 year: 2021 ident: bib78 article-title: Characterizing the non-linear interactions between tide, storm surge, and river flow in the Delaware bay estuary, United States publication-title: Front. Mar. Sci. – year: 2022 ident: bib2 article-title: An Advanced Spatio-Temporal Convolutional Recurrent Neural Network for Storm Surge Predictions – volume: 234 year: 2021 ident: bib51 article-title: Forecasting tropical cyclones wave height using bidirectional gated recurrent unit publication-title: Ocean Eng. – volume: 2674 start-page: 23 year: 2020 end-page: 32 ident: bib65 article-title: Hurricane wind and storm surge effects on coastal bridges under a changing climate publication-title: Transport. Res. Rec. – volume: 1931 year: 2022 ident: bib67 article-title: A significant wave height prediction method based on deep learning combining the correlation between wind and wind waves publication-title: Front. Mar. Sci. – volume: 25 start-page: 28 year: 2017 end-page: 35 ident: bib23 article-title: Combining machine learning with computational hydrodynamics for prediction of tidal surge inundation at estuarine ports publication-title: Procedia IUTAM – volume: 117 year: 2023 ident: bib24 article-title: Significant wave height forecasting using hybrid ensemble deep randomized networks with neurons pruning publication-title: Eng. Appl. Artif. Intell. – volume: 8 year: 2022 ident: bib77 article-title: Applications of machine learning to wind engineering publication-title: Frontiers in Built Environment – volume: 109 start-page: 1349 year: 2021 end-page: 1386 ident: bib38 article-title: Improvements in storm surge surrogate modeling for synthetic storm parameterization, node condition classification and implementation to small size databases publication-title: Nat. Hazards – volume: 94 start-page: 1225 year: 2018 end-page: 1253 ident: bib80 article-title: Advances in surrogate modeling for storm surge prediction: storm selection and addressing characteristics related to climate change publication-title: Nat. Hazards – volume: 8 start-page: 429 year: 2020 ident: bib55 article-title: Linear and non-linear dimensionality-reduction techniques on full hand kinematics publication-title: Front. Bioeng. Biotechnol. – volume: 295 year: 2024 ident: bib53 article-title: A physics-informed machine learning model for time-dependent wave runup prediction publication-title: Ocean Eng. – volume: 49 start-page: 317 year: 2003 end-page: 322 ident: bib69 article-title: Forecast of storm surge by means of artificial neural network publication-title: J. Sea Res. – volume: 31 start-page: 1098 year: 2008 end-page: 1116 ident: bib16 article-title: Hydrodynamic response of northeastern gulf of Mexico to hurricanes publication-title: Estuar. Coast – volume: 170 year: 2021 ident: bib41 article-title: Rapid prediction of peak storm surge from tropical cyclone track time series using machine learning publication-title: Coast Eng. – year: 2021 ident: bib54 article-title: High-fidelity Hurricane Surge Forecasting Using Emulation and Sequential Experiments – volume: 13 start-page: 1748 year: 2000 end-page: 1761 ident: bib81 article-title: Twentieth-century storm activity along the U.S. East coast publication-title: J. Clim. – volume: 4 start-page: 244 year: 2021 end-page: 404 ident: bib47 article-title: Algorithms for verifying deep neural networks publication-title: Foundations and Trends® in Optimization – volume: 4 start-page: 443 year: 2015 end-page: 448 ident: bib72 article-title: Numerical wave modelling – a review publication-title: Aquatic Procedia – volume: 76 start-page: 565 year: 2015 end-page: 585 ident: bib36 article-title: A time-dependent surrogate model for storm surge prediction based on an artificial neural network using high-fidelity synthetic hurricane modeling publication-title: Nat. Hazards – volume: vol. 48 year: 1992 ident: bib31 publication-title: SLOSH: Sea, Lake, and Overland Surges from Hurricanes – volume: 6 year: 2020 ident: bib35 article-title: Geospatial environments for hurricane risk assessment: applications to situational awareness and resilience planning in New Jersey publication-title: Frontiers in Built Environment – year: 2022 ident: bib60 article-title: Machine learning approximation for rapid prediction of high-dimensional storm surge and wave responses publication-title: Proceedings of the Canadian Society of Civil Engineering Annual Conference 2022 – volume: 2 start-page: 433 year: 2010 end-page: 459 ident: bib1 article-title: Principal component analysis publication-title: Wiley interdisciplinary reviews: Comput. Stat. – volume: 12 start-page: 3799 year: 2012 end-page: 3809 ident: bib17 article-title: Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model publication-title: Nat. Hazards Earth Syst. Sci. – volume: 81 start-page: 909 year: 2016 end-page: 938 ident: bib33 article-title: Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms publication-title: Nat. Hazards – volume: 126 year: 2021 ident: bib56 article-title: Implementation of an artificial neural network for storm surge forecasting publication-title: J. Geophys. Res. Atmos. – volume: 95 start-page: 1211 year: 2020 end-page: 1216 ident: bib52 article-title: Coastal hazards system: a probabilistic coastal hazard analysis framework publication-title: J. Coast Res. – volume: 105 start-page: 2295 year: 2017 end-page: 2329 ident: bib68 article-title: Efficient processing of deep neural networks: a tutorial and survey publication-title: Proc. IEEE – start-page: 31 year: 2018 ident: bib79 article-title: Efficient neural network robustness certification with general activation functions publication-title: Adv. Neural Inf. Process. Syst. – volume: 51 start-page: 207 year: 2009 end-page: 224 ident: bib74 article-title: Influence of landscape restoration and degradation on storm surge and waves in southern Louisiana publication-title: Nat. Hazards – volume: 3 start-page: 422 issue: 6 year: 2021 ident: 10.1016/j.coastaleng.2024.104503_bib34 article-title: Physics-informed machine learning publication-title: Nature Reviews Physics doi: 10.1038/s42254-021-00314-5 – year: 2021 ident: 10.1016/j.coastaleng.2024.104503_bib54 – volume: vol. 4 start-page: 341 year: 1967 ident: 10.1016/j.coastaleng.2024.104503_bib13 article-title: Storm surges – volume: 1 start-page: 541 issue: 4 year: 1989 ident: 10.1016/j.coastaleng.2024.104503_bib40 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 – volume: 4 start-page: 244 issue: 3–4 year: 2021 ident: 10.1016/j.coastaleng.2024.104503_bib47 article-title: Algorithms for verifying deep neural networks publication-title: Foundations and Trends® in Optimization doi: 10.1561/2400000035 – volume: 12 start-page: 3799 issue: 12 year: 2012 ident: 10.1016/j.coastaleng.2024.104503_bib17 article-title: Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-12-3799-2012 – volume: 205 year: 2020 ident: 10.1016/j.coastaleng.2024.104503_bib21 article-title: A novel model to predict significant wave height based on long short-term memory network publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107298 – volume: 76 start-page: 565 issue: 1 year: 2015 ident: 10.1016/j.coastaleng.2024.104503_bib36 article-title: A time-dependent surrogate model for storm surge prediction based on an artificial neural network using high-fidelity synthetic hurricane modeling publication-title: Nat. Hazards doi: 10.1007/s11069-014-1508-6 – year: 2022 ident: 10.1016/j.coastaleng.2024.104503_bib2 – volume: 139 start-page: 84 year: 2014 ident: 10.1016/j.coastaleng.2024.104503_bib46 article-title: Autoencoder for words publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.09.055 – volume: 31 start-page: 1098 issue: 6 year: 2008 ident: 10.1016/j.coastaleng.2024.104503_bib16 article-title: Hydrodynamic response of northeastern gulf of Mexico to hurricanes publication-title: Estuar. Coast doi: 10.1007/s12237-008-9089-9 – volume: 59 start-page: 331 issue: 3 year: 2017 ident: 10.1016/j.coastaleng.2024.104503_bib9 article-title: Application of neural networks and support vector machine for significant wave height prediction publication-title: Oceanologia doi: 10.1016/j.oceano.2017.03.007 – volume: 49 start-page: 317 issue: 4 year: 2003 ident: 10.1016/j.coastaleng.2024.104503_bib69 article-title: Forecast of storm surge by means of artificial neural network publication-title: J. Sea Res. doi: 10.1016/S1385-1101(03)00024-8 – year: 2016 ident: 10.1016/j.coastaleng.2024.104503_bib58 – year: 2016 ident: 10.1016/j.coastaleng.2024.104503_bib10 – year: 2016 ident: 10.1016/j.coastaleng.2024.104503_bib20 article-title: Potential increases in hurricane damage in the United States: implications for the federal budget – volume: 82 start-page: 471 issue: 1 year: 2016 ident: 10.1016/j.coastaleng.2024.104503_bib27 article-title: An efficient artificial intelligence model for prediction of tropical storm surge publication-title: Nat. Hazards doi: 10.1007/s11069-016-2193-4 – volume: 14 start-page: 5569 issue: 21 year: 2022 ident: 10.1016/j.coastaleng.2024.104503_bib4 article-title: Deep-learning-based feature Extraction approach for significant wave height prediction in SAR mode altimeter data publication-title: Rem. Sens. doi: 10.3390/rs14215569 – volume: 280 year: 2023 ident: 10.1016/j.coastaleng.2024.104503_bib62 article-title: A data-driven physics-informed stochastic framework for hurricane-induced risk estimation of transmission tower-line systems under a changing climate publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2023.115673 – volume: 4 start-page: 443 year: 2015 ident: 10.1016/j.coastaleng.2024.104503_bib72 article-title: Numerical wave modelling – a review publication-title: Aquatic Procedia doi: 10.1016/j.aqpro.2015.02.059 – start-page: 199 year: 2013 ident: 10.1016/j.coastaleng.2024.104503_bib7 article-title: Collaborative hyperparameter tuning – volume: 10 issue: 1 year: 2009 ident: 10.1016/j.coastaleng.2024.104503_bib39 article-title: Exploring strategies for training deep neural networks publication-title: J. Mach. Learn. Res. – volume: 8 start-page: 429 year: 2020 ident: 10.1016/j.coastaleng.2024.104503_bib55 article-title: Linear and non-linear dimensionality-reduction techniques on full hand kinematics publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00429 – volume: 10 start-page: 551 issue: 4 year: 2022 ident: 10.1016/j.coastaleng.2024.104503_bib37 article-title: Integration of node classification in storm surge surrogate modeling publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse10040551 – volume: 104 year: 2020 ident: 10.1016/j.coastaleng.2024.104503_bib14 article-title: Using Random forest and Gradient boosting trees to improve wave forecast at a specific location publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2020.102339 – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 10.1016/j.coastaleng.2024.104503_bib59 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 13 start-page: 757 issue: 5 year: 2022 ident: 10.1016/j.coastaleng.2024.104503_bib66 article-title: Knowledge-enhanced deep learning for simulation of extratropical cyclone wind risk publication-title: Atmosphere doi: 10.3390/atmos13050757 – volume: 39 start-page: 1019 issue: 4 year: 2009 ident: 10.1016/j.coastaleng.2024.104503_bib22 article-title: The effect of wind–wave–current interaction on air–sea momentum fluxes and ocean response in tropical cyclones publication-title: J. Phys. Oceanogr. doi: 10.1175/2008JPO4066.1 – volume: 116 start-page: 22445 issue: 45 year: 2019 ident: 10.1016/j.coastaleng.2024.104503_bib15 article-title: Data-driven discovery of coordinates and governing equations publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1906995116 – volume: 25 start-page: 28 year: 2017 ident: 10.1016/j.coastaleng.2024.104503_bib23 article-title: Combining machine learning with computational hydrodynamics for prediction of tidal surge inundation at estuarine ports publication-title: Procedia IUTAM doi: 10.1016/j.piutam.2017.09.005 – volume: 194 year: 2019 ident: 10.1016/j.coastaleng.2024.104503_bib64 article-title: Knowledge-enhanced deep learning for simulation of tropical cyclone boundary-layer winds publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2019.103983 – volume: 1931 year: 2022 ident: 10.1016/j.coastaleng.2024.104503_bib67 article-title: A significant wave height prediction method based on deep learning combining the correlation between wind and wind waves publication-title: Front. Mar. Sci. – volume: 295 year: 2024 ident: 10.1016/j.coastaleng.2024.104503_bib53 article-title: A physics-informed machine learning model for time-dependent wave runup prediction publication-title: Ocean Eng. – volume: 10 start-page: 13 issue: 66–71 year: 2009 ident: 10.1016/j.coastaleng.2024.104503_bib73 article-title: Dimensionality reduction: a comparative review publication-title: J. Mach. Learn. Res. – volume: 51 start-page: 207 issue: 1 year: 2009 ident: 10.1016/j.coastaleng.2024.104503_bib74 article-title: Influence of landscape restoration and degradation on storm surge and waves in southern Louisiana publication-title: Nat. Hazards doi: 10.1007/s11069-009-9378-z – volume: 33 start-page: 1 issue: 1–2 year: 2010 ident: 10.1016/j.coastaleng.2024.104503_bib6 article-title: Storm surge forecast through a combination of dynamic and neural network models publication-title: Ocean Model. doi: 10.1016/j.ocemod.2009.12.007 – volume: 94 start-page: 1225 issue: 3 year: 2018 ident: 10.1016/j.coastaleng.2024.104503_bib80 article-title: Advances in surrogate modeling for storm surge prediction: storm selection and addressing characteristics related to climate change publication-title: Nat. Hazards doi: 10.1007/s11069-018-3470-1 – volume: 558 start-page: 159 year: 2018 ident: 10.1016/j.coastaleng.2024.104503_bib8 article-title: Surrogate modeling of joint flood risk across coastal watersheds publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.01.014 – volume: 63 start-page: 68 issue: 1 year: 2021 ident: 10.1016/j.coastaleng.2024.104503_bib28 article-title: Application of recurrent neural network for prediction of the time-varying storm surge publication-title: Coast Eng. J. doi: 10.1080/21664250.2020.1868736 – volume: 37 start-page: 69 issue: 1 year: 2010 ident: 10.1016/j.coastaleng.2024.104503_bib29 article-title: A hydrodynamics-based surge scale for hurricanes publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2009.07.012 – volume: 51 start-page: 183 issue: 1 year: 2009 ident: 10.1016/j.coastaleng.2024.104503_bib30 article-title: A surge response function approach to coastal hazard assessment. Part 2: quantification of spatial attributes of response functions publication-title: Nat. Hazards doi: 10.1007/s11069-009-9381-4 – volume: 12 start-page: 1 year: 2013 ident: 10.1016/j.coastaleng.2024.104503_bib11 article-title: Tropical cyclone report: hurricane sandy publication-title: National Hurricane Center – volume: 7 start-page: 260 year: 2020 ident: 10.1016/j.coastaleng.2024.104503_bib70 article-title: Data-driven modeling of global storm surges publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2020.00260 – volume: 14 start-page: 79 issue: 1 year: 2003 ident: 10.1016/j.coastaleng.2024.104503_bib43 article-title: Tuning of the structure and parameters of a neural network using an improved genetic algorithm publication-title: IEEE Trans. Neural Network. doi: 10.1109/TNN.2002.804317 – volume: 8 year: 2021 ident: 10.1016/j.coastaleng.2024.104503_bib78 article-title: Characterizing the non-linear interactions between tide, storm surge, and river flow in the Delaware bay estuary, United States publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2021.715557 – volume: 33 start-page: 483 issue: 3–4 year: 2006 ident: 10.1016/j.coastaleng.2024.104503_bib42 article-title: Neural network prediction of a storm surge publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2005.04.012 – volume: vol. 48 year: 1992 ident: 10.1016/j.coastaleng.2024.104503_bib31 – volume: 66 start-page: 955 issue: 2 year: 2013 ident: 10.1016/j.coastaleng.2024.104503_bib71 article-title: Implementation/optimization of moving least squares response surfaces for approximation of hurricane/storm surge and wave responses publication-title: Nat. Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards doi: 10.1007/s11069-012-0520-y – volume: 170 year: 2021 ident: 10.1016/j.coastaleng.2024.104503_bib41 article-title: Rapid prediction of peak storm surge from tropical cyclone track time series using machine learning publication-title: Coast Eng. doi: 10.1016/j.coastaleng.2021.104024 – volume: 13 start-page: 1748 issue: 10 year: 2000 ident: 10.1016/j.coastaleng.2024.104503_bib81 article-title: Twentieth-century storm activity along the U.S. East coast publication-title: J. Clim. doi: 10.1175/1520-0442(2000)013<1748:TCSAAT>2.0.CO;2 – volume: 81 start-page: 909 issue: 2 year: 2016 ident: 10.1016/j.coastaleng.2024.104503_bib33 article-title: Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms publication-title: Nat. Hazards doi: 10.1007/s11069-015-2111-1 – year: 2022 ident: 10.1016/j.coastaleng.2024.104503_bib60 article-title: Machine learning approximation for rapid prediction of high-dimensional storm surge and wave responses – start-page: 31 year: 2018 ident: 10.1016/j.coastaleng.2024.104503_bib79 article-title: Efficient neural network robustness certification with general activation functions publication-title: Adv. Neural Inf. Process. Syst. – volume: vol. 20 year: 2004 ident: 10.1016/j.coastaleng.2024.104503_bib50 – year: 1992 ident: 10.1016/j.coastaleng.2024.104503_bib49 – volume: 96 issue: 2 year: 2017 ident: 10.1016/j.coastaleng.2024.104503_bib76 article-title: Unsupervised learning of phase transitions: from principal component analysis to variational autoencoders publication-title: Phys. Rev. – volume: 34 issue: 1 year: 2022 ident: 10.1016/j.coastaleng.2024.104503_bib5 article-title: Accurate storm surge forecasting using the encoder–decoder long short term memory recurrent neural network publication-title: Phys. Fluids doi: 10.1063/5.0081858 – volume: 17 start-page: 333 issue: 3 year: 1966 ident: 10.1016/j.coastaleng.2024.104503_bib57 article-title: A technique for forecasting storm waves publication-title: Mausam doi: 10.54302/mausam.v17i3.5723 – volume: 69 year: 2023 ident: 10.1016/j.coastaleng.2024.104503_bib63 article-title: Climate change effects on loss assessment and mitigation of residential buildings due to hurricane wind publication-title: J. Build. Eng. – year: 1999 ident: 10.1016/j.coastaleng.2024.104503_bib61 – year: 2015 ident: 10.1016/j.coastaleng.2024.104503_bib18 – volume: 105 start-page: 2295 issue: 12 year: 2017 ident: 10.1016/j.coastaleng.2024.104503_bib68 article-title: Efficient processing of deep neural networks: a tutorial and survey publication-title: Proc. IEEE doi: 10.1109/JPROC.2017.2761740 – volume: 2674 start-page: 23 issue: 6 year: 2020 ident: 10.1016/j.coastaleng.2024.104503_bib65 article-title: Hurricane wind and storm surge effects on coastal bridges under a changing climate publication-title: Transport. Res. Rec. doi: 10.1177/0361198120917671 – volume: 91 year: 2020 ident: 10.1016/j.coastaleng.2024.104503_bib3 article-title: Application of surrogate models in estimation of storm surge: a comparative assessment publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106184 – volume: 261–262 start-page: 24 year: 2013 ident: 10.1016/j.coastaleng.2024.104503_bib32 article-title: Kriging metamodeling for approximation of high-dimensional wave and surge responses in real-time storm/hurricane risk assessment publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2013.03.012 – volume: 6 year: 2020 ident: 10.1016/j.coastaleng.2024.104503_bib35 article-title: Geospatial environments for hurricane risk assessment: applications to situational awareness and resilience planning in New Jersey publication-title: Frontiers in Built Environment doi: 10.3389/fbuil.2020.549106 – volume: 127 issue: 24 year: 2022 ident: 10.1016/j.coastaleng.2024.104503_bib48 article-title: Using neural networks to predict hurricane storm surge and to assess the sensitivity of surge to storm characteristics publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2022JD037617 – volume: 117 issue: D9 year: 2012 ident: 10.1016/j.coastaleng.2024.104503_bib44 article-title: On hurricane parametric wind and applications in storm surge modeling publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2011JD017126 – volume: 126 issue: 13 year: 2021 ident: 10.1016/j.coastaleng.2024.104503_bib56 article-title: Implementation of an artificial neural network for storm surge forecasting publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2020JD033266 – volume: 117 year: 2023 ident: 10.1016/j.coastaleng.2024.104503_bib24 article-title: Significant wave height forecasting using hybrid ensemble deep randomized networks with neurons pruning publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105535 – volume: 234 year: 2021 ident: 10.1016/j.coastaleng.2024.104503_bib51 article-title: Forecasting tropical cyclones wave height using bidirectional gated recurrent unit publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108795 – year: 2013 ident: 10.1016/j.coastaleng.2024.104503_bib26 – volume: 104 start-page: 7649 issue: C4 year: 1999 ident: 10.1016/j.coastaleng.2024.104503_bib12 article-title: A third-generation wave model for coastal regions: 1. Model description and validation publication-title: J. Geophys. Res.: Oceans doi: 10.1029/98JC02622 – volume: 2 start-page: 226 issue: 1 year: 2014 ident: 10.1016/j.coastaleng.2024.104503_bib75 article-title: The storm surge and sub-grid inundation modeling in New York City during Hurricane Sandy publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse2010226 – volume: 2 start-page: 433 issue: 4 year: 2010 ident: 10.1016/j.coastaleng.2024.104503_bib1 article-title: Principal component analysis publication-title: Wiley interdisciplinary reviews: Comput. Stat. doi: 10.1002/wics.101 – volume: 109 start-page: 1349 issue: 2 year: 2021 ident: 10.1016/j.coastaleng.2024.104503_bib38 article-title: Improvements in storm surge surrogate modeling for synthetic storm parameterization, node condition classification and implementation to small size databases publication-title: Nat. Hazards doi: 10.1007/s11069-021-04881-9 – volume: 95 start-page: 1211 issue: SI year: 2020 ident: 10.1016/j.coastaleng.2024.104503_bib52 article-title: Coastal hazards system: a probabilistic coastal hazard analysis framework publication-title: J. Coast Res. doi: 10.2112/SI95-235.1 – volume: 115 issue: D18 year: 2010 ident: 10.1016/j.coastaleng.2024.104503_bib45 article-title: Risk assessment of hurricane storm surge for New York City publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2009JD013630 – volume: 49 start-page: 85 issue: 1 year: 2010 ident: 10.1016/j.coastaleng.2024.104503_bib19 article-title: New York City storm surges: climatology and an analysis of the wind and cyclone evolution publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/2009JAMC2189.1 – volume: 1 start-page: 17 issue: 1 year: 1988 ident: 10.1016/j.coastaleng.2024.104503_bib25 article-title: Nonlinear neural networks: principles, mechanisms, and architectures publication-title: Neural Network. doi: 10.1016/0893-6080(88)90021-4 – volume: 8 year: 2022 ident: 10.1016/j.coastaleng.2024.104503_bib77 article-title: Applications of machine learning to wind engineering publication-title: Frontiers in Built Environment doi: 10.3389/fbuil.2022.811460 |
| SSID | ssj0000685 |
| Score | 2.4724119 |
| Snippet | Storm surge and waves are responsible for a substantial portion of tropical and extratropical cyclones-related damages. While high-fidelity numerical models... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104503 |
| SubjectTerms | Deep autoencoder Deep learning Significant wave height Storm surge |
| Title | A novel hybrid machine learning model for rapid assessment of wave and storm surge responses over an extended coastal region |
| URI | https://dx.doi.org/10.1016/j.coastaleng.2024.104503 |
| Volume | 190 |
| WOSCitedRecordID | wos001206675800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7379 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000685 issn: 0378-3839 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xy0Nz4BalahInccQpQosAoRViF6m3yIntpas2rdpSdhFnfjfjV1JgpV2QuERVHDuP-WqPRzPfR8gLtDOuAzIJs1zokpyChoVI0lDSNK518eNYGdWS9_nREZtMig-DwQ9fC7Od5W3Lzs-L5X81NZ5DY-vS2b8wdzconsDfaHQ8otnxeC3Dl0G72MpZ8PlCF2MFc5MtKb08xKnVvjHZhSu-xAt4x82pHcevWo3IBNNxMz4P1rpqOljZRFrNT4ufA5sDHzsPmgVfW3GAU29hz3vgWmTPeKjd2XKuqRmExmEXgzjm2-k3nOjl1AhMBcdcupor3djyqdXW_ihd-MBFKWLaZ1P56iydhsEscVE381qlUDd34sYwNXwHf07rNsJwNnLvhA8-0jcZ9V1-ZdL-bYXr8g59SttZ1Y9U6ZEqO9INshfnacGGZK98ezh5t7OmG3HX7i1cTpjNFLz8qS53dHacl5O75I7bdUBp0XKPDGR7n9ze4aJ8QL6XYHADFjfgcAMeN2BwA4gbMLiBHjewUKBxA4gbMLgBgxvocAMaN9gMHjfg3gYsbh6ST68PT169CZ00R9gkGduElDdSJbhCNUUuBJUFbxpG65THmZCRSBVDT3dcy4IyGWuyhSLjalwXNMnTWkQ8eUSG7aKVjwlkdaxoJlQqsoxyqVjCxipRUSaSJqprtk9y_x2rxvHWa_mUWXWVNfdJ1PVcWu6Wa_R56U1VOR_U-pYVYvHK3gf_cMcn5Fb_h3lKhpvVF_mM3Gy2m-l69dwB8Sc8zbI6 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hybrid+machine+learning+model+for+rapid+assessment+of+wave+and+storm+surge+responses+over+an+extended+coastal+region&rft.jtitle=Coastal+engineering+%28Amsterdam%29&rft.au=Saviz+Naeini%2C+Saeed&rft.au=Snaiki%2C+Reda&rft.date=2024-06-01&rft.issn=0378-3839&rft.volume=190&rft.spage=104503&rft_id=info:doi/10.1016%2Fj.coastaleng.2024.104503&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_coastaleng_2024_104503 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3839&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3839&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3839&client=summon |