A novel hybrid machine learning model for rapid assessment of wave and storm surge responses over an extended coastal region

Storm surge and waves are responsible for a substantial portion of tropical and extratropical cyclones-related damages. While high-fidelity numerical models have significantly advanced the simulation accuracy of storm surge and waves, they are not practical to be employed for probabilistic analysis,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coastal engineering (Amsterdam) Jg. 190; S. 104503
Hauptverfasser: Saviz Naeini, Saeed, Snaiki, Reda
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.06.2024
Schlagworte:
ISSN:0378-3839, 1872-7379
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Storm surge and waves are responsible for a substantial portion of tropical and extratropical cyclones-related damages. While high-fidelity numerical models have significantly advanced the simulation accuracy of storm surge and waves, they are not practical to be employed for probabilistic analysis, risk assessment or rapid prediction due to their high computational demands. In this study, a novel hybrid model combining dimensionality reduction and data-driven techniques is developed for rapid assessment of waves and storm surge responses over an extended coastal region. Specifically, the hybrid model simultaneously identifies a low-dimensional representation of the high-dimensional spatial system based on a deep autoencoder (DAE) while mapping the storm parameters to the obtained low-dimensional latent space using a deep neural network (DNN). To train the hybrid model, a combined weighted loss function is designed to encourage a balance between DAE and DNN training and achieve the best accuracy. The performance of the hybrid model is evaluated through a case study using the synthetic data from the North Atlantic Comprehensive Coastal Study (NACCS) covering critical regions within New York and New Jersey. In addition, the proposed approach is compared with two decoupled models where the regression model is based on DNN and the reduction techniques are either principal component analysis (PCA) or DAE which are trained separately from the DNN model. High accuracy and computational efficiency are observed for the hybrid model which could be readily implemented as part of early warning systems or probabilistic risk assessment of waves and storm surge. •A novel hybrid model is proposed which can rapidly estimate waves and storm surge responses over an extended coastal region.•The proposed model combines a deep autoencoder (DAE) and a deep neural network (DNN).•The developed model is trained simultaneously based on a designed weighted loss function.•The model was comprehensively tested and validated.•The performance of the hybrid model was compared with conventional decoupled models.
AbstractList Storm surge and waves are responsible for a substantial portion of tropical and extratropical cyclones-related damages. While high-fidelity numerical models have significantly advanced the simulation accuracy of storm surge and waves, they are not practical to be employed for probabilistic analysis, risk assessment or rapid prediction due to their high computational demands. In this study, a novel hybrid model combining dimensionality reduction and data-driven techniques is developed for rapid assessment of waves and storm surge responses over an extended coastal region. Specifically, the hybrid model simultaneously identifies a low-dimensional representation of the high-dimensional spatial system based on a deep autoencoder (DAE) while mapping the storm parameters to the obtained low-dimensional latent space using a deep neural network (DNN). To train the hybrid model, a combined weighted loss function is designed to encourage a balance between DAE and DNN training and achieve the best accuracy. The performance of the hybrid model is evaluated through a case study using the synthetic data from the North Atlantic Comprehensive Coastal Study (NACCS) covering critical regions within New York and New Jersey. In addition, the proposed approach is compared with two decoupled models where the regression model is based on DNN and the reduction techniques are either principal component analysis (PCA) or DAE which are trained separately from the DNN model. High accuracy and computational efficiency are observed for the hybrid model which could be readily implemented as part of early warning systems or probabilistic risk assessment of waves and storm surge. •A novel hybrid model is proposed which can rapidly estimate waves and storm surge responses over an extended coastal region.•The proposed model combines a deep autoencoder (DAE) and a deep neural network (DNN).•The developed model is trained simultaneously based on a designed weighted loss function.•The model was comprehensively tested and validated.•The performance of the hybrid model was compared with conventional decoupled models.
ArticleNumber 104503
Author Snaiki, Reda
Saviz Naeini, Saeed
Author_xml – sequence: 1
  givenname: Saeed
  surname: Saviz Naeini
  fullname: Saviz Naeini, Saeed
– sequence: 2
  givenname: Reda
  orcidid: 0000-0003-4326-3655
  surname: Snaiki
  fullname: Snaiki, Reda
  email: reda.snaiki@etsmtl.ca
BookMark eNqNkN1KAzEQhYMoWKvvkBfYmt3sT_ZGqMU_KHij12E2mW1TdpOSxKrgw5vSguCNzs3AzJmPM-eCnFpnkRCas1nO8vp6M1MOQoQB7WpWsKJM47Ji_IRMctEUWcOb9pRMGG9ExgVvz8lFCBuWqhbVhHzNqXU7HOj6s_NG0xHU2likA4K3xq7o6HTa9s5TD9skgBAwhBFtpK6n77BDClbTEJ0faXjzK6Qew9bZJKOJ7NOa4kdEq1HTo9ckWRlnL8lZD0PAq2Ofktf7u5fFY7Z8fnhazJeZ4rWIWQkKe86EUG2jdYktKCXKroKi1pjrqhd1yVmHbSmw4HndtDX0rGtL3lSdzoFPyc2Bq7wLwWMvlYkQk4PowQwyZ3KfpdzInyzlPkt5yDIBxC_A1psR_Od_Tm8Pp5ge3Bn0MiiDVqE2HlWU2pm_Id-PIJqS
CitedBy_id crossref_primary_10_1016_j_ocemod_2024_102384
crossref_primary_10_1007_s11069_025_07428_4
crossref_primary_10_1140_epjs_s11734_024_01357_2
crossref_primary_10_1016_j_coldregions_2024_104247
crossref_primary_10_1109_JSTARS_2025_3601541
crossref_primary_10_1029_2025JH000650
crossref_primary_10_1016_j_coastaleng_2024_104573
crossref_primary_10_1111_mice_13488
Cites_doi 10.1038/s42254-021-00314-5
10.1162/neco.1989.1.4.541
10.1561/2400000035
10.5194/nhess-12-3799-2012
10.1016/j.oceaneng.2020.107298
10.1007/s11069-014-1508-6
10.1016/j.neucom.2013.09.055
10.1007/s12237-008-9089-9
10.1016/j.oceano.2017.03.007
10.1016/S1385-1101(03)00024-8
10.1007/s11069-016-2193-4
10.3390/rs14215569
10.1016/j.engstruct.2023.115673
10.1016/j.aqpro.2015.02.059
10.3389/fbioe.2020.00429
10.3390/jmse10040551
10.1016/j.apor.2020.102339
10.1038/323533a0
10.3390/atmos13050757
10.1175/2008JPO4066.1
10.1073/pnas.1906995116
10.1016/j.piutam.2017.09.005
10.1016/j.jweia.2019.103983
10.1007/s11069-009-9378-z
10.1016/j.ocemod.2009.12.007
10.1007/s11069-018-3470-1
10.1016/j.jhydrol.2018.01.014
10.1080/21664250.2020.1868736
10.1016/j.oceaneng.2009.07.012
10.1007/s11069-009-9381-4
10.3389/fmars.2020.00260
10.1109/TNN.2002.804317
10.3389/fmars.2021.715557
10.1016/j.oceaneng.2005.04.012
10.1007/s11069-012-0520-y
10.1016/j.coastaleng.2021.104024
10.1175/1520-0442(2000)013<1748:TCSAAT>2.0.CO;2
10.1007/s11069-015-2111-1
10.1063/5.0081858
10.54302/mausam.v17i3.5723
10.1109/JPROC.2017.2761740
10.1177/0361198120917671
10.1016/j.asoc.2020.106184
10.1016/j.cma.2013.03.012
10.3389/fbuil.2020.549106
10.1029/2022JD037617
10.1029/2011JD017126
10.1029/2020JD033266
10.1016/j.engappai.2022.105535
10.1016/j.oceaneng.2021.108795
10.1029/98JC02622
10.3390/jmse2010226
10.1002/wics.101
10.1007/s11069-021-04881-9
10.2112/SI95-235.1
10.1029/2009JD013630
10.1175/2009JAMC2189.1
10.1016/0893-6080(88)90021-4
10.3389/fbuil.2022.811460
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.coastaleng.2024.104503
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7379
ExternalDocumentID 10_1016_j_coastaleng_2024_104503
S0378383924000516
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
6TJ
6TS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
J1W
JJJVA
KCYFY
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSJ
SST
SSZ
T5K
TN5
WUQ
XJT
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c368t-4acef3088c97dd4e9acc84b5a26de1d5f86430be948e2316796af0b94375bd1a3
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001206675800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-3839
IngestDate Tue Nov 18 21:18:56 EST 2025
Sat Nov 29 07:14:02 EST 2025
Sat Apr 27 15:44:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Storm surge
Significant wave height
Deep autoencoder
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-4acef3088c97dd4e9acc84b5a26de1d5f86430be948e2316796af0b94375bd1a3
ORCID 0000-0003-4326-3655
OpenAccessLink https://dx.doi.org/10.1016/j.coastaleng.2024.104503
ParticipantIDs crossref_citationtrail_10_1016_j_coastaleng_2024_104503
crossref_primary_10_1016_j_coastaleng_2024_104503
elsevier_sciencedirect_doi_10_1016_j_coastaleng_2024_104503
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Coastal engineering (Amsterdam)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (bib40) 1989; 1
Larochelle, Bengio, Louradour, Lamblin (bib39) 2009; 10
Snaiki, Parida (bib63) 2023; 69
French, Mawdsley, Fujiyama, Achuthan (bib23) 2017; 25
Lockwood, Lin, Oppenheimer, Lai (bib48) 2022; 127
Wang, Loftis, Liu, Forrest, Zhang (bib75) 2014; 2
Cialone, Massey, Anderson, Grzegorzewski, Jensen, Cialone, Mark, Pevey, Gunkel, McAlpin (bib18) 2015
Irish, Resio (bib29) 2010; 37
Callens, Morichon, Abadie, Delpey, Liquet (bib14) 2020; 104
Colle, Rojowsky, Buonaito (bib19) 2010; 49
Xiao, Yang, Wang, Sun, Wigmosta, Judi (bib78) 2021; 8
Dinan (bib20) 2016
Grossberg (bib25) 1988; 1
Snaiki, Wu (bib66) 2022; 13
Sztobryn (bib69) 2003; 49
Booij, Ris, Holthuijsen (bib12) 1999; 104
Al Kajbaf, Bensi (bib3) 2020; 91
Taflanidis, Jia, Kennedy, Smith (bib71) 2013; 66
Zhang, Taflanidis, Nadal-Caraballo, Melby, Diop (bib80) 2018; 94
Chen, Liu, Hsu (bib17) 2012; 12
Wu, Snaiki (bib77) 2022; 8
Chen, Wang, Tawes (bib16) 2008; 31
Portnova-Fahreeva, Rizzoglio, Nisky, Casadio, Mussa-Ivaldi, Rombokas (bib55) 2020; 8
Bai, Xu (bib5) 2022; 34
Blake, Kimberlain, Berg, Cangialosi, Beven Ii (bib11) 2013; 12
Lin, Chavas (bib44) 2012; 117
Irish, Resio, Cialone (bib30) 2009; 51
Igarashi, Tajima (bib28) 2021; 63
Bretschneider (bib13) 1967; vol. 4
Jia, Taflanidis (bib32) 2013; 261–262
Rao, Mazumdar (bib57) 1966; 17
Leung, Lam, Ling, Tam (bib43) 2003; 14
Bass, Bedient (bib8) 2018; 558
Kyprioti, Taflanidis, Plumlee, Asher, Spiller, Luettich, Blanton, Kijewski-Correa, Kennedy, Schmied (bib38) 2021; 109
Kijewski-Correa, Taflanidis, Vardeman, Sweet, Zhang, Snaiki (bib35) 2020; 6
Ramos-Valle, Curchitser, Bruyère, McOwen (bib56) 2021; 126
Zhang, Douglas, Leatherman (bib81) 2000; 13
Bajo, Umgiesser (bib6) 2010; 33
Ruder (bib58) 2016
Kyprioti, Taflanidis, Nadal-Caraballo, Yawn, Aucoin (bib37) 2022; 10
Liou, Cheng, Liou, Liou (bib46) 2014; 139
Hashemi, Spaulding, Shaw, Farhadi, Lewis (bib27) 2016; 82
Sze, Chen, Yang, Emer (bib68) 2017; 105
Song, Han, Meng, Wang, Wei, Peng (bib67) 2022; 1931
Abdi, Williams (bib1) 2010; 2
Lee, Irish, Bensi, Marcy (bib41) 2021; 170
Gao, Li, Hu, Suganthan, Yuen (bib24) 2023; 117
Rumelhart, Hinton, Williams (bib59) 1986; 323
Saviz, Snaiki (bib60) 2022
Berbić, Ocvirk, Carević, Lončar (bib9) 2017; 59
Plumlee, Asher, Chang, Bilskie (bib54) 2021
Van Der Maaten, Postma, Van den Herik (bib73) 2009; 10
Luettich, Westerink (bib50) 2004; vol. 20
Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang (bib34) 2021; 3
Bezuglov, Blanton, Santiago (bib10) 2016
Liu, Arnon, Lazarus, Strong, Barrett, Kochenderfer (bib47) 2021; 4
Naeini, Snaiki (bib53) 2024; 295
Snaiki, Parida (bib62) 2023; 280
Snaiki, Wu, Whittaker, Atkinson (bib65) 2020; 2674
Fan, Xiao, Dong (bib21) 2020; 205
Atteia, Collins, Algarni, Samee (bib4) 2022; 14
Wamsley, Cialone, Smith, Ebersole, Grzegorzewski (bib74) 2009; 51
Champion, Lusch, Kutz, Brunton (bib15) 2019; 116
Tadesse, Wahl, Cid (bib70) 2020; 7
Wetzel (bib76) 2017; 96
Bardenet, Brendel, Kégl, Sebag (bib7) 2013
Kim, Melby, Nadal-Caraballo, Ratcliff (bib36) 2015; 76
Lin, Emanuel, Smith, Vanmarcke (bib45) 2010; 115
Snaiki, Wu (bib64) 2019; 194
Smith, Resio, Zundel (bib61) 1999
Lee (bib42) 2006; 33
Meng, Song, Xu, Xie, Li (bib51) 2021; 234
Adeli, Sun, Wang, Taflanidis (bib2) 2022
Jelesnianski (bib31) 1992; vol. 48
Zhang, Weng, Chen, Hsieh, Daniel (bib79) 2018
Thomas, Dwarakish (bib72) 2015; 4
Jia, Taflanidis, Nadal-Caraballo, Melby, Kennedy, Smith (bib33) 2016; 81
Nadal-Caraballo, Campbell, Gonzalez, Torres, Melby, Taflanidis (bib52) 2020; 95
Hanson, Forte, Blanton, Gravens, Vickery (bib26) 2013
Luettich, Richard, Westerink, Scheffner (bib49) 1992
Fan, Ginis, Hara (bib22) 2009; 39
Gao (10.1016/j.coastaleng.2024.104503_bib24) 2023; 117
Kyprioti (10.1016/j.coastaleng.2024.104503_bib37) 2022; 10
Lee (10.1016/j.coastaleng.2024.104503_bib42) 2006; 33
Jia (10.1016/j.coastaleng.2024.104503_bib32) 2013; 261–262
Liu (10.1016/j.coastaleng.2024.104503_bib47) 2021; 4
Larochelle (10.1016/j.coastaleng.2024.104503_bib39) 2009; 10
Rumelhart (10.1016/j.coastaleng.2024.104503_bib59) 1986; 323
Adeli (10.1016/j.coastaleng.2024.104503_bib2) 2022
Smith (10.1016/j.coastaleng.2024.104503_bib61) 1999
Cialone (10.1016/j.coastaleng.2024.104503_bib18) 2015
Champion (10.1016/j.coastaleng.2024.104503_bib15) 2019; 116
Lin (10.1016/j.coastaleng.2024.104503_bib44) 2012; 117
Berbić (10.1016/j.coastaleng.2024.104503_bib9) 2017; 59
Luettich (10.1016/j.coastaleng.2024.104503_bib50) 2004; vol. 20
Zhang (10.1016/j.coastaleng.2024.104503_bib81) 2000; 13
Van Der Maaten (10.1016/j.coastaleng.2024.104503_bib73) 2009; 10
Karniadakis (10.1016/j.coastaleng.2024.104503_bib34) 2021; 3
Jelesnianski (10.1016/j.coastaleng.2024.104503_bib31) 1992; vol. 48
Saviz (10.1016/j.coastaleng.2024.104503_bib60) 2022
Portnova-Fahreeva (10.1016/j.coastaleng.2024.104503_bib55) 2020; 8
Sztobryn (10.1016/j.coastaleng.2024.104503_bib69) 2003; 49
Sze (10.1016/j.coastaleng.2024.104503_bib68) 2017; 105
Wamsley (10.1016/j.coastaleng.2024.104503_bib74) 2009; 51
Liou (10.1016/j.coastaleng.2024.104503_bib46) 2014; 139
Snaiki (10.1016/j.coastaleng.2024.104503_bib64) 2019; 194
Abdi (10.1016/j.coastaleng.2024.104503_bib1) 2010; 2
Blake (10.1016/j.coastaleng.2024.104503_bib11) 2013; 12
Plumlee (10.1016/j.coastaleng.2024.104503_bib54) 2021
Callens (10.1016/j.coastaleng.2024.104503_bib14) 2020; 104
Irish (10.1016/j.coastaleng.2024.104503_bib30) 2009; 51
Meng (10.1016/j.coastaleng.2024.104503_bib51) 2021; 234
Zhang (10.1016/j.coastaleng.2024.104503_bib80) 2018; 94
Tadesse (10.1016/j.coastaleng.2024.104503_bib70) 2020; 7
Zhang (10.1016/j.coastaleng.2024.104503_bib79) 2018
Wang (10.1016/j.coastaleng.2024.104503_bib75) 2014; 2
Xiao (10.1016/j.coastaleng.2024.104503_bib78) 2021; 8
Kyprioti (10.1016/j.coastaleng.2024.104503_bib38) 2021; 109
Chen (10.1016/j.coastaleng.2024.104503_bib17) 2012; 12
Wetzel (10.1016/j.coastaleng.2024.104503_bib76) 2017; 96
Colle (10.1016/j.coastaleng.2024.104503_bib19) 2010; 49
Lin (10.1016/j.coastaleng.2024.104503_bib45) 2010; 115
Kijewski-Correa (10.1016/j.coastaleng.2024.104503_bib35) 2020; 6
Snaiki (10.1016/j.coastaleng.2024.104503_bib66) 2022; 13
Bai (10.1016/j.coastaleng.2024.104503_bib5) 2022; 34
Luettich (10.1016/j.coastaleng.2024.104503_bib49) 1992
Ramos-Valle (10.1016/j.coastaleng.2024.104503_bib56) 2021; 126
Bass (10.1016/j.coastaleng.2024.104503_bib8) 2018; 558
Kim (10.1016/j.coastaleng.2024.104503_bib36) 2015; 76
Nadal-Caraballo (10.1016/j.coastaleng.2024.104503_bib52) 2020; 95
Snaiki (10.1016/j.coastaleng.2024.104503_bib65) 2020; 2674
Naeini (10.1016/j.coastaleng.2024.104503_bib53) 2024; 295
Lee (10.1016/j.coastaleng.2024.104503_bib41) 2021; 170
Dinan (10.1016/j.coastaleng.2024.104503_bib20) 2016
Bezuglov (10.1016/j.coastaleng.2024.104503_bib10) 2016
Taflanidis (10.1016/j.coastaleng.2024.104503_bib71) 2013; 66
Fan (10.1016/j.coastaleng.2024.104503_bib22) 2009; 39
Wu (10.1016/j.coastaleng.2024.104503_bib77) 2022; 8
Bardenet (10.1016/j.coastaleng.2024.104503_bib7) 2013
Al Kajbaf (10.1016/j.coastaleng.2024.104503_bib3) 2020; 91
Leung (10.1016/j.coastaleng.2024.104503_bib43) 2003; 14
Ruder (10.1016/j.coastaleng.2024.104503_bib58) 2016
Snaiki (10.1016/j.coastaleng.2024.104503_bib62) 2023; 280
Thomas (10.1016/j.coastaleng.2024.104503_bib72) 2015; 4
Chen (10.1016/j.coastaleng.2024.104503_bib16) 2008; 31
Grossberg (10.1016/j.coastaleng.2024.104503_bib25) 1988; 1
Lockwood (10.1016/j.coastaleng.2024.104503_bib48) 2022; 127
Rao (10.1016/j.coastaleng.2024.104503_bib57) 1966; 17
Atteia (10.1016/j.coastaleng.2024.104503_bib4) 2022; 14
Igarashi (10.1016/j.coastaleng.2024.104503_bib28) 2021; 63
Irish (10.1016/j.coastaleng.2024.104503_bib29) 2010; 37
Jia (10.1016/j.coastaleng.2024.104503_bib33) 2016; 81
Bajo (10.1016/j.coastaleng.2024.104503_bib6) 2010; 33
French (10.1016/j.coastaleng.2024.104503_bib23) 2017; 25
Booij (10.1016/j.coastaleng.2024.104503_bib12) 1999; 104
Song (10.1016/j.coastaleng.2024.104503_bib67) 2022; 1931
Fan (10.1016/j.coastaleng.2024.104503_bib21) 2020; 205
Hanson (10.1016/j.coastaleng.2024.104503_bib26) 2013
Bretschneider (10.1016/j.coastaleng.2024.104503_bib13) 1967; vol. 4
LeCun (10.1016/j.coastaleng.2024.104503_bib40) 1989; 1
Hashemi (10.1016/j.coastaleng.2024.104503_bib27) 2016; 82
Snaiki (10.1016/j.coastaleng.2024.104503_bib63) 2023; 69
References_xml – volume: 82
  start-page: 471
  year: 2016
  end-page: 491
  ident: bib27
  article-title: An efficient artificial intelligence model for prediction of tropical storm surge
  publication-title: Nat. Hazards
– volume: 7
  start-page: 260
  year: 2020
  ident: bib70
  article-title: Data-driven modeling of global storm surges
  publication-title: Front. Mar. Sci.
– volume: 1
  start-page: 17
  year: 1988
  end-page: 61
  ident: bib25
  article-title: Nonlinear neural networks: principles, mechanisms, and architectures
  publication-title: Neural Network.
– volume: 51
  start-page: 183
  year: 2009
  end-page: 205
  ident: bib30
  article-title: A surge response function approach to coastal hazard assessment. Part 2: quantification of spatial attributes of response functions
  publication-title: Nat. Hazards
– volume: 13
  start-page: 757
  year: 2022
  ident: bib66
  article-title: Knowledge-enhanced deep learning for simulation of extratropical cyclone wind risk
  publication-title: Atmosphere
– volume: 12
  start-page: 1
  year: 2013
  end-page: 10
  ident: bib11
  article-title: Tropical cyclone report: hurricane sandy
  publication-title: National Hurricane Center
– volume: 261–262
  start-page: 24
  year: 2013
  end-page: 38
  ident: bib32
  article-title: Kriging metamodeling for approximation of high-dimensional wave and surge responses in real-time storm/hurricane risk assessment
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 96
  year: 2017
  ident: bib76
  article-title: Unsupervised learning of phase transitions: from principal component analysis to variational autoencoders
  publication-title: Phys. Rev.
– volume: 14
  start-page: 79
  year: 2003
  end-page: 88
  ident: bib43
  article-title: Tuning of the structure and parameters of a neural network using an improved genetic algorithm
  publication-title: IEEE Trans. Neural Network.
– volume: 139
  start-page: 84
  year: 2014
  end-page: 96
  ident: bib46
  article-title: Autoencoder for words
  publication-title: Neurocomputing
– volume: 3
  start-page: 422
  year: 2021
  end-page: 440
  ident: bib34
  article-title: Physics-informed machine learning
  publication-title: Nature Reviews Physics
– year: 2016
  ident: bib58
  article-title: An Overview of Gradient Descent Optimization Algorithms
– year: 1992
  ident: bib49
  article-title: ADCIRC : an Advanced Three-Dimensional Circulation Model for Shelves, Coasts, and Estuaries. Report 1, Theory and Methodology of ADCIRC-2DD1 and ADCIRC-3DL
– volume: 558
  start-page: 159
  year: 2018
  end-page: 173
  ident: bib8
  article-title: Surrogate modeling of joint flood risk across coastal watersheds
  publication-title: J. Hydrol.
– volume: vol. 4
  start-page: 341
  year: 1967
  end-page: 418
  ident: bib13
  article-title: Storm surges
  publication-title: Advances in Hydroscience
– volume: 2
  start-page: 226
  year: 2014
  end-page: 246
  ident: bib75
  article-title: The storm surge and sub-grid inundation modeling in New York City during Hurricane Sandy
  publication-title: J. Mar. Sci. Eng.
– year: 2015
  ident: bib18
  article-title: North Atlantic Coast Comprehensive Study (NACCS) Coastal Storm Model Simulations: Waves and Water Levels
– year: 2016
  ident: bib20
  article-title: Potential increases in hurricane damage in the United States: implications for the federal budget
  publication-title: Congress of the United States
– volume: 49
  start-page: 85
  year: 2010
  end-page: 100
  ident: bib19
  article-title: New York City storm surges: climatology and an analysis of the wind and cyclone evolution
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 33
  start-page: 483
  year: 2006
  end-page: 494
  ident: bib42
  article-title: Neural network prediction of a storm surge
  publication-title: Ocean Eng.
– volume: 66
  start-page: 955
  year: 2013
  end-page: 983
  ident: bib71
  article-title: Implementation/optimization of moving least squares response surfaces for approximation of hurricane/storm surge and wave responses
  publication-title: Nat. Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards
– volume: 10
  start-page: 551
  year: 2022
  ident: bib37
  article-title: Integration of node classification in storm surge surrogate modeling
  publication-title: J. Mar. Sci. Eng.
– volume: vol. 20
  year: 2004
  ident: bib50
  publication-title: Formulation and Numerical Implementation of the 2D/3D ADCIRC Finite Element Model Version 44. XX
– volume: 10
  start-page: 13
  year: 2009
  ident: bib73
  article-title: Dimensionality reduction: a comparative review
  publication-title: J. Mach. Learn. Res.
– volume: 91
  year: 2020
  ident: bib3
  article-title: Application of surrogate models in estimation of storm surge: a comparative assessment
  publication-title: Appl. Soft Comput.
– volume: 33
  start-page: 1
  year: 2010
  end-page: 9
  ident: bib6
  article-title: Storm surge forecast through a combination of dynamic and neural network models
  publication-title: Ocean Model.
– start-page: 199
  year: 2013
  end-page: 207
  ident: bib7
  article-title: Collaborative hyperparameter tuning
  publication-title: International Conference on Machine Learning
– volume: 37
  start-page: 69
  year: 2010
  end-page: 81
  ident: bib29
  article-title: A hydrodynamics-based surge scale for hurricanes
  publication-title: Ocean Eng.
– volume: 205
  year: 2020
  ident: bib21
  article-title: A novel model to predict significant wave height based on long short-term memory network
  publication-title: Ocean Eng.
– volume: 59
  start-page: 331
  year: 2017
  end-page: 349
  ident: bib9
  article-title: Application of neural networks and support vector machine for significant wave height prediction
  publication-title: Oceanologia
– volume: 104
  year: 2020
  ident: bib14
  article-title: Using Random forest and Gradient boosting trees to improve wave forecast at a specific location
  publication-title: Appl. Ocean Res.
– volume: 17
  start-page: 333
  year: 1966
  end-page: 346
  ident: bib57
  article-title: A technique for forecasting storm waves
  publication-title: Mausam
– volume: 194
  year: 2019
  ident: bib64
  article-title: Knowledge-enhanced deep learning for simulation of tropical cyclone boundary-layer winds
  publication-title: J. Wind Eng. Ind. Aerod.
– volume: 280
  year: 2023
  ident: bib62
  article-title: A data-driven physics-informed stochastic framework for hurricane-induced risk estimation of transmission tower-line systems under a changing climate
  publication-title: Eng. Struct.
– volume: 1
  start-page: 541
  year: 1989
  end-page: 551
  ident: bib40
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
– volume: 116
  start-page: 22445
  year: 2019
  end-page: 22451
  ident: bib15
  article-title: Data-driven discovery of coordinates and governing equations
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  year: 2009
  ident: bib39
  article-title: Exploring strategies for training deep neural networks
  publication-title: J. Mach. Learn. Res.
– year: 1999
  ident: bib61
  article-title: STWAVE: Steady-State Spectral Wave Model. Report 1. User's Manual for STWAVE Version 2.0
– year: 2013
  ident: bib26
  article-title: Coastal Storm Surge Analysis: Storm Surge Results
– year: 2016
  ident: bib10
  article-title: Multi-output Artificial Neural Network for Storm Surge Prediction in north carolina
– volume: 104
  start-page: 7649
  year: 1999
  end-page: 7666
  ident: bib12
  article-title: A third-generation wave model for coastal regions: 1. Model description and validation
  publication-title: J. Geophys. Res.: Oceans
– volume: 34
  year: 2022
  ident: bib5
  article-title: Accurate storm surge forecasting using the encoder–decoder long short term memory recurrent neural network
  publication-title: Phys. Fluids
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: bib59
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 127
  year: 2022
  ident: bib48
  article-title: Using neural networks to predict hurricane storm surge and to assess the sensitivity of surge to storm characteristics
  publication-title: J. Geophys. Res. Atmos.
– volume: 39
  start-page: 1019
  year: 2009
  end-page: 1034
  ident: bib22
  article-title: The effect of wind–wave–current interaction on air–sea momentum fluxes and ocean response in tropical cyclones
  publication-title: J. Phys. Oceanogr.
– volume: 117
  year: 2012
  ident: bib44
  article-title: On hurricane parametric wind and applications in storm surge modeling
  publication-title: J. Geophys. Res. Atmos.
– volume: 69
  year: 2023
  ident: bib63
  article-title: Climate change effects on loss assessment and mitigation of residential buildings due to hurricane wind
  publication-title: J. Build. Eng.
– volume: 63
  start-page: 68
  year: 2021
  end-page: 82
  ident: bib28
  article-title: Application of recurrent neural network for prediction of the time-varying storm surge
  publication-title: Coast Eng. J.
– volume: 115
  year: 2010
  ident: bib45
  article-title: Risk assessment of hurricane storm surge for New York City
  publication-title: J. Geophys. Res. Atmos.
– volume: 14
  start-page: 5569
  year: 2022
  ident: bib4
  article-title: Deep-learning-based feature Extraction approach for significant wave height prediction in SAR mode altimeter data
  publication-title: Rem. Sens.
– volume: 8
  year: 2021
  ident: bib78
  article-title: Characterizing the non-linear interactions between tide, storm surge, and river flow in the Delaware bay estuary, United States
  publication-title: Front. Mar. Sci.
– year: 2022
  ident: bib2
  article-title: An Advanced Spatio-Temporal Convolutional Recurrent Neural Network for Storm Surge Predictions
– volume: 234
  year: 2021
  ident: bib51
  article-title: Forecasting tropical cyclones wave height using bidirectional gated recurrent unit
  publication-title: Ocean Eng.
– volume: 2674
  start-page: 23
  year: 2020
  end-page: 32
  ident: bib65
  article-title: Hurricane wind and storm surge effects on coastal bridges under a changing climate
  publication-title: Transport. Res. Rec.
– volume: 1931
  year: 2022
  ident: bib67
  article-title: A significant wave height prediction method based on deep learning combining the correlation between wind and wind waves
  publication-title: Front. Mar. Sci.
– volume: 25
  start-page: 28
  year: 2017
  end-page: 35
  ident: bib23
  article-title: Combining machine learning with computational hydrodynamics for prediction of tidal surge inundation at estuarine ports
  publication-title: Procedia IUTAM
– volume: 117
  year: 2023
  ident: bib24
  article-title: Significant wave height forecasting using hybrid ensemble deep randomized networks with neurons pruning
  publication-title: Eng. Appl. Artif. Intell.
– volume: 8
  year: 2022
  ident: bib77
  article-title: Applications of machine learning to wind engineering
  publication-title: Frontiers in Built Environment
– volume: 109
  start-page: 1349
  year: 2021
  end-page: 1386
  ident: bib38
  article-title: Improvements in storm surge surrogate modeling for synthetic storm parameterization, node condition classification and implementation to small size databases
  publication-title: Nat. Hazards
– volume: 94
  start-page: 1225
  year: 2018
  end-page: 1253
  ident: bib80
  article-title: Advances in surrogate modeling for storm surge prediction: storm selection and addressing characteristics related to climate change
  publication-title: Nat. Hazards
– volume: 8
  start-page: 429
  year: 2020
  ident: bib55
  article-title: Linear and non-linear dimensionality-reduction techniques on full hand kinematics
  publication-title: Front. Bioeng. Biotechnol.
– volume: 295
  year: 2024
  ident: bib53
  article-title: A physics-informed machine learning model for time-dependent wave runup prediction
  publication-title: Ocean Eng.
– volume: 49
  start-page: 317
  year: 2003
  end-page: 322
  ident: bib69
  article-title: Forecast of storm surge by means of artificial neural network
  publication-title: J. Sea Res.
– volume: 31
  start-page: 1098
  year: 2008
  end-page: 1116
  ident: bib16
  article-title: Hydrodynamic response of northeastern gulf of Mexico to hurricanes
  publication-title: Estuar. Coast
– volume: 170
  year: 2021
  ident: bib41
  article-title: Rapid prediction of peak storm surge from tropical cyclone track time series using machine learning
  publication-title: Coast Eng.
– year: 2021
  ident: bib54
  article-title: High-fidelity Hurricane Surge Forecasting Using Emulation and Sequential Experiments
– volume: 13
  start-page: 1748
  year: 2000
  end-page: 1761
  ident: bib81
  article-title: Twentieth-century storm activity along the U.S. East coast
  publication-title: J. Clim.
– volume: 4
  start-page: 244
  year: 2021
  end-page: 404
  ident: bib47
  article-title: Algorithms for verifying deep neural networks
  publication-title: Foundations and Trends® in Optimization
– volume: 4
  start-page: 443
  year: 2015
  end-page: 448
  ident: bib72
  article-title: Numerical wave modelling – a review
  publication-title: Aquatic Procedia
– volume: 76
  start-page: 565
  year: 2015
  end-page: 585
  ident: bib36
  article-title: A time-dependent surrogate model for storm surge prediction based on an artificial neural network using high-fidelity synthetic hurricane modeling
  publication-title: Nat. Hazards
– volume: vol. 48
  year: 1992
  ident: bib31
  publication-title: SLOSH: Sea, Lake, and Overland Surges from Hurricanes
– volume: 6
  year: 2020
  ident: bib35
  article-title: Geospatial environments for hurricane risk assessment: applications to situational awareness and resilience planning in New Jersey
  publication-title: Frontiers in Built Environment
– year: 2022
  ident: bib60
  article-title: Machine learning approximation for rapid prediction of high-dimensional storm surge and wave responses
  publication-title: Proceedings of the Canadian Society of Civil Engineering Annual Conference 2022
– volume: 2
  start-page: 433
  year: 2010
  end-page: 459
  ident: bib1
  article-title: Principal component analysis
  publication-title: Wiley interdisciplinary reviews: Comput. Stat.
– volume: 12
  start-page: 3799
  year: 2012
  end-page: 3809
  ident: bib17
  article-title: Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 81
  start-page: 909
  year: 2016
  end-page: 938
  ident: bib33
  article-title: Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms
  publication-title: Nat. Hazards
– volume: 126
  year: 2021
  ident: bib56
  article-title: Implementation of an artificial neural network for storm surge forecasting
  publication-title: J. Geophys. Res. Atmos.
– volume: 95
  start-page: 1211
  year: 2020
  end-page: 1216
  ident: bib52
  article-title: Coastal hazards system: a probabilistic coastal hazard analysis framework
  publication-title: J. Coast Res.
– volume: 105
  start-page: 2295
  year: 2017
  end-page: 2329
  ident: bib68
  article-title: Efficient processing of deep neural networks: a tutorial and survey
  publication-title: Proc. IEEE
– start-page: 31
  year: 2018
  ident: bib79
  article-title: Efficient neural network robustness certification with general activation functions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 51
  start-page: 207
  year: 2009
  end-page: 224
  ident: bib74
  article-title: Influence of landscape restoration and degradation on storm surge and waves in southern Louisiana
  publication-title: Nat. Hazards
– volume: 3
  start-page: 422
  issue: 6
  year: 2021
  ident: 10.1016/j.coastaleng.2024.104503_bib34
  article-title: Physics-informed machine learning
  publication-title: Nature Reviews Physics
  doi: 10.1038/s42254-021-00314-5
– year: 2021
  ident: 10.1016/j.coastaleng.2024.104503_bib54
– volume: vol. 4
  start-page: 341
  year: 1967
  ident: 10.1016/j.coastaleng.2024.104503_bib13
  article-title: Storm surges
– volume: 1
  start-page: 541
  issue: 4
  year: 1989
  ident: 10.1016/j.coastaleng.2024.104503_bib40
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.4.541
– volume: 4
  start-page: 244
  issue: 3–4
  year: 2021
  ident: 10.1016/j.coastaleng.2024.104503_bib47
  article-title: Algorithms for verifying deep neural networks
  publication-title: Foundations and Trends® in Optimization
  doi: 10.1561/2400000035
– volume: 12
  start-page: 3799
  issue: 12
  year: 2012
  ident: 10.1016/j.coastaleng.2024.104503_bib17
  article-title: Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-12-3799-2012
– volume: 205
  year: 2020
  ident: 10.1016/j.coastaleng.2024.104503_bib21
  article-title: A novel model to predict significant wave height based on long short-term memory network
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107298
– volume: 76
  start-page: 565
  issue: 1
  year: 2015
  ident: 10.1016/j.coastaleng.2024.104503_bib36
  article-title: A time-dependent surrogate model for storm surge prediction based on an artificial neural network using high-fidelity synthetic hurricane modeling
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-014-1508-6
– year: 2022
  ident: 10.1016/j.coastaleng.2024.104503_bib2
– volume: 139
  start-page: 84
  year: 2014
  ident: 10.1016/j.coastaleng.2024.104503_bib46
  article-title: Autoencoder for words
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.055
– volume: 31
  start-page: 1098
  issue: 6
  year: 2008
  ident: 10.1016/j.coastaleng.2024.104503_bib16
  article-title: Hydrodynamic response of northeastern gulf of Mexico to hurricanes
  publication-title: Estuar. Coast
  doi: 10.1007/s12237-008-9089-9
– volume: 59
  start-page: 331
  issue: 3
  year: 2017
  ident: 10.1016/j.coastaleng.2024.104503_bib9
  article-title: Application of neural networks and support vector machine for significant wave height prediction
  publication-title: Oceanologia
  doi: 10.1016/j.oceano.2017.03.007
– volume: 49
  start-page: 317
  issue: 4
  year: 2003
  ident: 10.1016/j.coastaleng.2024.104503_bib69
  article-title: Forecast of storm surge by means of artificial neural network
  publication-title: J. Sea Res.
  doi: 10.1016/S1385-1101(03)00024-8
– year: 2016
  ident: 10.1016/j.coastaleng.2024.104503_bib58
– year: 2016
  ident: 10.1016/j.coastaleng.2024.104503_bib10
– year: 2016
  ident: 10.1016/j.coastaleng.2024.104503_bib20
  article-title: Potential increases in hurricane damage in the United States: implications for the federal budget
– volume: 82
  start-page: 471
  issue: 1
  year: 2016
  ident: 10.1016/j.coastaleng.2024.104503_bib27
  article-title: An efficient artificial intelligence model for prediction of tropical storm surge
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-016-2193-4
– volume: 14
  start-page: 5569
  issue: 21
  year: 2022
  ident: 10.1016/j.coastaleng.2024.104503_bib4
  article-title: Deep-learning-based feature Extraction approach for significant wave height prediction in SAR mode altimeter data
  publication-title: Rem. Sens.
  doi: 10.3390/rs14215569
– volume: 280
  year: 2023
  ident: 10.1016/j.coastaleng.2024.104503_bib62
  article-title: A data-driven physics-informed stochastic framework for hurricane-induced risk estimation of transmission tower-line systems under a changing climate
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2023.115673
– volume: 4
  start-page: 443
  year: 2015
  ident: 10.1016/j.coastaleng.2024.104503_bib72
  article-title: Numerical wave modelling – a review
  publication-title: Aquatic Procedia
  doi: 10.1016/j.aqpro.2015.02.059
– start-page: 199
  year: 2013
  ident: 10.1016/j.coastaleng.2024.104503_bib7
  article-title: Collaborative hyperparameter tuning
– volume: 10
  issue: 1
  year: 2009
  ident: 10.1016/j.coastaleng.2024.104503_bib39
  article-title: Exploring strategies for training deep neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 429
  year: 2020
  ident: 10.1016/j.coastaleng.2024.104503_bib55
  article-title: Linear and non-linear dimensionality-reduction techniques on full hand kinematics
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00429
– volume: 10
  start-page: 551
  issue: 4
  year: 2022
  ident: 10.1016/j.coastaleng.2024.104503_bib37
  article-title: Integration of node classification in storm surge surrogate modeling
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse10040551
– volume: 104
  year: 2020
  ident: 10.1016/j.coastaleng.2024.104503_bib14
  article-title: Using Random forest and Gradient boosting trees to improve wave forecast at a specific location
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2020.102339
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.coastaleng.2024.104503_bib59
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 13
  start-page: 757
  issue: 5
  year: 2022
  ident: 10.1016/j.coastaleng.2024.104503_bib66
  article-title: Knowledge-enhanced deep learning for simulation of extratropical cyclone wind risk
  publication-title: Atmosphere
  doi: 10.3390/atmos13050757
– volume: 39
  start-page: 1019
  issue: 4
  year: 2009
  ident: 10.1016/j.coastaleng.2024.104503_bib22
  article-title: The effect of wind–wave–current interaction on air–sea momentum fluxes and ocean response in tropical cyclones
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/2008JPO4066.1
– volume: 116
  start-page: 22445
  issue: 45
  year: 2019
  ident: 10.1016/j.coastaleng.2024.104503_bib15
  article-title: Data-driven discovery of coordinates and governing equations
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1906995116
– volume: 25
  start-page: 28
  year: 2017
  ident: 10.1016/j.coastaleng.2024.104503_bib23
  article-title: Combining machine learning with computational hydrodynamics for prediction of tidal surge inundation at estuarine ports
  publication-title: Procedia IUTAM
  doi: 10.1016/j.piutam.2017.09.005
– volume: 194
  year: 2019
  ident: 10.1016/j.coastaleng.2024.104503_bib64
  article-title: Knowledge-enhanced deep learning for simulation of tropical cyclone boundary-layer winds
  publication-title: J. Wind Eng. Ind. Aerod.
  doi: 10.1016/j.jweia.2019.103983
– volume: 1931
  year: 2022
  ident: 10.1016/j.coastaleng.2024.104503_bib67
  article-title: A significant wave height prediction method based on deep learning combining the correlation between wind and wind waves
  publication-title: Front. Mar. Sci.
– volume: 295
  year: 2024
  ident: 10.1016/j.coastaleng.2024.104503_bib53
  article-title: A physics-informed machine learning model for time-dependent wave runup prediction
  publication-title: Ocean Eng.
– volume: 10
  start-page: 13
  issue: 66–71
  year: 2009
  ident: 10.1016/j.coastaleng.2024.104503_bib73
  article-title: Dimensionality reduction: a comparative review
  publication-title: J. Mach. Learn. Res.
– volume: 51
  start-page: 207
  issue: 1
  year: 2009
  ident: 10.1016/j.coastaleng.2024.104503_bib74
  article-title: Influence of landscape restoration and degradation on storm surge and waves in southern Louisiana
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-009-9378-z
– volume: 33
  start-page: 1
  issue: 1–2
  year: 2010
  ident: 10.1016/j.coastaleng.2024.104503_bib6
  article-title: Storm surge forecast through a combination of dynamic and neural network models
  publication-title: Ocean Model.
  doi: 10.1016/j.ocemod.2009.12.007
– volume: 94
  start-page: 1225
  issue: 3
  year: 2018
  ident: 10.1016/j.coastaleng.2024.104503_bib80
  article-title: Advances in surrogate modeling for storm surge prediction: storm selection and addressing characteristics related to climate change
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-018-3470-1
– volume: 558
  start-page: 159
  year: 2018
  ident: 10.1016/j.coastaleng.2024.104503_bib8
  article-title: Surrogate modeling of joint flood risk across coastal watersheds
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.01.014
– volume: 63
  start-page: 68
  issue: 1
  year: 2021
  ident: 10.1016/j.coastaleng.2024.104503_bib28
  article-title: Application of recurrent neural network for prediction of the time-varying storm surge
  publication-title: Coast Eng. J.
  doi: 10.1080/21664250.2020.1868736
– volume: 37
  start-page: 69
  issue: 1
  year: 2010
  ident: 10.1016/j.coastaleng.2024.104503_bib29
  article-title: A hydrodynamics-based surge scale for hurricanes
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2009.07.012
– volume: 51
  start-page: 183
  issue: 1
  year: 2009
  ident: 10.1016/j.coastaleng.2024.104503_bib30
  article-title: A surge response function approach to coastal hazard assessment. Part 2: quantification of spatial attributes of response functions
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-009-9381-4
– volume: 12
  start-page: 1
  year: 2013
  ident: 10.1016/j.coastaleng.2024.104503_bib11
  article-title: Tropical cyclone report: hurricane sandy
  publication-title: National Hurricane Center
– volume: 7
  start-page: 260
  year: 2020
  ident: 10.1016/j.coastaleng.2024.104503_bib70
  article-title: Data-driven modeling of global storm surges
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2020.00260
– volume: 14
  start-page: 79
  issue: 1
  year: 2003
  ident: 10.1016/j.coastaleng.2024.104503_bib43
  article-title: Tuning of the structure and parameters of a neural network using an improved genetic algorithm
  publication-title: IEEE Trans. Neural Network.
  doi: 10.1109/TNN.2002.804317
– volume: 8
  year: 2021
  ident: 10.1016/j.coastaleng.2024.104503_bib78
  article-title: Characterizing the non-linear interactions between tide, storm surge, and river flow in the Delaware bay estuary, United States
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2021.715557
– volume: 33
  start-page: 483
  issue: 3–4
  year: 2006
  ident: 10.1016/j.coastaleng.2024.104503_bib42
  article-title: Neural network prediction of a storm surge
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2005.04.012
– volume: vol. 48
  year: 1992
  ident: 10.1016/j.coastaleng.2024.104503_bib31
– volume: 66
  start-page: 955
  issue: 2
  year: 2013
  ident: 10.1016/j.coastaleng.2024.104503_bib71
  article-title: Implementation/optimization of moving least squares response surfaces for approximation of hurricane/storm surge and wave responses
  publication-title: Nat. Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards
  doi: 10.1007/s11069-012-0520-y
– volume: 170
  year: 2021
  ident: 10.1016/j.coastaleng.2024.104503_bib41
  article-title: Rapid prediction of peak storm surge from tropical cyclone track time series using machine learning
  publication-title: Coast Eng.
  doi: 10.1016/j.coastaleng.2021.104024
– volume: 13
  start-page: 1748
  issue: 10
  year: 2000
  ident: 10.1016/j.coastaleng.2024.104503_bib81
  article-title: Twentieth-century storm activity along the U.S. East coast
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2000)013<1748:TCSAAT>2.0.CO;2
– volume: 81
  start-page: 909
  issue: 2
  year: 2016
  ident: 10.1016/j.coastaleng.2024.104503_bib33
  article-title: Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-015-2111-1
– year: 2022
  ident: 10.1016/j.coastaleng.2024.104503_bib60
  article-title: Machine learning approximation for rapid prediction of high-dimensional storm surge and wave responses
– start-page: 31
  year: 2018
  ident: 10.1016/j.coastaleng.2024.104503_bib79
  article-title: Efficient neural network robustness certification with general activation functions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: vol. 20
  year: 2004
  ident: 10.1016/j.coastaleng.2024.104503_bib50
– year: 1992
  ident: 10.1016/j.coastaleng.2024.104503_bib49
– volume: 96
  issue: 2
  year: 2017
  ident: 10.1016/j.coastaleng.2024.104503_bib76
  article-title: Unsupervised learning of phase transitions: from principal component analysis to variational autoencoders
  publication-title: Phys. Rev.
– volume: 34
  issue: 1
  year: 2022
  ident: 10.1016/j.coastaleng.2024.104503_bib5
  article-title: Accurate storm surge forecasting using the encoder–decoder long short term memory recurrent neural network
  publication-title: Phys. Fluids
  doi: 10.1063/5.0081858
– volume: 17
  start-page: 333
  issue: 3
  year: 1966
  ident: 10.1016/j.coastaleng.2024.104503_bib57
  article-title: A technique for forecasting storm waves
  publication-title: Mausam
  doi: 10.54302/mausam.v17i3.5723
– volume: 69
  year: 2023
  ident: 10.1016/j.coastaleng.2024.104503_bib63
  article-title: Climate change effects on loss assessment and mitigation of residential buildings due to hurricane wind
  publication-title: J. Build. Eng.
– year: 1999
  ident: 10.1016/j.coastaleng.2024.104503_bib61
– year: 2015
  ident: 10.1016/j.coastaleng.2024.104503_bib18
– volume: 105
  start-page: 2295
  issue: 12
  year: 2017
  ident: 10.1016/j.coastaleng.2024.104503_bib68
  article-title: Efficient processing of deep neural networks: a tutorial and survey
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2017.2761740
– volume: 2674
  start-page: 23
  issue: 6
  year: 2020
  ident: 10.1016/j.coastaleng.2024.104503_bib65
  article-title: Hurricane wind and storm surge effects on coastal bridges under a changing climate
  publication-title: Transport. Res. Rec.
  doi: 10.1177/0361198120917671
– volume: 91
  year: 2020
  ident: 10.1016/j.coastaleng.2024.104503_bib3
  article-title: Application of surrogate models in estimation of storm surge: a comparative assessment
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106184
– volume: 261–262
  start-page: 24
  year: 2013
  ident: 10.1016/j.coastaleng.2024.104503_bib32
  article-title: Kriging metamodeling for approximation of high-dimensional wave and surge responses in real-time storm/hurricane risk assessment
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2013.03.012
– volume: 6
  year: 2020
  ident: 10.1016/j.coastaleng.2024.104503_bib35
  article-title: Geospatial environments for hurricane risk assessment: applications to situational awareness and resilience planning in New Jersey
  publication-title: Frontiers in Built Environment
  doi: 10.3389/fbuil.2020.549106
– volume: 127
  issue: 24
  year: 2022
  ident: 10.1016/j.coastaleng.2024.104503_bib48
  article-title: Using neural networks to predict hurricane storm surge and to assess the sensitivity of surge to storm characteristics
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2022JD037617
– volume: 117
  issue: D9
  year: 2012
  ident: 10.1016/j.coastaleng.2024.104503_bib44
  article-title: On hurricane parametric wind and applications in storm surge modeling
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2011JD017126
– volume: 126
  issue: 13
  year: 2021
  ident: 10.1016/j.coastaleng.2024.104503_bib56
  article-title: Implementation of an artificial neural network for storm surge forecasting
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2020JD033266
– volume: 117
  year: 2023
  ident: 10.1016/j.coastaleng.2024.104503_bib24
  article-title: Significant wave height forecasting using hybrid ensemble deep randomized networks with neurons pruning
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105535
– volume: 234
  year: 2021
  ident: 10.1016/j.coastaleng.2024.104503_bib51
  article-title: Forecasting tropical cyclones wave height using bidirectional gated recurrent unit
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.108795
– year: 2013
  ident: 10.1016/j.coastaleng.2024.104503_bib26
– volume: 104
  start-page: 7649
  issue: C4
  year: 1999
  ident: 10.1016/j.coastaleng.2024.104503_bib12
  article-title: A third-generation wave model for coastal regions: 1. Model description and validation
  publication-title: J. Geophys. Res.: Oceans
  doi: 10.1029/98JC02622
– volume: 2
  start-page: 226
  issue: 1
  year: 2014
  ident: 10.1016/j.coastaleng.2024.104503_bib75
  article-title: The storm surge and sub-grid inundation modeling in New York City during Hurricane Sandy
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse2010226
– volume: 2
  start-page: 433
  issue: 4
  year: 2010
  ident: 10.1016/j.coastaleng.2024.104503_bib1
  article-title: Principal component analysis
  publication-title: Wiley interdisciplinary reviews: Comput. Stat.
  doi: 10.1002/wics.101
– volume: 109
  start-page: 1349
  issue: 2
  year: 2021
  ident: 10.1016/j.coastaleng.2024.104503_bib38
  article-title: Improvements in storm surge surrogate modeling for synthetic storm parameterization, node condition classification and implementation to small size databases
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-021-04881-9
– volume: 95
  start-page: 1211
  issue: SI
  year: 2020
  ident: 10.1016/j.coastaleng.2024.104503_bib52
  article-title: Coastal hazards system: a probabilistic coastal hazard analysis framework
  publication-title: J. Coast Res.
  doi: 10.2112/SI95-235.1
– volume: 115
  issue: D18
  year: 2010
  ident: 10.1016/j.coastaleng.2024.104503_bib45
  article-title: Risk assessment of hurricane storm surge for New York City
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2009JD013630
– volume: 49
  start-page: 85
  issue: 1
  year: 2010
  ident: 10.1016/j.coastaleng.2024.104503_bib19
  article-title: New York City storm surges: climatology and an analysis of the wind and cyclone evolution
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/2009JAMC2189.1
– volume: 1
  start-page: 17
  issue: 1
  year: 1988
  ident: 10.1016/j.coastaleng.2024.104503_bib25
  article-title: Nonlinear neural networks: principles, mechanisms, and architectures
  publication-title: Neural Network.
  doi: 10.1016/0893-6080(88)90021-4
– volume: 8
  year: 2022
  ident: 10.1016/j.coastaleng.2024.104503_bib77
  article-title: Applications of machine learning to wind engineering
  publication-title: Frontiers in Built Environment
  doi: 10.3389/fbuil.2022.811460
SSID ssj0000685
Score 2.4724119
Snippet Storm surge and waves are responsible for a substantial portion of tropical and extratropical cyclones-related damages. While high-fidelity numerical models...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104503
SubjectTerms Deep autoencoder
Deep learning
Significant wave height
Storm surge
Title A novel hybrid machine learning model for rapid assessment of wave and storm surge responses over an extended coastal region
URI https://dx.doi.org/10.1016/j.coastaleng.2024.104503
Volume 190
WOSCitedRecordID wos001206675800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7379
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000685
  issn: 0378-3839
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xy0Nz4BalahInccQpQosAoRViF6m3yIntpas2rdpSdhFnfjfjV1JgpV2QuERVHDuP-WqPRzPfR8gLtDOuAzIJs1zokpyChoVI0lDSNK518eNYGdWS9_nREZtMig-DwQ9fC7Od5W3Lzs-L5X81NZ5DY-vS2b8wdzconsDfaHQ8otnxeC3Dl0G72MpZ8PlCF2MFc5MtKb08xKnVvjHZhSu-xAt4x82pHcevWo3IBNNxMz4P1rpqOljZRFrNT4ufA5sDHzsPmgVfW3GAU29hz3vgWmTPeKjd2XKuqRmExmEXgzjm2-k3nOjl1AhMBcdcupor3djyqdXW_ihd-MBFKWLaZ1P56iydhsEscVE381qlUDd34sYwNXwHf07rNsJwNnLvhA8-0jcZ9V1-ZdL-bYXr8g59SttZ1Y9U6ZEqO9INshfnacGGZK98ezh5t7OmG3HX7i1cTpjNFLz8qS53dHacl5O75I7bdUBp0XKPDGR7n9ze4aJ8QL6XYHADFjfgcAMeN2BwA4gbMLiBHjewUKBxA4gbMLgBgxvocAMaN9gMHjfg3gYsbh6ST68PT169CZ00R9gkGduElDdSJbhCNUUuBJUFbxpG65THmZCRSBVDT3dcy4IyGWuyhSLjalwXNMnTWkQ8eUSG7aKVjwlkdaxoJlQqsoxyqVjCxipRUSaSJqprtk9y_x2rxvHWa_mUWXWVNfdJ1PVcWu6Wa_R56U1VOR_U-pYVYvHK3gf_cMcn5Fb_h3lKhpvVF_mM3Gy2m-l69dwB8Sc8zbI6
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hybrid+machine+learning+model+for+rapid+assessment+of+wave+and+storm+surge+responses+over+an+extended+coastal+region&rft.jtitle=Coastal+engineering+%28Amsterdam%29&rft.au=Saviz+Naeini%2C+Saeed&rft.au=Snaiki%2C+Reda&rft.date=2024-06-01&rft.issn=0378-3839&rft.volume=190&rft.spage=104503&rft_id=info:doi/10.1016%2Fj.coastaleng.2024.104503&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_coastaleng_2024_104503
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3839&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3839&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3839&client=summon