A feature group weighting method for subspace clustering of high-dimensional data
This paper proposes a new method to weight subspaces in feature groups and individual features for clustering high-dimensional data. In this method, the features of high-dimensional data are divided into feature groups, based on their natural characteristics. Two types of weights are introduced to t...
Uložené v:
| Vydané v: | Pattern recognition Ročník 45; číslo 1; s. 434 - 446 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Kidlington
Elsevier Ltd
2012
Elsevier |
| Predmet: | |
| ISSN: | 0031-3203, 1873-5142 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper proposes a new method to weight subspaces in feature groups and individual features for clustering high-dimensional data. In this method, the features of high-dimensional data are divided into feature groups, based on their natural characteristics. Two types of weights are introduced to the clustering process to simultaneously identify the importance of feature groups and individual features in each cluster. A new optimization model is given to define the optimization process and a new clustering algorithm FG-
k-means is proposed to optimize the optimization model. The new algorithm is an extension to
k-means by adding two additional steps to automatically calculate the two types of subspace weights. A new data generation method is presented to generate high-dimensional data with clusters in subspaces of both feature groups and individual features. Experimental results on synthetic and real-life data have shown that the FG-
k-means algorithm significantly outperformed four
k-means type algorithms, i.e.,
k-means, W-
k-means, LAC and EWKM in almost all experiments. The new algorithm is robust to noise and missing values which commonly exist in high-dimensional data.
► Its first method to weight subspaces of feature groups and individual features. ► We propose the FG-
k-means algorithm to optimize the new model. ► We present a method to generate data with clusters in subspaces of feature groups. ► We present experimental results on synthetic and real-life data of FG-
k-means. ► Experimental results demonstrate that it can be used for feature selection. |
|---|---|
| AbstractList | This paper proposes a new method to weight subspaces in feature groups and individual features for clustering high-dimensional data. In this method, the features of high-dimensional data are divided into feature groups, based on their natural characteristics. Two types of weights are introduced to the clustering process to simultaneously identify the importance of feature groups and individual features in each cluster. A new optimization model is given to define the optimization process and a new clustering algorithm FG-k-means is proposed to optimize the optimization model. The new algorithm is an extension to k-means by adding two additional steps to automatically calculate the two types of subspace weights. A new data generation method is presented to generate high-dimensional data with clusters in subspaces of both feature groups and individual features. Experimental results on synthetic and real-life data have shown that the FG-k-means algorithm significantly outperformed four k-means type algorithms, i.e., k-means, W-k-means, LAC and EWKM in almost all experiments. The new algorithm is robust to noise and missing values which commonly exist in high-dimensional data. This paper proposes a new method to weight subspaces in feature groups and individual features for clustering high-dimensional data. In this method, the features of high-dimensional data are divided into feature groups, based on their natural characteristics. Two types of weights are introduced to the clustering process to simultaneously identify the importance of feature groups and individual features in each cluster. A new optimization model is given to define the optimization process and a new clustering algorithm FG- k-means is proposed to optimize the optimization model. The new algorithm is an extension to k-means by adding two additional steps to automatically calculate the two types of subspace weights. A new data generation method is presented to generate high-dimensional data with clusters in subspaces of both feature groups and individual features. Experimental results on synthetic and real-life data have shown that the FG- k-means algorithm significantly outperformed four k-means type algorithms, i.e., k-means, W- k-means, LAC and EWKM in almost all experiments. The new algorithm is robust to noise and missing values which commonly exist in high-dimensional data. ► Its first method to weight subspaces of feature groups and individual features. ► We propose the FG- k-means algorithm to optimize the new model. ► We present a method to generate data with clusters in subspaces of feature groups. ► We present experimental results on synthetic and real-life data of FG- k-means. ► Experimental results demonstrate that it can be used for feature selection. |
| Author | Ye, Yunming Xu, Xiaofei Chen, Xiaojun Huang, Joshua Zhexue |
| Author_xml | – sequence: 1 givenname: Xiaojun surname: Chen fullname: Chen, Xiaojun email: xjchen.hitsz@gmail.com organization: Shenzhen Graduate School, Harbin Institute of Technology, China – sequence: 2 givenname: Yunming surname: Ye fullname: Ye, Yunming email: yeyunming@hit.edu.cn organization: Shenzhen Graduate School, Harbin Institute of Technology, China – sequence: 3 givenname: Xiaofei surname: Xu fullname: Xu, Xiaofei email: xiaofei@hit.edu.cn organization: Department of Computer Science and Engineering, Harbin Institute of Technology, Harbin, China – sequence: 4 givenname: Joshua Zhexue surname: Huang fullname: Huang, Joshua Zhexue email: zx.huang@siat.ac.cn organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24755322$$DView record in Pascal Francis |
| BookMark | eNqFkDFv2zAQRonAAeIk_QcduBSdpBxJk5I7FDCCNCkQoCiQzMSJOtk0ZFElqRb595XhIEOHZrrh3vuGd8kWQxiIsY8CSgHC3OzLEbML21KCECWYEmB1xpairlShxUou2BJAiUJJUBfsMqU9gKjmx5L93PCOME-R-DaGaeR_yG932Q9bfqC8Cy3vQuRpatKIjrjrp5QpHt-h47sZLVp_oCH5MGDPW8x4zc477BN9eL1X7Pnb3dPtQ_H44_777eaxcMrUuVB6jVDVsm46p9ZE60ZjY1qnoKZGkXAGFJLQrkZTtbqpoKkINVJVd9ogqCv2-bQ7xvBropTtwSdHfY8DhSnZtTRKCl2rmfz0SmJy2HcRB-eTHaM_YHyxclVpraScudWJczGkFKl7QwTYY2i7t6fQ9hjagrFz6Fn78o_mfMY8F8kRff-e_PUk05zqt6dok_M0OGp9JJdtG_z_B_4CnXKezQ |
| CODEN | PTNRA8 |
| CitedBy_id | crossref_primary_10_1007_s11063_023_11332_y crossref_primary_10_1016_j_ins_2019_07_045 crossref_primary_10_1016_j_patcog_2014_11_003 crossref_primary_10_1109_ACCESS_2019_2952548 crossref_primary_10_1016_j_patcog_2015_05_016 crossref_primary_10_1016_j_ins_2021_01_033 crossref_primary_10_3390_buildings14061553 crossref_primary_10_3233_IFS_141517 crossref_primary_10_4018_IJIIT_2018070103 crossref_primary_10_1016_j_cogsys_2018_01_003 crossref_primary_10_1016_j_eswa_2020_113487 crossref_primary_10_1016_j_neunet_2019_09_014 crossref_primary_10_1016_j_eswa_2021_115424 crossref_primary_10_1109_TPAMI_2020_3002587 crossref_primary_10_1016_j_knosys_2018_01_005 crossref_primary_10_1007_s10044_020_00884_7 crossref_primary_10_1016_j_knosys_2015_05_014 crossref_primary_10_1061_JUPDDM_UPENG_5032 crossref_primary_10_1109_ACCESS_2020_2972333 crossref_primary_10_1007_s13042_016_0556_5 crossref_primary_10_1109_TSMC_2018_2847625 crossref_primary_10_1016_j_eswa_2013_12_001 crossref_primary_10_1016_j_knosys_2019_04_011 crossref_primary_10_1016_j_neucom_2013_11_047 crossref_primary_10_1016_j_neunet_2019_10_010 crossref_primary_10_1016_j_patcog_2012_02_033 crossref_primary_10_1007_s10489_018_1348_2 crossref_primary_10_1007_s41066_024_00470_w crossref_primary_10_1016_j_knosys_2018_09_009 crossref_primary_10_1109_MIS_2017_41 crossref_primary_10_1016_j_asoc_2016_06_010 crossref_primary_10_1007_s00357_016_9208_4 crossref_primary_10_1007_s00521_019_04467_4 crossref_primary_10_1016_j_patcog_2024_111113 crossref_primary_10_1016_j_asoc_2019_02_043 crossref_primary_10_1016_j_knosys_2018_03_028 crossref_primary_10_1109_ACCESS_2025_3574066 crossref_primary_10_1016_j_asoc_2025_113913 crossref_primary_10_1016_j_patcog_2018_03_014 crossref_primary_10_1016_j_engappai_2015_08_005 crossref_primary_10_1016_j_patcog_2013_02_005 crossref_primary_10_1109_TCYB_2018_2836804 crossref_primary_10_2478_acss_2019_0007 crossref_primary_10_1007_s11042_017_5096_9 crossref_primary_10_1016_j_ins_2016_01_101 crossref_primary_10_1155_2015_471371 crossref_primary_10_1002_cpe_5678 crossref_primary_10_1016_j_patcog_2017_10_026 crossref_primary_10_1007_s10489_021_02974_3 crossref_primary_10_1109_ACCESS_2018_2815606 crossref_primary_10_1016_j_aei_2016_05_003 crossref_primary_10_1016_j_neucom_2019_12_030 crossref_primary_10_1007_s10389_020_01418_5 crossref_primary_10_1007_s11571_015_9351_3 crossref_primary_10_1109_TCYB_2018_2887094 crossref_primary_10_1016_j_neucom_2013_12_027 crossref_primary_10_1007_s10044_020_00887_4 crossref_primary_10_1016_j_knosys_2014_07_009 crossref_primary_10_1016_j_knosys_2019_105102 crossref_primary_10_1016_j_patcog_2021_108154 crossref_primary_10_1109_TNNLS_2019_2909425 crossref_primary_10_1016_j_patcog_2019_05_033 crossref_primary_10_3934_bdia_2016_1_93 crossref_primary_10_1016_j_ipm_2015_11_003 crossref_primary_10_1109_TNNLS_2013_2293795 crossref_primary_10_1109_ACCESS_2019_2924491 crossref_primary_10_1016_j_eswa_2017_05_076 crossref_primary_10_4028_www_scientific_net_AMR_989_994_1837 crossref_primary_10_1016_j_neucom_2019_07_086 crossref_primary_10_1016_j_patcog_2015_10_018 crossref_primary_10_1016_j_neunet_2020_06_022 crossref_primary_10_1007_s00521_020_05184_z crossref_primary_10_1016_j_patcog_2023_109314 crossref_primary_10_1016_j_patcog_2018_05_027 crossref_primary_10_1007_s11263_020_01320_3 crossref_primary_10_1016_j_patcog_2019_106982 crossref_primary_10_1109_TCYB_2017_2771496 crossref_primary_10_1109_TPAMI_2020_3047489 crossref_primary_10_1007_s10994_013_5337_8 crossref_primary_10_1109_TKDE_2017_2763620 crossref_primary_10_1007_s40747_020_00191_y crossref_primary_10_3390_info10060208 crossref_primary_10_1109_TCBB_2017_2705686 crossref_primary_10_3233_JIFS_220629 crossref_primary_10_1016_j_patcog_2022_108809 |
| Cites_doi | 10.1145/276304.276314 10.1023/A:1009769707641 10.1109/TKDE.2007.1048 10.1016/0031-3203(80)90001-1 10.1145/342009.335383 10.1016/j.patcog.2003.11.003 10.1007/BF01908588 10.1145/1007730.1007731 10.1023/A:1024016609528 10.1007/s10618-006-0060-8 10.1109/TPAMI.1980.6592364 10.1214/06-BA111 10.1007/BF01908720 10.1145/304182.304188 10.1109/ICDE.2005.96 10.1145/1497577.1497578 10.1145/564691.564739 10.1109/TKDE.2004.74 10.1007/BF02294206 10.1016/j.patcog.2009.09.010 10.1111/j.1467-9868.2004.02059.x 10.14778/1453856.1453871 10.1016/S0167-739X(97)00018-6 10.1109/TPAMI.2005.95 10.1016/j.csda.2007.02.009 10.1137/1.9781611972740.58 10.1016/j.patcog.2003.08.002 10.1091/mbc.9.12.3273 10.1016/j.csda.2008.03.002 |
| ContentType | Journal Article |
| Copyright | 2011 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2011 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.patcog.2011.06.004 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1873-5142 |
| EndPage | 446 |
| ExternalDocumentID | 24755322 10_1016_j_patcog_2011_06_004 S003132031100269X |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c368t-359a07828bfc39ee9b5ab6dc308eb3e1c603ae15c8a67d5b70b7ea5ae78f56a03 |
| ISICitedReferencesCount | 103 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000295760700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Thu Oct 02 07:37:36 EDT 2025 Mon Jul 21 09:18:14 EDT 2025 Tue Nov 18 22:04:10 EST 2025 Sat Nov 29 07:29:43 EST 2025 Fri Feb 23 02:33:55 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Subspace clustering High-dimensional data analysis Data mining k-Means Feature weighting Performance evaluation Data analysis Automatic classification Subspace method Data processing K means algorithm Signal classification Optimization Weighting Dimensional analysis |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c368t-359a07828bfc39ee9b5ab6dc308eb3e1c603ae15c8a67d5b70b7ea5ae78f56a03 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 926321583 |
| PQPubID | 23500 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_926321583 pascalfrancis_primary_24755322 crossref_primary_10_1016_j_patcog_2011_06_004 crossref_citationtrail_10_1016_j_patcog_2011_06_004 elsevier_sciencedirect_doi_10_1016_j_patcog_2011_06_004 |
| PublicationCentury | 2000 |
| PublicationDate | 2012 2012-01-00 20120101 |
| PublicationDateYYYYMMDD | 2012-01-01 |
| PublicationDate_xml | – year: 2012 text: 2012 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2012 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Green, Kim, Carmone (bib27) 1990; 7 Kriegel, Kröger, Zimek (bib3) 2009; 3 Domeniconi, Gunopulos, Ma, Yan, Al-Razgan, Papadopoulos (bib20) 2007; 14 Chan, Ching, Ng, Huang (bib14) 2004; 37 Deng, Choi, Chung, Wang (bib29) 2010; 43 C. Domeniconi, D. Papadopoulos, D. Gunopulos, S. Ma, Subspace clustering of high dimensional data, in: Proceedings of the Fourth SIAM International Conference on Data Mining, Lake Buena Vista, Florida, USA, 2004, pp. 517–521. Hoff (bib28) 2006; 1 K. Yip, D. Cheung, M. Ng, On discovery of extremely low-dimensional clusters using semi-supervised projected clustering, in: Proceedings of the 21st International Conference on Data Engineering, Tokyo, Japan, 2005, pp. 329–340. Mui, Fu (bib25) 1980; 2 R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic subspace clustering of high dimensional data for data mining applications, in: Proceedings of ACM SIGMOD International Conference on Management of Data, Seattle, Washington, USA, 1998, pp. 94–105. Milligan (bib12) 1989; 6 Modha, Spangler (bib13) 2003; 52 Frigui, Nasraoui (bib15) 2004 Bouveyron, Girard, Schmid (bib22) 2007; 52 Huang, Ng, Rong, Li (bib19) 2005; 27 DeSarbo, Carroll, Clark, Green (bib11) 1984; 49 Spellman, Sherlock, Zhang, Iyer, Anders, Eisen, Brown, Botstein, Futcher (bib30) 1998; 9 2010. Jing, Ng, Huang (bib21) 2007; 19 A. Frank, A. Asuncion, UCI Machine Learning Repository Parsons, Haque, Liu (bib2) 2004; 6 C.C. Aggarwal, P.S. Yu, finding generalized projected clusters in high dimensional spaces, in: Proceedings of ACM SIGMOD International Conference on Management of Data, Dallas, Texas, USA, 2000, pp. 70–81. Frigui, Nasraoui (bib16) 2004; 37 H. Cheng, K.A. Hua, K. Vu, Constrained locally weighted clustering, in: Proceedings of the VLDB Endowment, vol. 1, Auckland, New Zealand, 2008, pp. 90–101. Huang (bib26) 1998; 2 Tsai, Chiu (bib23) 2008; 52 K. Chakrabarti, S. Mehrotra, Local dimensionality reduction: a new approach to indexing high dimensional spaces, in: Proceedings of the 26th International Conference on Very Large Data Bases, Cairo, Egypt, 2000, pp. 89–100. C.C. Aggarwal, J.L. Wolf, P.S. Yu, C. Procopiuc, J.S. Park, Fast algorithms for projected clustering, in: Proceedings of ACM SIGMOD International Conference on Management of Data, Philadelphia, Pennsylvania, USA, 1999, pp. 61–72. Milligan, Isaac (bib31) 1980; 12 C. Procopiuc, M. Jones, P. Agarwal, T. Murali, A Monte Carlo algorithm for fast projective clustering, in: Proceedings of ACM SIGMOD International Conference on Management of Data, Madison, Wisconsin, USA, 2002, pp. 418–427. D. Donoho, High-dimensional data analysis: the curses and blessings of dimensionality, American Mathematical Society-Mathematical Challenges of the 21st Century, Los Angeles, CA, USA, 2000. Yip, Cheung, Ng (bib9) 2004; 16 Friedman, Meulman (bib18) 2004; 66 Zait, Messatfa (bib32) 1997; 13 Bouveyron (10.1016/j.patcog.2011.06.004_bib22) 2007; 52 Domeniconi (10.1016/j.patcog.2011.06.004_bib20) 2007; 14 10.1016/j.patcog.2011.06.004_bib24 Huang (10.1016/j.patcog.2011.06.004_bib26) 1998; 2 Hoff (10.1016/j.patcog.2011.06.004_bib28) 2006; 1 Modha (10.1016/j.patcog.2011.06.004_bib13) 2003; 52 Zait (10.1016/j.patcog.2011.06.004_bib32) 1997; 13 10.1016/j.patcog.2011.06.004_bib1 Tsai (10.1016/j.patcog.2011.06.004_bib23) 2008; 52 Parsons (10.1016/j.patcog.2011.06.004_bib2) 2004; 6 10.1016/j.patcog.2011.06.004_bib5 Frigui (10.1016/j.patcog.2011.06.004_bib16) 2004; 37 10.1016/j.patcog.2011.06.004_bib4 10.1016/j.patcog.2011.06.004_bib7 DeSarbo (10.1016/j.patcog.2011.06.004_bib11) 1984; 49 10.1016/j.patcog.2011.06.004_bib6 10.1016/j.patcog.2011.06.004_bib8 Deng (10.1016/j.patcog.2011.06.004_bib29) 2010; 43 Milligan (10.1016/j.patcog.2011.06.004_bib12) 1989; 6 Green (10.1016/j.patcog.2011.06.004_bib27) 1990; 7 Frigui (10.1016/j.patcog.2011.06.004_bib15) 2004 Friedman (10.1016/j.patcog.2011.06.004_bib18) 2004; 66 10.1016/j.patcog.2011.06.004_bib10 10.1016/j.patcog.2011.06.004_bib33 Huang (10.1016/j.patcog.2011.06.004_bib19) 2005; 27 10.1016/j.patcog.2011.06.004_bib17 Chan (10.1016/j.patcog.2011.06.004_bib14) 2004; 37 Yip (10.1016/j.patcog.2011.06.004_bib9) 2004; 16 Kriegel (10.1016/j.patcog.2011.06.004_bib3) 2009; 3 Milligan (10.1016/j.patcog.2011.06.004_bib31) 1980; 12 Jing (10.1016/j.patcog.2011.06.004_bib21) 2007; 19 Mui (10.1016/j.patcog.2011.06.004_bib25) 1980; 2 Spellman (10.1016/j.patcog.2011.06.004_bib30) 1998; 9 |
| References_xml | – reference: C.C. Aggarwal, P.S. Yu, finding generalized projected clusters in high dimensional spaces, in: Proceedings of ACM SIGMOD International Conference on Management of Data, Dallas, Texas, USA, 2000, pp. 70–81. – volume: 66 start-page: 815 year: 2004 end-page: 849 ident: bib18 article-title: Clustering objects on subsets of attributes publication-title: Journal of the Royal Statistical Society Series B (Statistical Methodology) – volume: 14 start-page: 63 year: 2007 end-page: 97 ident: bib20 article-title: Locally adaptive metrics for clustering high dimensional data publication-title: Data Mining and Knowledge Discovery – volume: 16 start-page: 1387 year: 2004 end-page: 1397 ident: bib9 article-title: HARP: a practical projected clustering algorithm publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 49 start-page: 57 year: 1984 end-page: 78 ident: bib11 article-title: Synthesized clustering: a method for amalgamating alternative clustering bases with differential weighting of variables publication-title: Psychometrika – volume: 3 start-page: 1 year: 2009 end-page: 58 ident: bib3 article-title: Clustering high-dimensional data: a survey on subspace clustering, pattern based clustering, and correlation clustering publication-title: ACM Transactions on Knowledge Discovery from Data – reference: C.C. Aggarwal, J.L. Wolf, P.S. Yu, C. Procopiuc, J.S. Park, Fast algorithms for projected clustering, in: Proceedings of ACM SIGMOD International Conference on Management of Data, Philadelphia, Pennsylvania, USA, 1999, pp. 61–72. – volume: 52 start-page: 502 year: 2007 end-page: 519 ident: bib22 article-title: High dimensional data clustering publication-title: Computational Statistics & Data Analysis – volume: 7 start-page: 271 year: 1990 end-page: 285 ident: bib27 article-title: A preliminary study of optimal variable weighting in publication-title: Journal of Classification – volume: 12 start-page: 41 year: 1980 end-page: 50 ident: bib31 article-title: The validation of four ultrametric clustering algorithms publication-title: Pattern Recognition – volume: 2 start-page: 429 year: 1980 end-page: 443 ident: bib25 article-title: Automated classification of nucleated blood cells using a binary tree classifier publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 52 start-page: 217 year: 2003 end-page: 237 ident: bib13 article-title: Feature weighting in publication-title: Machine Learning – start-page: 45 year: 2004 end-page: 72 ident: bib15 article-title: Simultaneous clustering and dynamic keyword weighting for text documents publication-title: M.W. Berry (Ed.), Survey of Text Mining: Clustering, Classification, and Retrieval – reference: C. Procopiuc, M. Jones, P. Agarwal, T. Murali, A Monte Carlo algorithm for fast projective clustering, in: Proceedings of ACM SIGMOD International Conference on Management of Data, Madison, Wisconsin, USA, 2002, pp. 418–427. – reference: , 2010. – volume: 37 start-page: 943 year: 2004 end-page: 952 ident: bib14 article-title: An optimization algorithm for clustering using weighted dissimilarity measures publication-title: Pattern Recognition – volume: 13 start-page: 149 year: 1997 end-page: 159 ident: bib32 article-title: A comparative study of clustering methods publication-title: Future Generation Computer Systems – volume: 1 start-page: 321 year: 2006 end-page: 344 ident: bib28 article-title: Model-based subspace clustering publication-title: Bayesian Analysis – volume: 9 start-page: 3273 year: 1998 end-page: 3297 ident: bib30 article-title: Comprehensive identification of cell cycle-regulated genes of the yeast publication-title: Molecular Biology of the Cell – volume: 37 start-page: 567 year: 2004 end-page: 581 ident: bib16 article-title: Unsupervised learning of prototypes and attribute weights publication-title: Pattern Recognition – volume: 52 start-page: 4658 year: 2008 end-page: 4672 ident: bib23 article-title: Developing a feature weight self-adjustment mechanism for a publication-title: Computational Statistics & Data Analysis – volume: 6 start-page: 90 year: 2004 end-page: 105 ident: bib2 article-title: Subspace clustering for high dimensional data: a review publication-title: ACM SIGKDD Explorations Newsletter – volume: 2 start-page: 283 year: 1998 end-page: 304 ident: bib26 article-title: Extensions to the publication-title: Data Mining and Knowledge Discovery – reference: H. Cheng, K.A. Hua, K. Vu, Constrained locally weighted clustering, in: Proceedings of the VLDB Endowment, vol. 1, Auckland, New Zealand, 2008, pp. 90–101. – volume: 43 start-page: 767 year: 2010 end-page: 781 ident: bib29 article-title: Enhanced soft subspace clustering integrating within-cluster and between-cluster information publication-title: Pattern Recognition – reference: R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic subspace clustering of high dimensional data for data mining applications, in: Proceedings of ACM SIGMOD International Conference on Management of Data, Seattle, Washington, USA, 1998, pp. 94–105. – reference: A. Frank, A. Asuncion, UCI Machine Learning Repository – volume: 6 start-page: 53 year: 1989 end-page: 71 ident: bib12 article-title: A validation study of a variable weighting algorithm for cluster analysis publication-title: Journal of Classification – volume: 27 start-page: 657 year: 2005 end-page: 668 ident: bib19 article-title: Automated variable weighting in publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: C. Domeniconi, D. Papadopoulos, D. Gunopulos, S. Ma, Subspace clustering of high dimensional data, in: Proceedings of the Fourth SIAM International Conference on Data Mining, Lake Buena Vista, Florida, USA, 2004, pp. 517–521. – reference: K. Chakrabarti, S. Mehrotra, Local dimensionality reduction: a new approach to indexing high dimensional spaces, in: Proceedings of the 26th International Conference on Very Large Data Bases, Cairo, Egypt, 2000, pp. 89–100. – volume: 19 start-page: 1026 year: 2007 end-page: 1041 ident: bib21 article-title: An entropy weighting publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: D. Donoho, High-dimensional data analysis: the curses and blessings of dimensionality, American Mathematical Society-Mathematical Challenges of the 21st Century, Los Angeles, CA, USA, 2000. – reference: K. Yip, D. Cheung, M. Ng, On discovery of extremely low-dimensional clusters using semi-supervised projected clustering, in: Proceedings of the 21st International Conference on Data Engineering, Tokyo, Japan, 2005, pp. 329–340. – ident: 10.1016/j.patcog.2011.06.004_bib4 doi: 10.1145/276304.276314 – volume: 2 start-page: 283 issue: 3 year: 1998 ident: 10.1016/j.patcog.2011.06.004_bib26 article-title: Extensions to the k-means algorithms for clustering large data sets with categorical values publication-title: Data Mining and Knowledge Discovery doi: 10.1023/A:1009769707641 – ident: 10.1016/j.patcog.2011.06.004_bib7 – volume: 19 start-page: 1026 issue: 8 year: 2007 ident: 10.1016/j.patcog.2011.06.004_bib21 article-title: An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2007.1048 – volume: 12 start-page: 41 issue: 2 year: 1980 ident: 10.1016/j.patcog.2011.06.004_bib31 article-title: The validation of four ultrametric clustering algorithms publication-title: Pattern Recognition doi: 10.1016/0031-3203(80)90001-1 – ident: 10.1016/j.patcog.2011.06.004_bib6 doi: 10.1145/342009.335383 – volume: 37 start-page: 943 issue: 5 year: 2004 ident: 10.1016/j.patcog.2011.06.004_bib14 article-title: An optimization algorithm for clustering using weighted dissimilarity measures publication-title: Pattern Recognition doi: 10.1016/j.patcog.2003.11.003 – volume: 6 start-page: 53 issue: 1 year: 1989 ident: 10.1016/j.patcog.2011.06.004_bib12 article-title: A validation study of a variable weighting algorithm for cluster analysis publication-title: Journal of Classification doi: 10.1007/BF01908588 – volume: 6 start-page: 90 issue: 1 year: 2004 ident: 10.1016/j.patcog.2011.06.004_bib2 article-title: Subspace clustering for high dimensional data: a review publication-title: ACM SIGKDD Explorations Newsletter doi: 10.1145/1007730.1007731 – volume: 52 start-page: 217 issue: 3 year: 2003 ident: 10.1016/j.patcog.2011.06.004_bib13 article-title: Feature weighting in k-means clustering publication-title: Machine Learning doi: 10.1023/A:1024016609528 – volume: 14 start-page: 63 issue: 1 year: 2007 ident: 10.1016/j.patcog.2011.06.004_bib20 article-title: Locally adaptive metrics for clustering high dimensional data publication-title: Data Mining and Knowledge Discovery doi: 10.1007/s10618-006-0060-8 – volume: 2 start-page: 429 issue: 5 year: 1980 ident: 10.1016/j.patcog.2011.06.004_bib25 article-title: Automated classification of nucleated blood cells using a binary tree classifier publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.1980.6592364 – volume: 1 start-page: 321 issue: 2 year: 2006 ident: 10.1016/j.patcog.2011.06.004_bib28 article-title: Model-based subspace clustering publication-title: Bayesian Analysis doi: 10.1214/06-BA111 – start-page: 45 year: 2004 ident: 10.1016/j.patcog.2011.06.004_bib15 article-title: Simultaneous clustering and dynamic keyword weighting for text documents – volume: 7 start-page: 271 issue: 2 year: 1990 ident: 10.1016/j.patcog.2011.06.004_bib27 article-title: A preliminary study of optimal variable weighting in k-means clustering publication-title: Journal of Classification doi: 10.1007/BF01908720 – ident: 10.1016/j.patcog.2011.06.004_bib5 doi: 10.1145/304182.304188 – ident: 10.1016/j.patcog.2011.06.004_bib10 doi: 10.1109/ICDE.2005.96 – volume: 3 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.patcog.2011.06.004_bib3 article-title: Clustering high-dimensional data: a survey on subspace clustering, pattern based clustering, and correlation clustering publication-title: ACM Transactions on Knowledge Discovery from Data doi: 10.1145/1497577.1497578 – ident: 10.1016/j.patcog.2011.06.004_bib8 doi: 10.1145/564691.564739 – volume: 16 start-page: 1387 issue: 11 year: 2004 ident: 10.1016/j.patcog.2011.06.004_bib9 article-title: HARP: a practical projected clustering algorithm publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2004.74 – volume: 49 start-page: 57 issue: 1 year: 1984 ident: 10.1016/j.patcog.2011.06.004_bib11 article-title: Synthesized clustering: a method for amalgamating alternative clustering bases with differential weighting of variables publication-title: Psychometrika doi: 10.1007/BF02294206 – volume: 43 start-page: 767 issue: 3 year: 2010 ident: 10.1016/j.patcog.2011.06.004_bib29 article-title: Enhanced soft subspace clustering integrating within-cluster and between-cluster information publication-title: Pattern Recognition doi: 10.1016/j.patcog.2009.09.010 – volume: 66 start-page: 815 issue: 4 year: 2004 ident: 10.1016/j.patcog.2011.06.004_bib18 article-title: Clustering objects on subsets of attributes publication-title: Journal of the Royal Statistical Society Series B (Statistical Methodology) doi: 10.1111/j.1467-9868.2004.02059.x – ident: 10.1016/j.patcog.2011.06.004_bib24 doi: 10.14778/1453856.1453871 – volume: 13 start-page: 149 issue: 2–3 year: 1997 ident: 10.1016/j.patcog.2011.06.004_bib32 article-title: A comparative study of clustering methods publication-title: Future Generation Computer Systems doi: 10.1016/S0167-739X(97)00018-6 – volume: 27 start-page: 657 issue: 5 year: 2005 ident: 10.1016/j.patcog.2011.06.004_bib19 article-title: Automated variable weighting in k-means type clustering publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2005.95 – volume: 52 start-page: 502 issue: 1 year: 2007 ident: 10.1016/j.patcog.2011.06.004_bib22 article-title: High dimensional data clustering publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2007.02.009 – ident: 10.1016/j.patcog.2011.06.004_bib17 doi: 10.1137/1.9781611972740.58 – volume: 37 start-page: 567 issue: 3 year: 2004 ident: 10.1016/j.patcog.2011.06.004_bib16 article-title: Unsupervised learning of prototypes and attribute weights publication-title: Pattern Recognition doi: 10.1016/j.patcog.2003.08.002 – volume: 9 start-page: 3273 issue: 12 year: 1998 ident: 10.1016/j.patcog.2011.06.004_bib30 article-title: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization publication-title: Molecular Biology of the Cell doi: 10.1091/mbc.9.12.3273 – ident: 10.1016/j.patcog.2011.06.004_bib1 – ident: 10.1016/j.patcog.2011.06.004_bib33 – volume: 52 start-page: 4658 issue: 10 year: 2008 ident: 10.1016/j.patcog.2011.06.004_bib23 article-title: Developing a feature weight self-adjustment mechanism for a k-means clustering algorithm publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2008.03.002 |
| SSID | ssj0017142 |
| Score | 2.4331074 |
| Snippet | This paper proposes a new method to weight subspaces in feature groups and individual features for clustering high-dimensional data. In this method, the... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 434 |
| SubjectTerms | Algorithms Applied sciences Clustering Clusters Data mining Exact sciences and technology Feature weighting High-dimensional data analysis Information theory Information, signal and communications theory k-Means Noise Optimization Pattern recognition Signal and communications theory Signal representation. Spectral analysis Signal, noise Subspace clustering Subspaces Telecommunications and information theory Weighting methods |
| Title | A feature group weighting method for subspace clustering of high-dimensional data |
| URI | https://dx.doi.org/10.1016/j.patcog.2011.06.004 https://www.proquest.com/docview/926321583 |
| Volume | 45 |
| WOSCitedRecordID | wos000295760700036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdbuofB2PdY91H0sDfjYUe2JT-a4ZKELeugHu6TkWV5WylOqJO2f_5OX07aMLI97MUEIdkm9_Pd6XT3O4Q-kEY0LGwDv2GaVFsSPxVh7JNESFHXUVLrbg3fP9P5nJVlemKjSr1uJ0C7jt3cpMv_KmoYA2Gr0tl_EPdwUxiA3yB0uILY4fpXgs-8Vmq2Tk9XbHjXOvipIgKmW7ROLOxBX8BuWXriYq2oEmzusyIv9htF-G_IOjxbujb4ryeajlOVwNi8o80pfjnNvs6KuSJZGI53zor5FxUOO8u3Zx3nU68shpD1JC-L3JsUmSmfmi36n2u-HY0IN7tWVyCzrWxJ6JNxQLaVreGOvAUqozkjG9M0Rjgycckd_W5CDecfl2CnFj8sA6s6Too29syd4d8xc0Py4TiicQx67D46GFPYT43QQTbNy9lw-ETDyJDM2_d3FZc6LXD3yX_yaB4teQ_fWWsapOzYeu3AnD5Fj-3OA2cGMc_QPdk9R0_sLgRbHd_DkGv04cZeoG8ZtpjCGlN4wBQ2mMKAKewwhTeYwosW38UUVph6iYrj_PTTxLe9OHxBErbySZxy5U2yuhUklTKtY14njSABkzWRoUgCwmUYC8YT2sQ1DWoqecwlZW2c8IC8QqNu0cnXCKct2JCk5qRuWJQGCRs3MKltwLaAr0yjQ0Tc_1kJS1Sv-qVcVC4j8bwyUqiUFCqdmAmr_GHV0hC17JlPnagq62waJ7ICrO1ZeXRLssPjHLAOEXairkBZqxM43snFuq9S1R0hjBl5s-8eb9FD9XmZYN87NFpdruV79EBcrX71l0cWsb8BjGK2TA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+feature+group+weighting+method+for+subspace+clustering+of+high-dimensional+data&rft.jtitle=Pattern+recognition&rft.au=XIAOJUN+CHEN&rft.au=YUNMING+YE&rft.au=XIAOFEI+XU&rft.au=ZHEXUE+HUANG%2C+Joshua&rft.date=2012&rft.pub=Elsevier&rft.issn=0031-3203&rft.volume=45&rft.issue=1&rft.spage=434&rft.epage=446&rft_id=info:doi/10.1016%2Fj.patcog.2011.06.004&rft.externalDBID=n%2Fa&rft.externalDocID=24755322 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |