A feature group weighting method for subspace clustering of high-dimensional data

This paper proposes a new method to weight subspaces in feature groups and individual features for clustering high-dimensional data. In this method, the features of high-dimensional data are divided into feature groups, based on their natural characteristics. Two types of weights are introduced to t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Pattern recognition Ročník 45; číslo 1; s. 434 - 446
Hlavní autori: Chen, Xiaojun, Ye, Yunming, Xu, Xiaofei, Huang, Joshua Zhexue
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Kidlington Elsevier Ltd 2012
Elsevier
Predmet:
ISSN:0031-3203, 1873-5142
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper proposes a new method to weight subspaces in feature groups and individual features for clustering high-dimensional data. In this method, the features of high-dimensional data are divided into feature groups, based on their natural characteristics. Two types of weights are introduced to the clustering process to simultaneously identify the importance of feature groups and individual features in each cluster. A new optimization model is given to define the optimization process and a new clustering algorithm FG- k-means is proposed to optimize the optimization model. The new algorithm is an extension to k-means by adding two additional steps to automatically calculate the two types of subspace weights. A new data generation method is presented to generate high-dimensional data with clusters in subspaces of both feature groups and individual features. Experimental results on synthetic and real-life data have shown that the FG- k-means algorithm significantly outperformed four k-means type algorithms, i.e., k-means, W- k-means, LAC and EWKM in almost all experiments. The new algorithm is robust to noise and missing values which commonly exist in high-dimensional data. ► Its first method to weight subspaces of feature groups and individual features. ► We propose the FG- k-means algorithm to optimize the new model. ► We present a method to generate data with clusters in subspaces of feature groups. ► We present experimental results on synthetic and real-life data of FG- k-means. ► Experimental results demonstrate that it can be used for feature selection.
AbstractList This paper proposes a new method to weight subspaces in feature groups and individual features for clustering high-dimensional data. In this method, the features of high-dimensional data are divided into feature groups, based on their natural characteristics. Two types of weights are introduced to the clustering process to simultaneously identify the importance of feature groups and individual features in each cluster. A new optimization model is given to define the optimization process and a new clustering algorithm FG-k-means is proposed to optimize the optimization model. The new algorithm is an extension to k-means by adding two additional steps to automatically calculate the two types of subspace weights. A new data generation method is presented to generate high-dimensional data with clusters in subspaces of both feature groups and individual features. Experimental results on synthetic and real-life data have shown that the FG-k-means algorithm significantly outperformed four k-means type algorithms, i.e., k-means, W-k-means, LAC and EWKM in almost all experiments. The new algorithm is robust to noise and missing values which commonly exist in high-dimensional data.
This paper proposes a new method to weight subspaces in feature groups and individual features for clustering high-dimensional data. In this method, the features of high-dimensional data are divided into feature groups, based on their natural characteristics. Two types of weights are introduced to the clustering process to simultaneously identify the importance of feature groups and individual features in each cluster. A new optimization model is given to define the optimization process and a new clustering algorithm FG- k-means is proposed to optimize the optimization model. The new algorithm is an extension to k-means by adding two additional steps to automatically calculate the two types of subspace weights. A new data generation method is presented to generate high-dimensional data with clusters in subspaces of both feature groups and individual features. Experimental results on synthetic and real-life data have shown that the FG- k-means algorithm significantly outperformed four k-means type algorithms, i.e., k-means, W- k-means, LAC and EWKM in almost all experiments. The new algorithm is robust to noise and missing values which commonly exist in high-dimensional data. ► Its first method to weight subspaces of feature groups and individual features. ► We propose the FG- k-means algorithm to optimize the new model. ► We present a method to generate data with clusters in subspaces of feature groups. ► We present experimental results on synthetic and real-life data of FG- k-means. ► Experimental results demonstrate that it can be used for feature selection.
Author Ye, Yunming
Xu, Xiaofei
Chen, Xiaojun
Huang, Joshua Zhexue
Author_xml – sequence: 1
  givenname: Xiaojun
  surname: Chen
  fullname: Chen, Xiaojun
  email: xjchen.hitsz@gmail.com
  organization: Shenzhen Graduate School, Harbin Institute of Technology, China
– sequence: 2
  givenname: Yunming
  surname: Ye
  fullname: Ye, Yunming
  email: yeyunming@hit.edu.cn
  organization: Shenzhen Graduate School, Harbin Institute of Technology, China
– sequence: 3
  givenname: Xiaofei
  surname: Xu
  fullname: Xu, Xiaofei
  email: xiaofei@hit.edu.cn
  organization: Department of Computer Science and Engineering, Harbin Institute of Technology, Harbin, China
– sequence: 4
  givenname: Joshua Zhexue
  surname: Huang
  fullname: Huang, Joshua Zhexue
  email: zx.huang@siat.ac.cn
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24755322$$DView record in Pascal Francis
BookMark eNqFkDFv2zAQRonAAeIk_QcduBSdpBxJk5I7FDCCNCkQoCiQzMSJOtk0ZFElqRb595XhIEOHZrrh3vuGd8kWQxiIsY8CSgHC3OzLEbML21KCECWYEmB1xpairlShxUou2BJAiUJJUBfsMqU9gKjmx5L93PCOME-R-DaGaeR_yG932Q9bfqC8Cy3vQuRpatKIjrjrp5QpHt-h47sZLVp_oCH5MGDPW8x4zc477BN9eL1X7Pnb3dPtQ_H44_777eaxcMrUuVB6jVDVsm46p9ZE60ZjY1qnoKZGkXAGFJLQrkZTtbqpoKkINVJVd9ogqCv2-bQ7xvBropTtwSdHfY8DhSnZtTRKCl2rmfz0SmJy2HcRB-eTHaM_YHyxclVpraScudWJczGkFKl7QwTYY2i7t6fQ9hjagrFz6Fn78o_mfMY8F8kRff-e_PUk05zqt6dok_M0OGp9JJdtG_z_B_4CnXKezQ
CODEN PTNRA8
CitedBy_id crossref_primary_10_1007_s11063_023_11332_y
crossref_primary_10_1016_j_ins_2019_07_045
crossref_primary_10_1016_j_patcog_2014_11_003
crossref_primary_10_1109_ACCESS_2019_2952548
crossref_primary_10_1016_j_patcog_2015_05_016
crossref_primary_10_1016_j_ins_2021_01_033
crossref_primary_10_3390_buildings14061553
crossref_primary_10_3233_IFS_141517
crossref_primary_10_4018_IJIIT_2018070103
crossref_primary_10_1016_j_cogsys_2018_01_003
crossref_primary_10_1016_j_eswa_2020_113487
crossref_primary_10_1016_j_neunet_2019_09_014
crossref_primary_10_1016_j_eswa_2021_115424
crossref_primary_10_1109_TPAMI_2020_3002587
crossref_primary_10_1016_j_knosys_2018_01_005
crossref_primary_10_1007_s10044_020_00884_7
crossref_primary_10_1016_j_knosys_2015_05_014
crossref_primary_10_1061_JUPDDM_UPENG_5032
crossref_primary_10_1109_ACCESS_2020_2972333
crossref_primary_10_1007_s13042_016_0556_5
crossref_primary_10_1109_TSMC_2018_2847625
crossref_primary_10_1016_j_eswa_2013_12_001
crossref_primary_10_1016_j_knosys_2019_04_011
crossref_primary_10_1016_j_neucom_2013_11_047
crossref_primary_10_1016_j_neunet_2019_10_010
crossref_primary_10_1016_j_patcog_2012_02_033
crossref_primary_10_1007_s10489_018_1348_2
crossref_primary_10_1007_s41066_024_00470_w
crossref_primary_10_1016_j_knosys_2018_09_009
crossref_primary_10_1109_MIS_2017_41
crossref_primary_10_1016_j_asoc_2016_06_010
crossref_primary_10_1007_s00357_016_9208_4
crossref_primary_10_1007_s00521_019_04467_4
crossref_primary_10_1016_j_patcog_2024_111113
crossref_primary_10_1016_j_asoc_2019_02_043
crossref_primary_10_1016_j_knosys_2018_03_028
crossref_primary_10_1109_ACCESS_2025_3574066
crossref_primary_10_1016_j_asoc_2025_113913
crossref_primary_10_1016_j_patcog_2018_03_014
crossref_primary_10_1016_j_engappai_2015_08_005
crossref_primary_10_1016_j_patcog_2013_02_005
crossref_primary_10_1109_TCYB_2018_2836804
crossref_primary_10_2478_acss_2019_0007
crossref_primary_10_1007_s11042_017_5096_9
crossref_primary_10_1016_j_ins_2016_01_101
crossref_primary_10_1155_2015_471371
crossref_primary_10_1002_cpe_5678
crossref_primary_10_1016_j_patcog_2017_10_026
crossref_primary_10_1007_s10489_021_02974_3
crossref_primary_10_1109_ACCESS_2018_2815606
crossref_primary_10_1016_j_aei_2016_05_003
crossref_primary_10_1016_j_neucom_2019_12_030
crossref_primary_10_1007_s10389_020_01418_5
crossref_primary_10_1007_s11571_015_9351_3
crossref_primary_10_1109_TCYB_2018_2887094
crossref_primary_10_1016_j_neucom_2013_12_027
crossref_primary_10_1007_s10044_020_00887_4
crossref_primary_10_1016_j_knosys_2014_07_009
crossref_primary_10_1016_j_knosys_2019_105102
crossref_primary_10_1016_j_patcog_2021_108154
crossref_primary_10_1109_TNNLS_2019_2909425
crossref_primary_10_1016_j_patcog_2019_05_033
crossref_primary_10_3934_bdia_2016_1_93
crossref_primary_10_1016_j_ipm_2015_11_003
crossref_primary_10_1109_TNNLS_2013_2293795
crossref_primary_10_1109_ACCESS_2019_2924491
crossref_primary_10_1016_j_eswa_2017_05_076
crossref_primary_10_4028_www_scientific_net_AMR_989_994_1837
crossref_primary_10_1016_j_neucom_2019_07_086
crossref_primary_10_1016_j_patcog_2015_10_018
crossref_primary_10_1016_j_neunet_2020_06_022
crossref_primary_10_1007_s00521_020_05184_z
crossref_primary_10_1016_j_patcog_2023_109314
crossref_primary_10_1016_j_patcog_2018_05_027
crossref_primary_10_1007_s11263_020_01320_3
crossref_primary_10_1016_j_patcog_2019_106982
crossref_primary_10_1109_TCYB_2017_2771496
crossref_primary_10_1109_TPAMI_2020_3047489
crossref_primary_10_1007_s10994_013_5337_8
crossref_primary_10_1109_TKDE_2017_2763620
crossref_primary_10_1007_s40747_020_00191_y
crossref_primary_10_3390_info10060208
crossref_primary_10_1109_TCBB_2017_2705686
crossref_primary_10_3233_JIFS_220629
crossref_primary_10_1016_j_patcog_2022_108809
Cites_doi 10.1145/276304.276314
10.1023/A:1009769707641
10.1109/TKDE.2007.1048
10.1016/0031-3203(80)90001-1
10.1145/342009.335383
10.1016/j.patcog.2003.11.003
10.1007/BF01908588
10.1145/1007730.1007731
10.1023/A:1024016609528
10.1007/s10618-006-0060-8
10.1109/TPAMI.1980.6592364
10.1214/06-BA111
10.1007/BF01908720
10.1145/304182.304188
10.1109/ICDE.2005.96
10.1145/1497577.1497578
10.1145/564691.564739
10.1109/TKDE.2004.74
10.1007/BF02294206
10.1016/j.patcog.2009.09.010
10.1111/j.1467-9868.2004.02059.x
10.14778/1453856.1453871
10.1016/S0167-739X(97)00018-6
10.1109/TPAMI.2005.95
10.1016/j.csda.2007.02.009
10.1137/1.9781611972740.58
10.1016/j.patcog.2003.08.002
10.1091/mbc.9.12.3273
10.1016/j.csda.2008.03.002
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patcog.2011.06.004
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-5142
EndPage 446
ExternalDocumentID 24755322
10_1016_j_patcog_2011_06_004
S003132031100269X
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c368t-359a07828bfc39ee9b5ab6dc308eb3e1c603ae15c8a67d5b70b7ea5ae78f56a03
ISICitedReferencesCount 103
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000295760700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Thu Oct 02 07:37:36 EDT 2025
Mon Jul 21 09:18:14 EDT 2025
Tue Nov 18 22:04:10 EST 2025
Sat Nov 29 07:29:43 EST 2025
Fri Feb 23 02:33:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Subspace clustering
High-dimensional data analysis
Data mining
k-Means
Feature weighting
Performance evaluation
Data analysis
Automatic classification
Subspace method
Data processing
K means algorithm
Signal classification
Optimization
Weighting
Dimensional analysis
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-359a07828bfc39ee9b5ab6dc308eb3e1c603ae15c8a67d5b70b7ea5ae78f56a03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 926321583
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_926321583
pascalfrancis_primary_24755322
crossref_primary_10_1016_j_patcog_2011_06_004
crossref_citationtrail_10_1016_j_patcog_2011_06_004
elsevier_sciencedirect_doi_10_1016_j_patcog_2011_06_004
PublicationCentury 2000
PublicationDate 2012
2012-01-00
20120101
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Pattern recognition
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Green, Kim, Carmone (bib27) 1990; 7
Kriegel, Kröger, Zimek (bib3) 2009; 3
Domeniconi, Gunopulos, Ma, Yan, Al-Razgan, Papadopoulos (bib20) 2007; 14
Chan, Ching, Ng, Huang (bib14) 2004; 37
Deng, Choi, Chung, Wang (bib29) 2010; 43
C. Domeniconi, D. Papadopoulos, D. Gunopulos, S. Ma, Subspace clustering of high dimensional data, in: Proceedings of the Fourth SIAM International Conference on Data Mining, Lake Buena Vista, Florida, USA, 2004, pp. 517–521.
Hoff (bib28) 2006; 1
K. Yip, D. Cheung, M. Ng, On discovery of extremely low-dimensional clusters using semi-supervised projected clustering, in: Proceedings of the 21st International Conference on Data Engineering, Tokyo, Japan, 2005, pp. 329–340.
Mui, Fu (bib25) 1980; 2
R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic subspace clustering of high dimensional data for data mining applications, in: Proceedings of ACM SIGMOD International Conference on Management of Data, Seattle, Washington, USA, 1998, pp. 94–105.
Milligan (bib12) 1989; 6
Modha, Spangler (bib13) 2003; 52
Frigui, Nasraoui (bib15) 2004
Bouveyron, Girard, Schmid (bib22) 2007; 52
Huang, Ng, Rong, Li (bib19) 2005; 27
DeSarbo, Carroll, Clark, Green (bib11) 1984; 49
Spellman, Sherlock, Zhang, Iyer, Anders, Eisen, Brown, Botstein, Futcher (bib30) 1998; 9
2010.
Jing, Ng, Huang (bib21) 2007; 19
A. Frank, A. Asuncion, UCI Machine Learning Repository
Parsons, Haque, Liu (bib2) 2004; 6
C.C. Aggarwal, P.S. Yu, finding generalized projected clusters in high dimensional spaces, in: Proceedings of ACM SIGMOD International Conference on Management of Data, Dallas, Texas, USA, 2000, pp. 70–81.
Frigui, Nasraoui (bib16) 2004; 37
H. Cheng, K.A. Hua, K. Vu, Constrained locally weighted clustering, in: Proceedings of the VLDB Endowment, vol. 1, Auckland, New Zealand, 2008, pp. 90–101.
Huang (bib26) 1998; 2
Tsai, Chiu (bib23) 2008; 52
K. Chakrabarti, S. Mehrotra, Local dimensionality reduction: a new approach to indexing high dimensional spaces, in: Proceedings of the 26th International Conference on Very Large Data Bases, Cairo, Egypt, 2000, pp. 89–100.
C.C. Aggarwal, J.L. Wolf, P.S. Yu, C. Procopiuc, J.S. Park, Fast algorithms for projected clustering, in: Proceedings of ACM SIGMOD International Conference on Management of Data, Philadelphia, Pennsylvania, USA, 1999, pp. 61–72.
Milligan, Isaac (bib31) 1980; 12
C. Procopiuc, M. Jones, P. Agarwal, T. Murali, A Monte Carlo algorithm for fast projective clustering, in: Proceedings of ACM SIGMOD International Conference on Management of Data, Madison, Wisconsin, USA, 2002, pp. 418–427.
D. Donoho, High-dimensional data analysis: the curses and blessings of dimensionality, American Mathematical Society-Mathematical Challenges of the 21st Century, Los Angeles, CA, USA, 2000.
Yip, Cheung, Ng (bib9) 2004; 16
Friedman, Meulman (bib18) 2004; 66
Zait, Messatfa (bib32) 1997; 13
Bouveyron (10.1016/j.patcog.2011.06.004_bib22) 2007; 52
Domeniconi (10.1016/j.patcog.2011.06.004_bib20) 2007; 14
10.1016/j.patcog.2011.06.004_bib24
Huang (10.1016/j.patcog.2011.06.004_bib26) 1998; 2
Hoff (10.1016/j.patcog.2011.06.004_bib28) 2006; 1
Modha (10.1016/j.patcog.2011.06.004_bib13) 2003; 52
Zait (10.1016/j.patcog.2011.06.004_bib32) 1997; 13
10.1016/j.patcog.2011.06.004_bib1
Tsai (10.1016/j.patcog.2011.06.004_bib23) 2008; 52
Parsons (10.1016/j.patcog.2011.06.004_bib2) 2004; 6
10.1016/j.patcog.2011.06.004_bib5
Frigui (10.1016/j.patcog.2011.06.004_bib16) 2004; 37
10.1016/j.patcog.2011.06.004_bib4
10.1016/j.patcog.2011.06.004_bib7
DeSarbo (10.1016/j.patcog.2011.06.004_bib11) 1984; 49
10.1016/j.patcog.2011.06.004_bib6
10.1016/j.patcog.2011.06.004_bib8
Deng (10.1016/j.patcog.2011.06.004_bib29) 2010; 43
Milligan (10.1016/j.patcog.2011.06.004_bib12) 1989; 6
Green (10.1016/j.patcog.2011.06.004_bib27) 1990; 7
Frigui (10.1016/j.patcog.2011.06.004_bib15) 2004
Friedman (10.1016/j.patcog.2011.06.004_bib18) 2004; 66
10.1016/j.patcog.2011.06.004_bib10
10.1016/j.patcog.2011.06.004_bib33
Huang (10.1016/j.patcog.2011.06.004_bib19) 2005; 27
10.1016/j.patcog.2011.06.004_bib17
Chan (10.1016/j.patcog.2011.06.004_bib14) 2004; 37
Yip (10.1016/j.patcog.2011.06.004_bib9) 2004; 16
Kriegel (10.1016/j.patcog.2011.06.004_bib3) 2009; 3
Milligan (10.1016/j.patcog.2011.06.004_bib31) 1980; 12
Jing (10.1016/j.patcog.2011.06.004_bib21) 2007; 19
Mui (10.1016/j.patcog.2011.06.004_bib25) 1980; 2
Spellman (10.1016/j.patcog.2011.06.004_bib30) 1998; 9
References_xml – reference: C.C. Aggarwal, P.S. Yu, finding generalized projected clusters in high dimensional spaces, in: Proceedings of ACM SIGMOD International Conference on Management of Data, Dallas, Texas, USA, 2000, pp. 70–81.
– volume: 66
  start-page: 815
  year: 2004
  end-page: 849
  ident: bib18
  article-title: Clustering objects on subsets of attributes
  publication-title: Journal of the Royal Statistical Society Series B (Statistical Methodology)
– volume: 14
  start-page: 63
  year: 2007
  end-page: 97
  ident: bib20
  article-title: Locally adaptive metrics for clustering high dimensional data
  publication-title: Data Mining and Knowledge Discovery
– volume: 16
  start-page: 1387
  year: 2004
  end-page: 1397
  ident: bib9
  article-title: HARP: a practical projected clustering algorithm
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 49
  start-page: 57
  year: 1984
  end-page: 78
  ident: bib11
  article-title: Synthesized clustering: a method for amalgamating alternative clustering bases with differential weighting of variables
  publication-title: Psychometrika
– volume: 3
  start-page: 1
  year: 2009
  end-page: 58
  ident: bib3
  article-title: Clustering high-dimensional data: a survey on subspace clustering, pattern based clustering, and correlation clustering
  publication-title: ACM Transactions on Knowledge Discovery from Data
– reference: C.C. Aggarwal, J.L. Wolf, P.S. Yu, C. Procopiuc, J.S. Park, Fast algorithms for projected clustering, in: Proceedings of ACM SIGMOD International Conference on Management of Data, Philadelphia, Pennsylvania, USA, 1999, pp. 61–72.
– volume: 52
  start-page: 502
  year: 2007
  end-page: 519
  ident: bib22
  article-title: High dimensional data clustering
  publication-title: Computational Statistics & Data Analysis
– volume: 7
  start-page: 271
  year: 1990
  end-page: 285
  ident: bib27
  article-title: A preliminary study of optimal variable weighting in
  publication-title: Journal of Classification
– volume: 12
  start-page: 41
  year: 1980
  end-page: 50
  ident: bib31
  article-title: The validation of four ultrametric clustering algorithms
  publication-title: Pattern Recognition
– volume: 2
  start-page: 429
  year: 1980
  end-page: 443
  ident: bib25
  article-title: Automated classification of nucleated blood cells using a binary tree classifier
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 52
  start-page: 217
  year: 2003
  end-page: 237
  ident: bib13
  article-title: Feature weighting in
  publication-title: Machine Learning
– start-page: 45
  year: 2004
  end-page: 72
  ident: bib15
  article-title: Simultaneous clustering and dynamic keyword weighting for text documents
  publication-title: M.W. Berry (Ed.), Survey of Text Mining: Clustering, Classification, and Retrieval
– reference: C. Procopiuc, M. Jones, P. Agarwal, T. Murali, A Monte Carlo algorithm for fast projective clustering, in: Proceedings of ACM SIGMOD International Conference on Management of Data, Madison, Wisconsin, USA, 2002, pp. 418–427.
– reference: , 2010.
– volume: 37
  start-page: 943
  year: 2004
  end-page: 952
  ident: bib14
  article-title: An optimization algorithm for clustering using weighted dissimilarity measures
  publication-title: Pattern Recognition
– volume: 13
  start-page: 149
  year: 1997
  end-page: 159
  ident: bib32
  article-title: A comparative study of clustering methods
  publication-title: Future Generation Computer Systems
– volume: 1
  start-page: 321
  year: 2006
  end-page: 344
  ident: bib28
  article-title: Model-based subspace clustering
  publication-title: Bayesian Analysis
– volume: 9
  start-page: 3273
  year: 1998
  end-page: 3297
  ident: bib30
  article-title: Comprehensive identification of cell cycle-regulated genes of the yeast
  publication-title: Molecular Biology of the Cell
– volume: 37
  start-page: 567
  year: 2004
  end-page: 581
  ident: bib16
  article-title: Unsupervised learning of prototypes and attribute weights
  publication-title: Pattern Recognition
– volume: 52
  start-page: 4658
  year: 2008
  end-page: 4672
  ident: bib23
  article-title: Developing a feature weight self-adjustment mechanism for a
  publication-title: Computational Statistics & Data Analysis
– volume: 6
  start-page: 90
  year: 2004
  end-page: 105
  ident: bib2
  article-title: Subspace clustering for high dimensional data: a review
  publication-title: ACM SIGKDD Explorations Newsletter
– volume: 2
  start-page: 283
  year: 1998
  end-page: 304
  ident: bib26
  article-title: Extensions to the
  publication-title: Data Mining and Knowledge Discovery
– reference: H. Cheng, K.A. Hua, K. Vu, Constrained locally weighted clustering, in: Proceedings of the VLDB Endowment, vol. 1, Auckland, New Zealand, 2008, pp. 90–101.
– volume: 43
  start-page: 767
  year: 2010
  end-page: 781
  ident: bib29
  article-title: Enhanced soft subspace clustering integrating within-cluster and between-cluster information
  publication-title: Pattern Recognition
– reference: R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic subspace clustering of high dimensional data for data mining applications, in: Proceedings of ACM SIGMOD International Conference on Management of Data, Seattle, Washington, USA, 1998, pp. 94–105.
– reference: A. Frank, A. Asuncion, UCI Machine Learning Repository
– volume: 6
  start-page: 53
  year: 1989
  end-page: 71
  ident: bib12
  article-title: A validation study of a variable weighting algorithm for cluster analysis
  publication-title: Journal of Classification
– volume: 27
  start-page: 657
  year: 2005
  end-page: 668
  ident: bib19
  article-title: Automated variable weighting in
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: C. Domeniconi, D. Papadopoulos, D. Gunopulos, S. Ma, Subspace clustering of high dimensional data, in: Proceedings of the Fourth SIAM International Conference on Data Mining, Lake Buena Vista, Florida, USA, 2004, pp. 517–521.
– reference: K. Chakrabarti, S. Mehrotra, Local dimensionality reduction: a new approach to indexing high dimensional spaces, in: Proceedings of the 26th International Conference on Very Large Data Bases, Cairo, Egypt, 2000, pp. 89–100.
– volume: 19
  start-page: 1026
  year: 2007
  end-page: 1041
  ident: bib21
  article-title: An entropy weighting
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: D. Donoho, High-dimensional data analysis: the curses and blessings of dimensionality, American Mathematical Society-Mathematical Challenges of the 21st Century, Los Angeles, CA, USA, 2000.
– reference: K. Yip, D. Cheung, M. Ng, On discovery of extremely low-dimensional clusters using semi-supervised projected clustering, in: Proceedings of the 21st International Conference on Data Engineering, Tokyo, Japan, 2005, pp. 329–340.
– ident: 10.1016/j.patcog.2011.06.004_bib4
  doi: 10.1145/276304.276314
– volume: 2
  start-page: 283
  issue: 3
  year: 1998
  ident: 10.1016/j.patcog.2011.06.004_bib26
  article-title: Extensions to the k-means algorithms for clustering large data sets with categorical values
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1009769707641
– ident: 10.1016/j.patcog.2011.06.004_bib7
– volume: 19
  start-page: 1026
  issue: 8
  year: 2007
  ident: 10.1016/j.patcog.2011.06.004_bib21
  article-title: An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2007.1048
– volume: 12
  start-page: 41
  issue: 2
  year: 1980
  ident: 10.1016/j.patcog.2011.06.004_bib31
  article-title: The validation of four ultrametric clustering algorithms
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(80)90001-1
– ident: 10.1016/j.patcog.2011.06.004_bib6
  doi: 10.1145/342009.335383
– volume: 37
  start-page: 943
  issue: 5
  year: 2004
  ident: 10.1016/j.patcog.2011.06.004_bib14
  article-title: An optimization algorithm for clustering using weighted dissimilarity measures
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2003.11.003
– volume: 6
  start-page: 53
  issue: 1
  year: 1989
  ident: 10.1016/j.patcog.2011.06.004_bib12
  article-title: A validation study of a variable weighting algorithm for cluster analysis
  publication-title: Journal of Classification
  doi: 10.1007/BF01908588
– volume: 6
  start-page: 90
  issue: 1
  year: 2004
  ident: 10.1016/j.patcog.2011.06.004_bib2
  article-title: Subspace clustering for high dimensional data: a review
  publication-title: ACM SIGKDD Explorations Newsletter
  doi: 10.1145/1007730.1007731
– volume: 52
  start-page: 217
  issue: 3
  year: 2003
  ident: 10.1016/j.patcog.2011.06.004_bib13
  article-title: Feature weighting in k-means clustering
  publication-title: Machine Learning
  doi: 10.1023/A:1024016609528
– volume: 14
  start-page: 63
  issue: 1
  year: 2007
  ident: 10.1016/j.patcog.2011.06.004_bib20
  article-title: Locally adaptive metrics for clustering high dimensional data
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1007/s10618-006-0060-8
– volume: 2
  start-page: 429
  issue: 5
  year: 1980
  ident: 10.1016/j.patcog.2011.06.004_bib25
  article-title: Automated classification of nucleated blood cells using a binary tree classifier
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.1980.6592364
– volume: 1
  start-page: 321
  issue: 2
  year: 2006
  ident: 10.1016/j.patcog.2011.06.004_bib28
  article-title: Model-based subspace clustering
  publication-title: Bayesian Analysis
  doi: 10.1214/06-BA111
– start-page: 45
  year: 2004
  ident: 10.1016/j.patcog.2011.06.004_bib15
  article-title: Simultaneous clustering and dynamic keyword weighting for text documents
– volume: 7
  start-page: 271
  issue: 2
  year: 1990
  ident: 10.1016/j.patcog.2011.06.004_bib27
  article-title: A preliminary study of optimal variable weighting in k-means clustering
  publication-title: Journal of Classification
  doi: 10.1007/BF01908720
– ident: 10.1016/j.patcog.2011.06.004_bib5
  doi: 10.1145/304182.304188
– ident: 10.1016/j.patcog.2011.06.004_bib10
  doi: 10.1109/ICDE.2005.96
– volume: 3
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.patcog.2011.06.004_bib3
  article-title: Clustering high-dimensional data: a survey on subspace clustering, pattern based clustering, and correlation clustering
  publication-title: ACM Transactions on Knowledge Discovery from Data
  doi: 10.1145/1497577.1497578
– ident: 10.1016/j.patcog.2011.06.004_bib8
  doi: 10.1145/564691.564739
– volume: 16
  start-page: 1387
  issue: 11
  year: 2004
  ident: 10.1016/j.patcog.2011.06.004_bib9
  article-title: HARP: a practical projected clustering algorithm
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2004.74
– volume: 49
  start-page: 57
  issue: 1
  year: 1984
  ident: 10.1016/j.patcog.2011.06.004_bib11
  article-title: Synthesized clustering: a method for amalgamating alternative clustering bases with differential weighting of variables
  publication-title: Psychometrika
  doi: 10.1007/BF02294206
– volume: 43
  start-page: 767
  issue: 3
  year: 2010
  ident: 10.1016/j.patcog.2011.06.004_bib29
  article-title: Enhanced soft subspace clustering integrating within-cluster and between-cluster information
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2009.09.010
– volume: 66
  start-page: 815
  issue: 4
  year: 2004
  ident: 10.1016/j.patcog.2011.06.004_bib18
  article-title: Clustering objects on subsets of attributes
  publication-title: Journal of the Royal Statistical Society Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2004.02059.x
– ident: 10.1016/j.patcog.2011.06.004_bib24
  doi: 10.14778/1453856.1453871
– volume: 13
  start-page: 149
  issue: 2–3
  year: 1997
  ident: 10.1016/j.patcog.2011.06.004_bib32
  article-title: A comparative study of clustering methods
  publication-title: Future Generation Computer Systems
  doi: 10.1016/S0167-739X(97)00018-6
– volume: 27
  start-page: 657
  issue: 5
  year: 2005
  ident: 10.1016/j.patcog.2011.06.004_bib19
  article-title: Automated variable weighting in k-means type clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2005.95
– volume: 52
  start-page: 502
  issue: 1
  year: 2007
  ident: 10.1016/j.patcog.2011.06.004_bib22
  article-title: High dimensional data clustering
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2007.02.009
– ident: 10.1016/j.patcog.2011.06.004_bib17
  doi: 10.1137/1.9781611972740.58
– volume: 37
  start-page: 567
  issue: 3
  year: 2004
  ident: 10.1016/j.patcog.2011.06.004_bib16
  article-title: Unsupervised learning of prototypes and attribute weights
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2003.08.002
– volume: 9
  start-page: 3273
  issue: 12
  year: 1998
  ident: 10.1016/j.patcog.2011.06.004_bib30
  article-title: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
  publication-title: Molecular Biology of the Cell
  doi: 10.1091/mbc.9.12.3273
– ident: 10.1016/j.patcog.2011.06.004_bib1
– ident: 10.1016/j.patcog.2011.06.004_bib33
– volume: 52
  start-page: 4658
  issue: 10
  year: 2008
  ident: 10.1016/j.patcog.2011.06.004_bib23
  article-title: Developing a feature weight self-adjustment mechanism for a k-means clustering algorithm
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2008.03.002
SSID ssj0017142
Score 2.4331074
Snippet This paper proposes a new method to weight subspaces in feature groups and individual features for clustering high-dimensional data. In this method, the...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 434
SubjectTerms Algorithms
Applied sciences
Clustering
Clusters
Data mining
Exact sciences and technology
Feature weighting
High-dimensional data analysis
Information theory
Information, signal and communications theory
k-Means
Noise
Optimization
Pattern recognition
Signal and communications theory
Signal representation. Spectral analysis
Signal, noise
Subspace clustering
Subspaces
Telecommunications and information theory
Weighting methods
Title A feature group weighting method for subspace clustering of high-dimensional data
URI https://dx.doi.org/10.1016/j.patcog.2011.06.004
https://www.proquest.com/docview/926321583
Volume 45
WOSCitedRecordID wos000295760700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdbuofB2PdY91H0sDfjYUe2JT-a4ZKELeugHu6TkWV5WylOqJO2f_5OX07aMLI97MUEIdkm9_Pd6XT3O4Q-kEY0LGwDv2GaVFsSPxVh7JNESFHXUVLrbg3fP9P5nJVlemKjSr1uJ0C7jt3cpMv_KmoYA2Gr0tl_EPdwUxiA3yB0uILY4fpXgs-8Vmq2Tk9XbHjXOvipIgKmW7ROLOxBX8BuWXriYq2oEmzusyIv9htF-G_IOjxbujb4ryeajlOVwNi8o80pfjnNvs6KuSJZGI53zor5FxUOO8u3Zx3nU68shpD1JC-L3JsUmSmfmi36n2u-HY0IN7tWVyCzrWxJ6JNxQLaVreGOvAUqozkjG9M0Rjgycckd_W5CDecfl2CnFj8sA6s6Too29syd4d8xc0Py4TiicQx67D46GFPYT43QQTbNy9lw-ETDyJDM2_d3FZc6LXD3yX_yaB4teQ_fWWsapOzYeu3AnD5Fj-3OA2cGMc_QPdk9R0_sLgRbHd_DkGv04cZeoG8ZtpjCGlN4wBQ2mMKAKewwhTeYwosW38UUVph6iYrj_PTTxLe9OHxBErbySZxy5U2yuhUklTKtY14njSABkzWRoUgCwmUYC8YT2sQ1DWoqecwlZW2c8IC8QqNu0cnXCKct2JCk5qRuWJQGCRs3MKltwLaAr0yjQ0Tc_1kJS1Sv-qVcVC4j8bwyUqiUFCqdmAmr_GHV0hC17JlPnagq62waJ7ICrO1ZeXRLssPjHLAOEXairkBZqxM43snFuq9S1R0hjBl5s-8eb9FD9XmZYN87NFpdruV79EBcrX71l0cWsb8BjGK2TA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+feature+group+weighting+method+for+subspace+clustering+of+high-dimensional+data&rft.jtitle=Pattern+recognition&rft.au=XIAOJUN+CHEN&rft.au=YUNMING+YE&rft.au=XIAOFEI+XU&rft.au=ZHEXUE+HUANG%2C+Joshua&rft.date=2012&rft.pub=Elsevier&rft.issn=0031-3203&rft.volume=45&rft.issue=1&rft.spage=434&rft.epage=446&rft_id=info:doi/10.1016%2Fj.patcog.2011.06.004&rft.externalDBID=n%2Fa&rft.externalDocID=24755322
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon