A deep learning method for predicting lead content in oilseed rape leaves using fluorescence hyperspectral imaging

•FHSI was applied to the detection of lead content in oilseed rape leaves.•WT-SDAE model was proposed for deep feature extraction.•The WT-SDAE-SVR model achieved high-precision prediction of Pb concentration. The purpose of this study was to develop a deep learning method involving wavelet transform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food chemistry Jg. 409; S. 135251
Hauptverfasser: Zhou, Xin, Zhao, Chunjiang, Sun, Jun, Cao, Yan, Yao, Kunshan, Xu, Min
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Elsevier Ltd 30.05.2023
Schlagworte:
ISSN:0308-8146, 1873-7072, 1873-7072
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •FHSI was applied to the detection of lead content in oilseed rape leaves.•WT-SDAE model was proposed for deep feature extraction.•The WT-SDAE-SVR model achieved high-precision prediction of Pb concentration. The purpose of this study was to develop a deep learning method involving wavelet transform (WT) and stacked denoising autoencoder (SDAE) for extracting deep features of heavy metal lead (Pb) detection of oilseed rape leaves. Firstly, the standard normalized variable (SNV) algorithm was established as the best preprocessing algorithm, and the SNV-treated fluorescence spectral data was used for further data analysis. Then, WT was used to decompose the SNV-treated fluorescence spectra of oilseed rape leaves to obtain the optimal wavelet decomposition layers using different wavelet basis functions, and SDAE was used for deep feature learning under the optimal wavelet decomposition layer. Finally, the best established support vector machine regression (SVR) model prediction set parameters Rp2, RMSEP and RPD were 0.9388, 0.0199 mg/kg and 3.275 using sym7 as the wavelet basis function. The results of this study verified that the huge potential of fluorescence hyperspectral technology combined with deep learning algorithms to detect heavy metals.
AbstractList The purpose of this study was to develop a deep learning method involving wavelet transform (WT) and stacked denoising autoencoder (SDAE) for extracting deep features of heavy metal lead (Pb) detection of oilseed rape leaves. Firstly, the standard normalized variable (SNV) algorithm was established as the best preprocessing algorithm, and the SNV-treated fluorescence spectral data was used for further data analysis. Then, WT was used to decompose the SNV-treated fluorescence spectra of oilseed rape leaves to obtain the optimal wavelet decomposition layers using different wavelet basis functions, and SDAE was used for deep feature learning under the optimal wavelet decomposition layer. Finally, the best established support vector machine regression (SVR) model prediction set parameters Rp2, RMSEP and RPD were 0.9388, 0.0199 mg/kg and 3.275 using sym7 as the wavelet basis function. The results of this study verified that the huge potential of fluorescence hyperspectral technology combined with deep learning algorithms to detect heavy metals.The purpose of this study was to develop a deep learning method involving wavelet transform (WT) and stacked denoising autoencoder (SDAE) for extracting deep features of heavy metal lead (Pb) detection of oilseed rape leaves. Firstly, the standard normalized variable (SNV) algorithm was established as the best preprocessing algorithm, and the SNV-treated fluorescence spectral data was used for further data analysis. Then, WT was used to decompose the SNV-treated fluorescence spectra of oilseed rape leaves to obtain the optimal wavelet decomposition layers using different wavelet basis functions, and SDAE was used for deep feature learning under the optimal wavelet decomposition layer. Finally, the best established support vector machine regression (SVR) model prediction set parameters Rp2, RMSEP and RPD were 0.9388, 0.0199 mg/kg and 3.275 using sym7 as the wavelet basis function. The results of this study verified that the huge potential of fluorescence hyperspectral technology combined with deep learning algorithms to detect heavy metals.
The purpose of this study was to develop a deep learning method involving wavelet transform (WT) and stacked denoising autoencoder (SDAE) for extracting deep features of heavy metal lead (Pb) detection of oilseed rape leaves. Firstly, the standard normalized variable (SNV) algorithm was established as the best preprocessing algorithm, and the SNV-treated fluorescence spectral data was used for further data analysis. Then, WT was used to decompose the SNV-treated fluorescence spectra of oilseed rape leaves to obtain the optimal wavelet decomposition layers using different wavelet basis functions, and SDAE was used for deep feature learning under the optimal wavelet decomposition layer. Finally, the best established support vector machine regression (SVR) model prediction set parameters R , RMSEP and RPD were 0.9388, 0.0199 mg/kg and 3.275 using sym7 as the wavelet basis function. The results of this study verified that the huge potential of fluorescence hyperspectral technology combined with deep learning algorithms to detect heavy metals.
•FHSI was applied to the detection of lead content in oilseed rape leaves.•WT-SDAE model was proposed for deep feature extraction.•The WT-SDAE-SVR model achieved high-precision prediction of Pb concentration. The purpose of this study was to develop a deep learning method involving wavelet transform (WT) and stacked denoising autoencoder (SDAE) for extracting deep features of heavy metal lead (Pb) detection of oilseed rape leaves. Firstly, the standard normalized variable (SNV) algorithm was established as the best preprocessing algorithm, and the SNV-treated fluorescence spectral data was used for further data analysis. Then, WT was used to decompose the SNV-treated fluorescence spectra of oilseed rape leaves to obtain the optimal wavelet decomposition layers using different wavelet basis functions, and SDAE was used for deep feature learning under the optimal wavelet decomposition layer. Finally, the best established support vector machine regression (SVR) model prediction set parameters Rp2, RMSEP and RPD were 0.9388, 0.0199 mg/kg and 3.275 using sym7 as the wavelet basis function. The results of this study verified that the huge potential of fluorescence hyperspectral technology combined with deep learning algorithms to detect heavy metals.
ArticleNumber 135251
Author Cao, Yan
Sun, Jun
Yao, Kunshan
Zhou, Xin
Zhao, Chunjiang
Xu, Min
Author_xml – sequence: 1
  givenname: Xin
  surname: Zhou
  fullname: Zhou, Xin
  email: 862218958@qq.com
  organization: School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China
– sequence: 2
  givenname: Chunjiang
  surname: Zhao
  fullname: Zhao, Chunjiang
  organization: School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China
– sequence: 3
  givenname: Jun
  surname: Sun
  fullname: Sun, Jun
  email: sun2000jun@sina.com
  organization: School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China
– sequence: 4
  givenname: Yan
  surname: Cao
  fullname: Cao, Yan
  organization: School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China
– sequence: 5
  givenname: Kunshan
  surname: Yao
  fullname: Yao, Kunshan
  organization: School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China
– sequence: 6
  givenname: Min
  surname: Xu
  fullname: Xu, Min
  organization: School of Electrical and Information Engineering of Jiangsu University, Zhenjiang 212013, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36586261$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1LHTEUhkOx1Kv2L0iW3cw1HzNJBrqoSKsFoZu6DrnJGW8uM8k0yQj-ezNc7cKNq0DO8x4Oz3uGTkIMgNAlJVtKqLg6bIcYnd3DtGWEsS3lHevoJ7ShSvJGEslO0IZwohpFW3GKznI-EEIYoeoLOuWiU4IJukHpGjuAGY9gUvDhEU9Q9tHhISY8J3DelvW3jh22MRQIBfuAox8zgMPJzLAOnyDjJa_kMC4xQbYQLOD98wwpz2BLMiP2k3msyAX6PJga__r6nqOHXz__3tw1939uf99c3zeWC1WatuWUdUYYJ1RL5aAk7QXr-t2OO2el6oGCbSkQ5wbCXaeko1aBIz0w4C3l5-jbce-c4r8FctGTr3eNowkQl6yZ7Pq-k62QFb18RZfdBE7Pqd6anvWbpwqII2BTzDnB8B-hRK-F6IN-K0SvhehjITX4_V3Q-mKKryqT8ePH8R_HOFRRTx6Sztavap1P1ap20X-04gWOHKxj
CitedBy_id crossref_primary_10_3390_agriculture14091549
crossref_primary_10_1016_j_foodcont_2024_110531
crossref_primary_10_1016_j_saa_2024_124015
crossref_primary_10_3390_foods14020286
crossref_primary_10_1016_j_fct_2025_115401
crossref_primary_10_3390_machines13090818
crossref_primary_10_1002_jbio_202500164
crossref_primary_10_3390_foods14132350
crossref_primary_10_3390_s25185786
crossref_primary_10_1016_j_jfca_2025_107625
crossref_primary_10_3390_foods14173026
crossref_primary_10_1097_st9_0000000000000079
crossref_primary_10_3390_horticulturae11070840
crossref_primary_10_1007_s10044_025_01543_5
crossref_primary_10_1016_j_microc_2025_112913
crossref_primary_10_3390_foods14172977
crossref_primary_10_3390_f16030477
crossref_primary_10_1016_j_engappai_2025_111276
crossref_primary_10_1021_acssensors_5c00254
crossref_primary_10_3389_fpls_2023_1219476
crossref_primary_10_3390_foods14091601
crossref_primary_10_1007_s10921_024_01049_w
crossref_primary_10_3390_agronomy15081926
crossref_primary_10_1016_j_ijbiomac_2025_147398
crossref_primary_10_3390_en18164408
crossref_primary_10_3389_fpls_2023_1271320
crossref_primary_10_1109_ACCESS_2025_3591279
crossref_primary_10_1016_j_foodchem_2025_143391
crossref_primary_10_1016_j_talanta_2024_127347
crossref_primary_10_1016_j_energy_2025_138228
crossref_primary_10_1016_j_saa_2025_126387
crossref_primary_10_1016_j_trac_2024_117944
crossref_primary_10_1007_s11760_025_04274_6
crossref_primary_10_1016_j_talanta_2024_127473
crossref_primary_10_1016_j_microc_2024_110997
crossref_primary_10_1016_j_tifs_2024_104821
crossref_primary_10_1016_j_trac_2024_117980
crossref_primary_10_1021_acssensors_5c01499
crossref_primary_10_34133_plantphenomics_0124
crossref_primary_10_1007_s11947_025_03822_9
crossref_primary_10_3389_fpubh_2025_1608129
crossref_primary_10_1016_j_foodres_2024_115330
crossref_primary_10_1021_acs_inorgchem_5c00714
crossref_primary_10_1002_smll_202412271
crossref_primary_10_3390_agriculture15161775
crossref_primary_10_1016_j_microc_2024_110317
crossref_primary_10_1080_15376494_2025_2518475
crossref_primary_10_3390_app15158438
crossref_primary_10_3390_computers14080309
crossref_primary_10_1016_j_foodchem_2025_143799
crossref_primary_10_3390_rs16122190
crossref_primary_10_1007_s10489_025_06879_3
crossref_primary_10_3390_fi17070308
crossref_primary_10_3390_su16146064
crossref_primary_10_1002_jsfa_14177
crossref_primary_10_1016_j_saa_2024_123991
crossref_primary_10_3390_foods14071241
crossref_primary_10_1021_acs_jafc_5c06078
crossref_primary_10_3390_foods14111929
crossref_primary_10_1016_j_scitotenv_2024_175076
crossref_primary_10_1007_s11694_024_02745_x
crossref_primary_10_3390_foods14173114
crossref_primary_10_1016_j_microc_2025_112974
crossref_primary_10_3390_foods12102089
crossref_primary_10_3390_foods14142488
crossref_primary_10_1016_j_cej_2025_162796
crossref_primary_10_1038_s41598_025_16923_4
Cites_doi 10.1016/j.compag.2021.106557
10.1016/j.compeleceng.2022.107809
10.1111/jfpe.13293
10.1016/j.biosystemseng.2021.09.010
10.1021/cr050019q
10.1016/j.resconrec.2022.106261
10.1016/j.apnum.2020.05.019
10.1016/j.snb.2017.12.102
10.1016/j.saa.2019.117357
10.1016/j.foodchem.2021.131666
10.1016/j.saa.2021.120460
10.1016/j.scitotenv.2021.146567
10.1364/AO.448454
10.1016/j.compag.2022.106802
10.1016/j.infrared.2021.103936
10.1016/j.foodchem.2019.05.019
10.1080/01431161.2019.1685721
10.1016/j.foodchem.2012.05.114
10.1016/j.saa.2021.120591
10.1016/j.foodchem.2020.126503
10.1016/j.scitotenv.2020.138123
10.1016/j.ces.2022.117556
10.1111/1750-3841.14706
10.1016/j.jclepro.2017.12.214
10.1111/jfpe.13793
10.1016/j.envpol.2021.117829
10.1016/j.foodchem.2014.09.040
10.1111/jfpe.13897
10.1016/j.jfoodeng.2021.110840
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.foodchem.2022.135251
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Chemistry
Diet & Clinical Nutrition
EISSN 1873-7072
ExternalDocumentID 36586261
10_1016_j_foodchem_2022_135251
S0308814622032137
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
KZ1
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
WH7
~G-
~KM
29H
53G
9DU
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AGRDE
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLV
HVGLF
HZ~
R2-
SCB
VH1
WUQ
Y6R
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c368t-443125a6ad68417f87196259bb3ddc789e1ec41e0ddf03d587d1c8ed09e2e3413
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000923190600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0308-8146
1873-7072
IngestDate Sun Sep 28 00:26:44 EDT 2025
Wed Feb 19 02:26:33 EST 2025
Sat Nov 29 07:21:14 EST 2025
Tue Nov 18 22:30:37 EST 2025
Fri Feb 23 02:38:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Oilseed rape
Wavelet transform
Heavy metal lead
Stacked denoising autoencoder
Nondestructive testing
Fluorescence hyperspectral imaging
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-443125a6ad68417f87196259bb3ddc789e1ec41e0ddf03d587d1c8ed09e2e3413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 36586261
PQID 2759957467
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2759957467
pubmed_primary_36586261
crossref_primary_10_1016_j_foodchem_2022_135251
crossref_citationtrail_10_1016_j_foodchem_2022_135251
elsevier_sciencedirect_doi_10_1016_j_foodchem_2022_135251
PublicationCentury 2000
PublicationDate 2023-05-30
PublicationDateYYYYMMDD 2023-05-30
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-30
  day: 30
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Food chemistry
PublicationTitleAlternate Food Chem
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kortesniemi, Vuorinen, Sinkkonen, Yang, Rajala, Kallio (b0060) 2015; 172
Li, Zhao, Yang (b0075) 2021; 191
Birch (b0010) 2020; 727
He, Zhang, Yang, Chen, Pang, Shen (b0055) 2022; 375
Ozbekova, Kulmyrzaev (b0080) 2019; 223
Fu, Li, Xu, Xie, Yang, Xu (b0040) 2022; 61
Fridrihsone, Romagnoli, Cabulis (b0035) 2018; 177
Hattie, Ian, Felicity, Kirsti (b0050) 2022; 316
Li, Sun, Wu, Lu, Dai (b0070) 2019; 84
Sun, Wu, Hang, Lu, Wu, Chen (b0090) 2019; 42
Zhou, Zhao, Sun, Cao, Fu (b0145) 2021; 119
Zhou, Sun, Tian, Yao, Xu (b0150) 2022; 266
Lee, Kim, Lee, Cho (b0065) 2018; 259
Farroni, Buera (b0025) 2012; 135
Cao, Sun, Yao, Xu, Tang, Zhou (b0015) 2021; 44
Altunay, Elik, Gürkan (b0005) 2019; 293
Fazeli, Hojjati. (b0030) 2020; 156
Zhuang, Peng, Yang, Wang, Zhao, Chao (b0125) 2022; 316
Zhao, An, Tang (b0120) 2022; 195
Wan, Hu, Wang, Tian, Huang (b0095) 2021; 780
Sabeti, V., Sobhani, M., Hasheminejad, S. (2022). An adaptive image steganography method based on integer wavelet transform using genetic algorithm. Computers and Electrical Engineering 99, 107809. https://doi.org/10.1016/j.compeleceng.2022.107809.
Wu, Li, Yu, Wang, Wang, Liu (b0105) 2022; 181
Zhou, Sun, Tian, Lu, Hang, Chen (b0130) 2020; 321
Christensen, Noergaard, Bro, Engelsen (b0020) 2006; 37
Yu, Fang, Zhangjin, Mi, Feng, He (b0110) 2021; 212
Zeid, Aboshabana, Ibrahim (b0115) 2022; 267
Zhou, Sun, Tian, Lu, Hang, Chen (b0135) 2020; 41
Zhou, Sun, Zhang, Tian, Yao, Xu (b0140) 2021; 44
Gao, Wei, Huang, Gao (b0045) 2022; 253
Wang, Tan, Zhou, Lian, Zhu (b0100) 2021; 289
Christensen (10.1016/j.foodchem.2022.135251_b0020) 2006; 37
Fridrihsone (10.1016/j.foodchem.2022.135251_b0035) 2018; 177
Zhao (10.1016/j.foodchem.2022.135251_b0120) 2022; 195
Zhou (10.1016/j.foodchem.2022.135251_b0140) 2021; 44
10.1016/j.foodchem.2022.135251_b0085
Zhou (10.1016/j.foodchem.2022.135251_b0130) 2020; 321
Wu (10.1016/j.foodchem.2022.135251_b0105) 2022; 181
Lee (10.1016/j.foodchem.2022.135251_b0065) 2018; 259
Li (10.1016/j.foodchem.2022.135251_b0070) 2019; 84
Fazeli (10.1016/j.foodchem.2022.135251_b0030) 2020; 156
Fu (10.1016/j.foodchem.2022.135251_b0040) 2022; 61
Wan (10.1016/j.foodchem.2022.135251_b0095) 2021; 780
Zhou (10.1016/j.foodchem.2022.135251_b0150) 2022; 266
Li (10.1016/j.foodchem.2022.135251_b0075) 2021; 191
Zeid (10.1016/j.foodchem.2022.135251_b0115) 2022; 267
He (10.1016/j.foodchem.2022.135251_b0055) 2022; 375
Altunay (10.1016/j.foodchem.2022.135251_b0005) 2019; 293
Ozbekova (10.1016/j.foodchem.2022.135251_b0080) 2019; 223
Farroni (10.1016/j.foodchem.2022.135251_b0025) 2012; 135
Hattie (10.1016/j.foodchem.2022.135251_b0050) 2022; 316
Zhuang (10.1016/j.foodchem.2022.135251_b0125) 2022; 316
Kortesniemi (10.1016/j.foodchem.2022.135251_b0060) 2015; 172
Birch (10.1016/j.foodchem.2022.135251_b0010) 2020; 727
Gao (10.1016/j.foodchem.2022.135251_b0045) 2022; 253
Zhou (10.1016/j.foodchem.2022.135251_b0135) 2020; 41
Cao (10.1016/j.foodchem.2022.135251_b0015) 2021; 44
Wang (10.1016/j.foodchem.2022.135251_b0100) 2021; 289
Sun (10.1016/j.foodchem.2022.135251_b0090) 2019; 42
Zhou (10.1016/j.foodchem.2022.135251_b0145) 2021; 119
Yu (10.1016/j.foodchem.2022.135251_b0110) 2021; 212
References_xml – volume: 191
  year: 2021
  ident: b0075
  article-title: Building a new machine learning-based model to estimate county-level climatic yield variation for maize in Northeast China
  publication-title: Computers and Electronics in Agriculture
– volume: 293
  start-page: 378
  year: 2019
  end-page: 386
  ident: b0005
  article-title: Innovative and practical deep eutectic solvent based vortex assisted microextraction procedure for separation and preconcentration of low levels of arsenic and antimony from sample matrix prior to analysis by hydride generation-atomic absorption spectrometry
  publication-title: Food Chemistry
– volume: 119
  year: 2021
  ident: b0145
  article-title: Classification of heavy metal Cd stress in lettuce leaves based on WPCA algorithm and fluorescence hyperspectral technology
  publication-title: Infrared Physics & Technology
– volume: 727
  year: 2020
  ident: b0010
  article-title: An assessment of aluminum and iron in normalisation and enrichment procedures for environmental assessment of marine sediment
  publication-title: Science of the Total Environment
– volume: 44
  start-page: e13897
  year: 2021
  ident: b0140
  article-title: Visualization of heavy metal cadmium in lettuce leaves based on wavelet support vector machine regression model and visible-near infrared hyperspectral imaging
  publication-title: Journal of Food Process Engineering
– volume: 321
  year: 2020
  ident: b0130
  article-title: Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce
  publication-title: Food Chemistry
– volume: 84
  start-page: 2234
  year: 2019
  end-page: 2241
  ident: b0070
  article-title: Grade identification of tieguanyin tea using fluorescence hyperspectra and different statistical algorithms
  publication-title: Journal of Food Science
– volume: 41
  start-page: 2263
  year: 2020
  end-page: 2276
  ident: b0135
  article-title: Development of deep learning method for lead content prediction of lettuce leaf using hyperspectral images
  publication-title: International Journal of Remote Sensing
– volume: 195
  year: 2022
  ident: b0120
  article-title: Deep learning assisted continuous wavelet transform-based spectrogram for the detection of chlorophyll content in potato leaves
  publication-title: Computers and Electronics in Agriculture
– reference: Sabeti, V., Sobhani, M., Hasheminejad, S. (2022). An adaptive image steganography method based on integer wavelet transform using genetic algorithm. Computers and Electrical Engineering 99, 107809. https://doi.org/10.1016/j.compeleceng.2022.107809.
– volume: 156
  start-page: 514
  year: 2020
  end-page: 527
  ident: b0030
  article-title: Second derivative two-step collocation methods for ordinary differential equations
  publication-title: Applied Numerical Mathematics
– volume: 267
  year: 2022
  ident: b0115
  article-title: First-order derivative synchronous spectrofluorimetric determination of two antihypertensive drugs, metolazone and valsartan, in pharmaceutical and biological matrices
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
– volume: 177
  start-page: 79
  year: 2018
  end-page: 88
  ident: b0035
  article-title: Life Cycle Inventory for winter and spring rapeseed production in Northern Europe
  publication-title: Journal of Cleaner Production
– volume: 61
  start-page: 2536
  year: 2022
  end-page: 2541
  ident: b0040
  article-title: Prediction of heavy metal Cd and stress on minerals in rice by analysis of LIBS spectra
  publication-title: Applied Optics
– volume: 289
  year: 2021
  ident: b0100
  article-title: Heavy metal fixation of lead-contaminated soil using morchella mycelium
  publication-title: Environmental pollution
– volume: 181
  year: 2022
  ident: b0105
  article-title: Review of soil heavy metal pollution in China: Spatial distribution, primary sources, and remediation alternatives
  publication-title: Resources, Conservation and Recycling
– volume: 316
  year: 2022
  ident: b0050
  article-title: Chronic tropospheric ozone exposure reduces seed yield and quality in spring and winter oilseed rape
  publication-title: Agricultural and Forest Meteorology
– volume: 42
  start-page: e13293
  year: 2019
  ident: b0090
  article-title: Estimating cadmium content in lettuce leaves based on deep brief network and hyperspectral imaging technology
  publication-title: Journal of Food Process Engineering
– volume: 223
  year: 2019
  ident: b0080
  article-title: Study of moisture content and water activity of rice using fluorescence spectroscopy and multivariate analysis
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
– volume: 375
  year: 2022
  ident: b0055
  article-title: Estimating bulk optical properties of AFB1 contaminated edible oils in 300–900 nm by combining double integrating spheres technique with laser induced fluorescence spectroscopy
  publication-title: Food Chemistry
– volume: 44
  start-page: e13793
  year: 2021
  ident: b0015
  article-title: Nondestructive detection of lead content in oilseed rape leaves based on MRF-HHO-SVR and hyperspectral technology
  publication-title: Journal of Food Process Engineering
– volume: 316
  year: 2022
  ident: b0125
  article-title: Detection of frozen pork freshness by fluorescence hyperspectral image
  publication-title: Journal of Food Engineering
– volume: 37
  start-page: 1979
  year: 2006
  end-page: 1994
  ident: b0020
  article-title: Multivariate autofluorescence of intact food systems
  publication-title: Chemical Reviews
– volume: 135
  start-page: 1685
  year: 2012
  end-page: 1691
  ident: b0025
  article-title: Colour and surface fluorescence development and their relationship with maillard reaction markers as influenced by structural changes during cornflakes production
  publication-title: Food Chemistry
– volume: 266
  year: 2022
  ident: b0150
  article-title: Detection of heavy metal lead in lettuce leaves based on fluorescence hyperspectral technology combined with deep learning algorithm
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
– volume: 259
  start-page: 532
  year: 2018
  end-page: 539
  ident: b0065
  article-title: Determination of the total volatile basic nitrogen (tvb-n) content in pork meat using hyperspectral fluorescence imaging
  publication-title: Sensors and Actuators B Chemical
– volume: 780
  year: 2021
  ident: b0095
  article-title: Comprehensive assessment of heavy metal risk in soil-crop systems along the Yangtze River in Nanjing, Southeast China
  publication-title: Science of the Total Environment
– volume: 172
  start-page: 63
  year: 2015
  end-page: 70
  ident: b0060
  article-title: NMR metabolomics of ripened and developing oilseed rape (brassica napus) and turnip rape (brassica rapa)
  publication-title: Food Chemistry
– volume: 212
  start-page: 46
  year: 2021
  end-page: 61
  ident: b0110
  article-title: Hyperspectral imaging technology combined with deep learning for hybrid okra seed identification
  publication-title: Biosystems Engineering
– volume: 253
  year: 2022
  ident: b0045
  article-title: Multimode process monitoring based on hierarchical mode identification and stacked denoising autoencoder
  publication-title: Chemical Engineering Science
– volume: 191
  year: 2021
  ident: 10.1016/j.foodchem.2022.135251_b0075
  article-title: Building a new machine learning-based model to estimate county-level climatic yield variation for maize in Northeast China
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2021.106557
– ident: 10.1016/j.foodchem.2022.135251_b0085
  doi: 10.1016/j.compeleceng.2022.107809
– volume: 42
  start-page: e13293
  issue: 8
  year: 2019
  ident: 10.1016/j.foodchem.2022.135251_b0090
  article-title: Estimating cadmium content in lettuce leaves based on deep brief network and hyperspectral imaging technology
  publication-title: Journal of Food Process Engineering
  doi: 10.1111/jfpe.13293
– volume: 212
  start-page: 46
  year: 2021
  ident: 10.1016/j.foodchem.2022.135251_b0110
  article-title: Hyperspectral imaging technology combined with deep learning for hybrid okra seed identification
  publication-title: Biosystems Engineering
  doi: 10.1016/j.biosystemseng.2021.09.010
– volume: 37
  start-page: 1979
  issue: 37
  year: 2006
  ident: 10.1016/j.foodchem.2022.135251_b0020
  article-title: Multivariate autofluorescence of intact food systems
  publication-title: Chemical Reviews
  doi: 10.1021/cr050019q
– volume: 181
  year: 2022
  ident: 10.1016/j.foodchem.2022.135251_b0105
  article-title: Review of soil heavy metal pollution in China: Spatial distribution, primary sources, and remediation alternatives
  publication-title: Resources, Conservation and Recycling
  doi: 10.1016/j.resconrec.2022.106261
– volume: 156
  start-page: 514
  year: 2020
  ident: 10.1016/j.foodchem.2022.135251_b0030
  article-title: Second derivative two-step collocation methods for ordinary differential equations
  publication-title: Applied Numerical Mathematics
  doi: 10.1016/j.apnum.2020.05.019
– volume: 259
  start-page: 532
  year: 2018
  ident: 10.1016/j.foodchem.2022.135251_b0065
  article-title: Determination of the total volatile basic nitrogen (tvb-n) content in pork meat using hyperspectral fluorescence imaging
  publication-title: Sensors and Actuators B Chemical
  doi: 10.1016/j.snb.2017.12.102
– volume: 223
  year: 2019
  ident: 10.1016/j.foodchem.2022.135251_b0080
  article-title: Study of moisture content and water activity of rice using fluorescence spectroscopy and multivariate analysis
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
  doi: 10.1016/j.saa.2019.117357
– volume: 375
  year: 2022
  ident: 10.1016/j.foodchem.2022.135251_b0055
  article-title: Estimating bulk optical properties of AFB1 contaminated edible oils in 300–900 nm by combining double integrating spheres technique with laser induced fluorescence spectroscopy
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2021.131666
– volume: 266
  year: 2022
  ident: 10.1016/j.foodchem.2022.135251_b0150
  article-title: Detection of heavy metal lead in lettuce leaves based on fluorescence hyperspectral technology combined with deep learning algorithm
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
  doi: 10.1016/j.saa.2021.120460
– volume: 316
  year: 2022
  ident: 10.1016/j.foodchem.2022.135251_b0050
  article-title: Chronic tropospheric ozone exposure reduces seed yield and quality in spring and winter oilseed rape
  publication-title: Agricultural and Forest Meteorology
– volume: 780
  year: 2021
  ident: 10.1016/j.foodchem.2022.135251_b0095
  article-title: Comprehensive assessment of heavy metal risk in soil-crop systems along the Yangtze River in Nanjing, Southeast China
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2021.146567
– volume: 61
  start-page: 2536
  issue: 10
  year: 2022
  ident: 10.1016/j.foodchem.2022.135251_b0040
  article-title: Prediction of heavy metal Cd and stress on minerals in rice by analysis of LIBS spectra
  publication-title: Applied Optics
  doi: 10.1364/AO.448454
– volume: 195
  year: 2022
  ident: 10.1016/j.foodchem.2022.135251_b0120
  article-title: Deep learning assisted continuous wavelet transform-based spectrogram for the detection of chlorophyll content in potato leaves
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/j.compag.2022.106802
– volume: 119
  year: 2021
  ident: 10.1016/j.foodchem.2022.135251_b0145
  article-title: Classification of heavy metal Cd stress in lettuce leaves based on WPCA algorithm and fluorescence hyperspectral technology
  publication-title: Infrared Physics & Technology
  doi: 10.1016/j.infrared.2021.103936
– volume: 293
  start-page: 378
  year: 2019
  ident: 10.1016/j.foodchem.2022.135251_b0005
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2019.05.019
– volume: 41
  start-page: 2263
  issue: 6
  year: 2020
  ident: 10.1016/j.foodchem.2022.135251_b0135
  article-title: Development of deep learning method for lead content prediction of lettuce leaf using hyperspectral images
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431161.2019.1685721
– volume: 135
  start-page: 1685
  issue: 3
  year: 2012
  ident: 10.1016/j.foodchem.2022.135251_b0025
  article-title: Colour and surface fluorescence development and their relationship with maillard reaction markers as influenced by structural changes during cornflakes production
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2012.05.114
– volume: 267
  year: 2022
  ident: 10.1016/j.foodchem.2022.135251_b0115
  article-title: First-order derivative synchronous spectrofluorimetric determination of two antihypertensive drugs, metolazone and valsartan, in pharmaceutical and biological matrices
  publication-title: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
  doi: 10.1016/j.saa.2021.120591
– volume: 321
  year: 2020
  ident: 10.1016/j.foodchem.2022.135251_b0130
  article-title: Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2020.126503
– volume: 727
  year: 2020
  ident: 10.1016/j.foodchem.2022.135251_b0010
  article-title: An assessment of aluminum and iron in normalisation and enrichment procedures for environmental assessment of marine sediment
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2020.138123
– volume: 253
  year: 2022
  ident: 10.1016/j.foodchem.2022.135251_b0045
  article-title: Multimode process monitoring based on hierarchical mode identification and stacked denoising autoencoder
  publication-title: Chemical Engineering Science
  doi: 10.1016/j.ces.2022.117556
– volume: 84
  start-page: 2234
  issue: 2
  year: 2019
  ident: 10.1016/j.foodchem.2022.135251_b0070
  article-title: Grade identification of tieguanyin tea using fluorescence hyperspectra and different statistical algorithms
  publication-title: Journal of Food Science
  doi: 10.1111/1750-3841.14706
– volume: 177
  start-page: 79
  year: 2018
  ident: 10.1016/j.foodchem.2022.135251_b0035
  article-title: Life Cycle Inventory for winter and spring rapeseed production in Northern Europe
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2017.12.214
– volume: 44
  start-page: e13793
  issue: 9
  year: 2021
  ident: 10.1016/j.foodchem.2022.135251_b0015
  article-title: Nondestructive detection of lead content in oilseed rape leaves based on MRF-HHO-SVR and hyperspectral technology
  publication-title: Journal of Food Process Engineering
  doi: 10.1111/jfpe.13793
– volume: 289
  year: 2021
  ident: 10.1016/j.foodchem.2022.135251_b0100
  article-title: Heavy metal fixation of lead-contaminated soil using morchella mycelium
  publication-title: Environmental pollution
  doi: 10.1016/j.envpol.2021.117829
– volume: 172
  start-page: 63
  year: 2015
  ident: 10.1016/j.foodchem.2022.135251_b0060
  article-title: NMR metabolomics of ripened and developing oilseed rape (brassica napus) and turnip rape (brassica rapa)
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2014.09.040
– volume: 44
  start-page: e13897
  issue: 12
  year: 2021
  ident: 10.1016/j.foodchem.2022.135251_b0140
  article-title: Visualization of heavy metal cadmium in lettuce leaves based on wavelet support vector machine regression model and visible-near infrared hyperspectral imaging
  publication-title: Journal of Food Process Engineering
  doi: 10.1111/jfpe.13897
– volume: 316
  year: 2022
  ident: 10.1016/j.foodchem.2022.135251_b0125
  article-title: Detection of frozen pork freshness by fluorescence hyperspectral image
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2021.110840
SSID ssj0002018
Score 2.6293015
Snippet •FHSI was applied to the detection of lead content in oilseed rape leaves.•WT-SDAE model was proposed for deep feature extraction.•The WT-SDAE-SVR model...
The purpose of this study was to develop a deep learning method involving wavelet transform (WT) and stacked denoising autoencoder (SDAE) for extracting deep...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 135251
SubjectTerms Algorithms
Brassica napus
Deep Learning
Fluorescence hyperspectral imaging
Heavy metal lead
Hyperspectral Imaging
Least-Squares Analysis
Nondestructive testing
Oilseed rape
Plant Leaves
Spectroscopy, Near-Infrared - methods
Stacked denoising autoencoder
Wavelet transform
Title A deep learning method for predicting lead content in oilseed rape leaves using fluorescence hyperspectral imaging
URI https://dx.doi.org/10.1016/j.foodchem.2022.135251
https://www.ncbi.nlm.nih.gov/pubmed/36586261
https://www.proquest.com/docview/2759957467
Volume 409
WOSCitedRecordID wos000923190600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7072
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002018
  issn: 0308-8146
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6lLRJcEJQtLNUgIS7IJR5vM8cotAKEIg4FmZNlz9ImCk7kxFWP_HTebHaKWkoPXCxrNs34fZ55781bEHrDpaqqSspAMVYGMVFRoNmSgDHJqlTFIjQK_e9fsumU5jn7Ohj88r4w54usrunFBVv9V1JDGRBbu87egtzdoFAA70B0eALZ4flPhB-_E1KufDqIU5cj2pgTrhp9LWMMnaFaGDt1bQsw0-kp4IwE5lM7Y-lKHYy2NXoEtWiXjQn6BFvAGYit1jvTROv4aXIcbTO4xzpKMvdZ5Hq19LLVxMxndV9UWi3tWVvPAaOn_fWUcxfpmk5syx8OyE5HQYxFoLtucb5ZI9orG92-G4_Y1s4Z6ris4ZWbutUvzA8VrEAvAKR6Qg77DpejaP9xunU2h96cbV74cQo9TmHH2UF7JEsY7It7409H-efuNAcGidqbKLuCLS_zq2d0HYNznQBjGJmTB-i-k0Dw2CLnIRrIeh_dnXiS7aPhh5nc4LfYhYxd4KnP2ADtvCP7-hFqxlgjDXukYYs0DEjDPdJ0tcAOaXhWY4c0rJGGLdKwQRreRhq-hDTskPYYfTs-Opl8DFwKj4BHKd0EMfCnJCnTUqQ0DjMF4jnTEndVRULwjDIZSh6HciSEGkUioZkIOZVixCSRmsF6gnbrZS2fIVwpSTjjJYlUGMciKytalkLyMFFKkbQaosR_94K7-PY6zcqi-Dvlh-h9129lI7zc2IN5shaOT7X8ZwGIvbHva4-DAsiqb-fKWi7bdWHgl-jsP0P01AKkm08EckJK0vD5ref6At3rf8iXaHfTtPIVusPPN7N1c4B2spweOMj_Bqtx0Oc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+method+for+predicting+lead+content+in+oilseed+rape+leaves+using+fluorescence+hyperspectral+imaging&rft.jtitle=Food+chemistry&rft.au=Zhou%2C+Xin&rft.au=Zhao%2C+Chunjiang&rft.au=Sun%2C+Jun&rft.au=Cao%2C+Yan&rft.date=2023-05-30&rft.issn=0308-8146&rft.volume=409&rft.spage=135251&rft_id=info:doi/10.1016%2Fj.foodchem.2022.135251&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_foodchem_2022_135251
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-8146&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-8146&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-8146&client=summon