Deep learning of vortex-induced vibrations

Vortex-induced vibrations of bluff bodies occur when the vortex shedding frequency is close to the natural frequency of the structure. Of interest is the prediction of the lift and drag forces on the structure given some limited and scattered information on the velocity field. This is an inverse pro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of fluid mechanics Ročník 861; s. 119 - 137
Hlavní autoři: Raissi, Maziar, Wang, Zhicheng, Triantafyllou, Michael S., Karniadakis, George Em
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge, UK Cambridge University Press 25.02.2019
Témata:
ISSN:0022-1120, 1469-7645
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Vortex-induced vibrations of bluff bodies occur when the vortex shedding frequency is close to the natural frequency of the structure. Of interest is the prediction of the lift and drag forces on the structure given some limited and scattered information on the velocity field. This is an inverse problem that is not straightforward to solve using standard computational fluid dynamics methods, especially since no information is provided for the pressure. An even greater challenge is to infer the lift and drag forces given some dye or smoke visualizations of the flow field. Here we employ deep neural networks that are extended to encode the incompressible Navier–Stokes equations coupled with the structure’s dynamic motion equation. In the first case, given scattered data in space–time on the velocity field and the structure’s motion, we use four coupled deep neural networks to infer very accurately the structural parameters, the entire time-dependent pressure field (with no prior training data), and reconstruct the velocity vector field and the structure’s dynamic motion. In the second case, given scattered data in space–time on a concentration field only, we use five coupled deep neural networks to infer very accurately the vector velocity field and all other quantities of interest as before. This new paradigm of inference in fluid mechanics for coupled multi-physics problems enables velocity and pressure quantification from flow snapshots in small subdomains and can be exploited for flow control applications and also for system identification.
AbstractList Vortex-induced vibrations of bluff bodies occur when the vortex shedding frequency is close to the natural frequency of the structure. Of interest is the prediction of the lift and drag forces on the structure given some limited and scattered information on the velocity field. This is an inverse problem that is not straightforward to solve using standard computational fluid dynamics methods, especially since no information is provided for the pressure. An even greater challenge is to infer the lift and drag forces given some dye or smoke visualizations of the flow field. Here we employ deep neural networks that are extended to encode the incompressible Navier–Stokes equations coupled with the structure’s dynamic motion equation. In the first case, given scattered data in space–time on the velocity field and the structure’s motion, we use four coupled deep neural networks to infer very accurately the structural parameters, the entire time-dependent pressure field (with no prior training data), and reconstruct the velocity vector field and the structure’s dynamic motion. In the second case, given scattered data in space–time on a concentration field only, we use five coupled deep neural networks to infer very accurately the vector velocity field and all other quantities of interest as before. This new paradigm of inference in fluid mechanics for coupled multi-physics problems enables velocity and pressure quantification from flow snapshots in small subdomains and can be exploited for flow control applications and also for system identification.
Author Wang, Zhicheng
Triantafyllou, Michael S.
Karniadakis, George Em
Raissi, Maziar
Author_xml – sequence: 1
  givenname: Maziar
  orcidid: 0000-0002-8467-4568
  surname: Raissi
  fullname: Raissi, Maziar
  email: maziar_raissi@brown.edu
  organization: Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
– sequence: 2
  givenname: Zhicheng
  orcidid: 0000-0002-5856-6459
  surname: Wang
  fullname: Wang, Zhicheng
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 3
  givenname: Michael S.
  orcidid: 0000-0002-4960-7060
  surname: Triantafyllou
  fullname: Triantafyllou, Michael S.
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 4
  givenname: George Em
  surname: Karniadakis
  fullname: Karniadakis, George Em
  organization: Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
BookMark eNp1kE1LAzEQhoNUsK3e_AEL3sRdZ7Jx0xylfkLBi55DNh8lpU1qsi36793agiB6mbk878zLMyKDEIMl5ByhQkB-vXCrigJOqgmnR2SIrBElb9jNgAwBKC0RKZyQUc4LAKxB8CG5vLN2XSytSsGHeRFdsY2psx-lD2ajrSm2vk2q8zHkU3Ls1DLbs8Mek7eH-9fpUzl7eXye3s5KXTeTrqzROM0FFVYo5ZRBh8xgg5oJ3k_RtqbVlDpQjDtjnINaIxMKtHFM16oek4v93XWK7xubO7mImxT6l5IiZwwYF7yn6J7SKeacrJPad99Fu6T8UiLInRPZO5E7J7J30oeufoXWya9U-vwPrw64WrXJm7n9qfJn4Avo9nRv
CitedBy_id crossref_primary_10_1016_j_ijheatfluidflow_2020_108729
crossref_primary_10_3390_fluids8070212
crossref_primary_10_1063_5_0082640
crossref_primary_10_1007_s10409_024_24140_x
crossref_primary_10_1007_s11063_022_10979_3
crossref_primary_10_1016_j_jcp_2019_109136
crossref_primary_10_1063_5_0178311
crossref_primary_10_1016_j_istruc_2023_01_115
crossref_primary_10_3390_en16124558
crossref_primary_10_1103_d4tm_92vb
crossref_primary_10_1038_s41598_022_16463_1
crossref_primary_10_1007_s11831_023_09890_4
crossref_primary_10_1016_j_jcp_2020_109951
crossref_primary_10_1016_j_jobe_2023_106828
crossref_primary_10_1016_j_jfluidstructs_2020_103017
crossref_primary_10_1007_s10921_020_00705_1
crossref_primary_10_1016_j_cma_2022_114909
crossref_primary_10_1063_5_0075664
crossref_primary_10_1016_j_engappai_2021_104195
crossref_primary_10_1016_j_ijmecsci_2022_108016
crossref_primary_10_1007_s40314_023_02547_9
crossref_primary_10_1016_j_jcp_2022_111588
crossref_primary_10_1016_j_enconman_2024_119474
crossref_primary_10_1016_j_apenergy_2021_116641
crossref_primary_10_1016_j_engstruct_2024_118077
crossref_primary_10_1088_1361_6463_acbec3
crossref_primary_10_1103_9wj9_nmr8
crossref_primary_10_3390_biomimetics9020072
crossref_primary_10_1016_j_jcp_2020_109811
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120626
crossref_primary_10_3390_buildings15091533
crossref_primary_10_1016_j_oceaneng_2024_119321
crossref_primary_10_1016_j_cja_2021_07_027
crossref_primary_10_2514_1_J059207
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126785
crossref_primary_10_1063_5_0263909
crossref_primary_10_1080_19942060_2025_2451774
crossref_primary_10_1016_j_cma_2019_112732
crossref_primary_10_1109_LRA_2023_3329620
crossref_primary_10_1016_j_compfluid_2022_105379
crossref_primary_10_1088_1361_6501_ad3fd3
crossref_primary_10_1016_j_coastaleng_2023_104337
crossref_primary_10_1063_5_0062377
crossref_primary_10_3390_computation8010015
crossref_primary_10_3390_e24081134
crossref_primary_10_1016_j_jsv_2021_116629
crossref_primary_10_1016_j_engappai_2024_109388
crossref_primary_10_1016_j_marstruc_2022_103195
crossref_primary_10_1109_ACCESS_2023_3260768
crossref_primary_10_1063_5_0211680
crossref_primary_10_1016_j_engappai_2025_110405
crossref_primary_10_1007_s00366_023_01914_8
crossref_primary_10_1016_j_jobe_2022_105374
crossref_primary_10_1016_j_powtec_2022_117303
crossref_primary_10_1088_2632_2153_acffa4
crossref_primary_10_1016_j_compag_2022_107282
crossref_primary_10_1016_j_cma_2023_116042
crossref_primary_10_3390_buildings14041182
crossref_primary_10_1007_s10409_021_01148_1
crossref_primary_10_1063_5_0208040
crossref_primary_10_1016_j_jcp_2021_110768
crossref_primary_10_1016_j_oceaneng_2021_109932
crossref_primary_10_1017_jfm_2020_453
crossref_primary_10_1016_j_cma_2024_117706
crossref_primary_10_1155_er_3241787
crossref_primary_10_1016_j_camwa_2024_11_009
crossref_primary_10_1016_j_compbiomed_2025_109691
crossref_primary_10_1177_0954410021999864
crossref_primary_10_1016_j_icheatmasstransfer_2023_107045
crossref_primary_10_1016_j_jcp_2022_111271
crossref_primary_10_1016_j_jweia_2020_104099
crossref_primary_10_7566_JPSJ_92_121003
crossref_primary_10_1007_s11071_024_10497_y
crossref_primary_10_1063_5_0157897
crossref_primary_10_1186_s10033_022_00791_4
crossref_primary_10_1016_j_jcp_2020_109629
crossref_primary_10_3390_a16060305
crossref_primary_10_1007_s10553_024_01782_y
crossref_primary_10_1016_j_cma_2023_116172
crossref_primary_10_1016_j_biosystemseng_2023_06_011
crossref_primary_10_1016_j_oceaneng_2024_119116
crossref_primary_10_1016_j_jfluidstructs_2022_103692
crossref_primary_10_1016_j_cnsns_2021_105729
crossref_primary_10_1080_10407782_2022_2091359
crossref_primary_10_5902_2179460X89888
crossref_primary_10_1038_s41467_021_26434_1
crossref_primary_10_1038_s41598_021_90734_1
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127430
crossref_primary_10_3390_atmos14040759
crossref_primary_10_1016_j_oceaneng_2025_122113
crossref_primary_10_1016_j_eswa_2025_127500
crossref_primary_10_1016_j_energy_2021_122617
crossref_primary_10_1016_j_oceaneng_2022_113101
crossref_primary_10_1063_5_0269943
crossref_primary_10_1007_s10483_023_2994_7
crossref_primary_10_1016_j_oceaneng_2022_113461
crossref_primary_10_1016_j_ces_2024_120950
crossref_primary_10_1038_s42256_023_00685_7
crossref_primary_10_1016_j_jcp_2020_109854
crossref_primary_10_3390_app13126892
crossref_primary_10_1007_s10483_023_3050_9
crossref_primary_10_1016_j_combustflame_2025_114190
crossref_primary_10_1088_2632_2153_ac3712
crossref_primary_10_1016_j_oceaneng_2022_111716
crossref_primary_10_1016_j_flowmeasinst_2023_102404
crossref_primary_10_1016_j_jweia_2024_105935
crossref_primary_10_1007_s00521_023_08876_4
crossref_primary_10_1017_jfm_2024_512
crossref_primary_10_1016_j_advwatres_2020_103619
crossref_primary_10_3390_sym17020163
crossref_primary_10_1007_s00466_023_02287_x
crossref_primary_10_3390_jmse9040376
crossref_primary_10_1016_j_rineng_2023_100917
crossref_primary_10_1016_j_engappai_2022_105724
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104603
crossref_primary_10_1155_2022_1781388
crossref_primary_10_3390_app122110953
crossref_primary_10_1080_15567036_2025_2451100
crossref_primary_10_1016_j_mechrescom_2019_103443
crossref_primary_10_2118_210559_PA
crossref_primary_10_1016_j_rineng_2024_101931
crossref_primary_10_1016_j_jcp_2023_112683
crossref_primary_10_3390_aerospace12030238
crossref_primary_10_3390_buildings15111876
crossref_primary_10_1007_s00521_024_10752_8
crossref_primary_10_1016_j_oceaneng_2021_109868
crossref_primary_10_1016_j_jcp_2020_109676
crossref_primary_10_1016_j_jcp_2021_110938
crossref_primary_10_1029_2022WR033168
crossref_primary_10_1145_3514228
crossref_primary_10_1093_mnras_stad1516
crossref_primary_10_1007_s00211_022_01294_z
crossref_primary_10_1016_j_ast_2024_108896
crossref_primary_10_1016_j_cma_2024_117458
crossref_primary_10_1016_j_jfluidstructs_2024_104066
crossref_primary_10_1016_j_compfluid_2021_105266
crossref_primary_10_1016_j_trc_2021_103008
crossref_primary_10_1137_19M1260141
crossref_primary_10_1007_s40745_021_00361_w
crossref_primary_10_1017_jfm_2023_36
crossref_primary_10_1007_s42241_020_0032_2
crossref_primary_10_1017_jfm_2022_466
crossref_primary_10_3390_app12105232
crossref_primary_10_1016_j_jfluidstructs_2021_103367
crossref_primary_10_1016_j_ijheatfluidflow_2023_109140
crossref_primary_10_1155_2023_5499645
crossref_primary_10_1016_j_chaos_2023_113509
crossref_primary_10_1016_j_oceaneng_2024_118639
crossref_primary_10_3390_app13095683
crossref_primary_10_3390_en15228719
crossref_primary_10_1016_j_jcp_2022_111731
crossref_primary_10_1016_j_trc_2021_103240
crossref_primary_10_1002_qj_4153
crossref_primary_10_1007_s00466_023_02334_7
crossref_primary_10_1016_j_oceaneng_2023_114630
crossref_primary_10_1007_s00158_022_03425_4
crossref_primary_10_1016_j_oceaneng_2019_106712
crossref_primary_10_3390_jmse11081589
crossref_primary_10_1016_j_paerosci_2025_101130
crossref_primary_10_1016_j_ces_2025_122459
crossref_primary_10_1017_jfm_2019_814
crossref_primary_10_1007_s00466_019_01715_1
crossref_primary_10_1007_s11071_024_10163_3
crossref_primary_10_1016_j_tws_2024_111693
crossref_primary_10_1016_j_oceaneng_2025_121098
crossref_primary_10_1038_s41598_021_92965_8
crossref_primary_10_1016_j_jcp_2020_110079
crossref_primary_10_1007_s42241_023_0042_y
crossref_primary_10_1186_s40323_023_00242_2
crossref_primary_10_1103_PhysRevFluids_7_024305
crossref_primary_10_1016_j_actaastro_2020_05_021
crossref_primary_10_1007_s00466_020_01859_5
crossref_primary_10_1016_j_cnsns_2022_106897
crossref_primary_10_1016_j_energy_2022_123390
crossref_primary_10_1016_j_apenergy_2022_119390
crossref_primary_10_1016_j_compfluid_2023_106025
crossref_primary_10_1016_j_enganabound_2025_106207
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120684
crossref_primary_10_1016_j_jcp_2022_111510
crossref_primary_10_1016_j_ast_2022_108081
crossref_primary_10_1016_j_oceaneng_2022_112833
crossref_primary_10_1177_00202940221099064
crossref_primary_10_1007_s00348_023_03736_2
crossref_primary_10_1016_j_apor_2025_104661
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104877
crossref_primary_10_3390_biomedicines10092157
crossref_primary_10_1016_j_engappai_2025_111752
crossref_primary_10_1016_j_taml_2020_01_039
crossref_primary_10_1016_j_compfluid_2019_104258
crossref_primary_10_1007_s10489_023_04923_8
crossref_primary_10_1016_j_jcp_2022_111301
crossref_primary_10_1016_j_jcp_2021_110296
crossref_primary_10_1016_j_jsv_2021_116285
crossref_primary_10_1016_j_marstruc_2024_103575
crossref_primary_10_1088_1361_6501_ad3307
crossref_primary_10_1109_TETCI_2021_3086237
crossref_primary_10_1016_j_compfluid_2020_104431
crossref_primary_10_1016_j_jweia_2024_105998
crossref_primary_10_1017_jfm_2025_91
crossref_primary_10_1016_j_jcp_2025_113860
crossref_primary_10_1063_5_0253746
crossref_primary_10_3390_technologies11010024
crossref_primary_10_1016_j_oceaneng_2023_115313
crossref_primary_10_1016_j_jobe_2024_109231
crossref_primary_10_1109_TAI_2022_3192362
crossref_primary_10_1007_s11071_021_06931_0
crossref_primary_10_1007_s44379_025_00015_1
crossref_primary_10_1111_mice_12685
crossref_primary_10_1073_pnas_2100697118
crossref_primary_10_1002_aisy_202300457
crossref_primary_10_1016_j_commatsci_2020_109687
crossref_primary_10_1016_j_cma_2021_114399
crossref_primary_10_1017_jfm_2021_1149
crossref_primary_10_1007_s11071_023_09173_4
crossref_primary_10_1016_j_compfluid_2023_106164
crossref_primary_10_1063_5_0279565
crossref_primary_10_1007_s42979_025_03752_5
crossref_primary_10_1016_j_jcp_2025_114148
crossref_primary_10_1016_j_compgeo_2025_107348
crossref_primary_10_1016_j_jfluidstructs_2025_104337
crossref_primary_10_1016_j_compfluid_2021_105298
crossref_primary_10_1063_5_0200384
crossref_primary_10_1061__ASCE_EM_1943_7889_0001947
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125480
crossref_primary_10_1016_j_mtcomm_2023_106419
crossref_primary_10_1016_j_jcp_2025_114370
crossref_primary_10_1016_j_tws_2025_113159
crossref_primary_10_1109_TNNLS_2025_3545967
crossref_primary_10_1016_j_jcp_2023_112016
crossref_primary_10_1109_MCI_2021_3061854
crossref_primary_10_1016_j_cma_2025_117933
crossref_primary_10_1109_ACCESS_2019_2900578
crossref_primary_10_3390_jmse11112045
crossref_primary_10_1007_s00466_023_02328_5
crossref_primary_10_1016_j_cnsns_2024_107869
crossref_primary_10_1063_5_0097496
crossref_primary_10_1016_j_jocs_2020_101237
crossref_primary_10_1016_j_jhydrol_2025_132835
crossref_primary_10_1109_TRO_2024_3411850
crossref_primary_10_1016_j_cma_2021_113722
crossref_primary_10_1063_5_0232852
crossref_primary_10_3390_en16052108
crossref_primary_10_1016_j_apenergy_2021_117390
crossref_primary_10_1016_j_cma_2022_115523
crossref_primary_10_1007_s42241_020_0077_2
crossref_primary_10_3390_en16052343
crossref_primary_10_1016_j_jcp_2025_114125
crossref_primary_10_1063_5_0278133
crossref_primary_10_1017_jfm_2021_1045
Cites_doi 10.1093/acprof:oso/9780198528692.001.0001
10.1063/1.4927765
10.1016/j.jcp.2017.07.050
10.1017/S0022112099006606
10.1137/15M1055164
10.1016/j.jcp.2018.08.036
10.1002/aic.690381003
10.2172/1562229
10.1016/j.jcp.2017.01.060
10.1109/JPROC.2015.2494218
10.1109/NNSP.1994.366006
10.1016/j.jcp.2015.11.012
10.1137/16M1075454
10.1109/72.712178
10.2514/6.2015-1284
10.1016/j.jcp.2017.11.039
10.1017/S002211209700582X
10.1098/rspa.2017.0844
10.1214/15-EJS989
10.1016/j.jcp.2018.04.018
10.1016/j.jcp.2019.01.045
10.1017/jfm.2011.90
10.1016/j.jfranklin.2009.05.003
10.1098/rspa.2016.0751
10.2514/6.2015-2460
10.1137/140974596
10.1017/jfm.2016.615
10.1146/annurev.fluid.36.050802.122128
10.1006/jcph.2002.7146
10.1016/0893-6080(89)90020-8
10.1137/17M1120762
ContentType Journal Article
Copyright 2018 Cambridge University Press
Copyright_xml – notice: 2018 Cambridge University Press
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2018.872
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection (ProQuest)
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep

CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
DocumentTitleAlternate M. Raissi, Z. Wang, M. S. Triantafyllou and G. E. Karniadakis
Deep learning of vortex-induced vibrations
EISSN 1469-7645
EndPage 137
ExternalDocumentID 10_1017_jfm_2018_872
GroupedDBID -2P
-DZ
-E.
-~6
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVKB
ABVZP
ABXAU
ABZCX
ACBEA
ACBMC
ACDLN
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEUYN
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFRAH
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
I.7
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WYP
ZE2
ZMEZD
ZYDXJ
~02
AAYXX
ABUFD
ABXHF
ADMLS
AEHGV
AFFHD
AKMAY
CITATION
PHGZM
PHGZT
PQGLB
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c368t-31dfc7929e9aafad1f14d161c49761c9bbdbc22f0a47fddff03c149a0cdf4c3a3
IEDL.DBID M7S
ISICitedReferencesCount 343
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000527261700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1120
IngestDate Sun Sep 07 23:56:58 EDT 2025
Sat Nov 29 04:24:19 EST 2025
Tue Nov 18 20:02:21 EST 2025
Tue Jan 21 06:18:45 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords computational methods
flow–structure interactions
vortex interactions
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-31dfc7929e9aafad1f14d161c49761c9bbdbc22f0a47fddff03c149a0cdf4c3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5856-6459
0000-0002-4960-7060
0000-0002-8467-4568
PQID 2174404797
PQPubID 34769
PageCount 19
ParticipantIDs proquest_journals_2174404797
crossref_citationtrail_10_1017_jfm_2018_872
crossref_primary_10_1017_jfm_2018_872
cambridge_journals_10_1017_jfm_2018_872
PublicationCentury 2000
PublicationDate 2019-02-25
PublicationDateYYYYMMDD 2019-02-25
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-25
  day: 25
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2019
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2011; 677
1997; 344
2015; 13
1989; 2
2018; 18
2017d; 348
2002; 182
2015; 27
2017; 15
2017c; 335
2016; 305
2016; 807
2004; 36
2018; 357
2016; 374
2018a; 40
1999; 400
2016; 104
2017; 473
1992; 38
2015; 9
2016; 38
2009; 346
1998; 9
S0022112018008728_r21
S0022112018008728_r20
S0022112018008728_r22
S0022112018008728_r25
Mallat (S0022112018008728_r18) 2016; 374
S0022112018008728_r27
S0022112018008728_r26
S0022112018008728_r29
S0022112018008728_r28
Rasmussen (S0022112018008728_r43) 2006; 1
S0022112018008728_r30
S0022112018008728_r32
S0022112018008728_r31
S0022112018008728_r34
S0022112018008728_r33
S0022112018008728_r36
S0022112018008728_r35
S0022112018008728_r38
S0022112018008728_r37
S0022112018008728_r39
S0022112018008728_r41
S0022112018008728_r40
Kondor (S0022112018008728_r14) 2018
Paidoussis (S0022112018008728_r23) 1998; 1
S0022112018008728_r42
S0022112018008728_r45
S0022112018008728_r47
S0022112018008728_r46
S0022112018008728_r49
Paidoussis (S0022112018008728_r24) 2004; 2
S0022112018008728_r48
S0022112018008728_r1
S0022112018008728_r50
S0022112018008728_r3
S0022112018008728_r4
S0022112018008728_r51
S0022112018008728_r5
S0022112018008728_r6
S0022112018008728_r10
S0022112018008728_r7
S0022112018008728_r8
S0022112018008728_r9
S0022112018008728_r19
Baydin (S0022112018008728_r2) 2018; 18
Rico-Martinez (S0022112018008728_r44) 1994
S0022112018008728_r12
S0022112018008728_r11
S0022112018008728_r13
S0022112018008728_r16
S0022112018008728_r15
S0022112018008728_r17
References_xml – volume: 38
  start-page: B521
  year: 2016
  end-page: B538
  article-title: Multifidelity information fusion algorithms for high-dimensional systems and massive data sets
  publication-title: SIAM J. Sci. Comput.
– volume: 9
  start-page: 987
  year: 1998
  end-page: 1000
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Networks
– volume: 357
  start-page: 125
  year: 2018
  end-page: 141
  article-title: Hidden physics models: machine learning of nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 335
  start-page: 736
  year: 2017c
  end-page: 746
  article-title: Inferring solutions of differential equations using noisy multi-fidelity data
  publication-title: J. Comput. Phys.
– volume: 40
  start-page: A172
  year: 2018a
  end-page: A198
  article-title: Numerical Gaussian processes for time-dependent and nonlinear partial differential equations
  publication-title: SIAM J. Sci. Comput.
– volume: 473
  year: 2017
  article-title: Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling
  publication-title: Proc. R. Soc. Lond. A
– volume: 374
  year: 2016
  article-title: Understanding deep convolutional networks
  publication-title: Phil. Trans. R. Soc. Lond. A
– volume: 15
  start-page: 827
  year: 2017
  end-page: 863
  article-title: Wavelet scattering regression of quantum chemical energies
  publication-title: Multiscale Model. Simul.
– volume: 36
  start-page: 413
  year: 2004
  end-page: 455
  article-title: Vortex-induced vibration
  publication-title: Annu. Rev. Fluid Mech.
– volume: 348
  start-page: 683
  year: 2017d
  end-page: 693
  article-title: Machine learning of linear differential equations using Gaussian processes
  publication-title: J. Comput. Phys.
– volume: 104
  start-page: 148
  year: 2016
  end-page: 175
  article-title: Taking the human out of the loop: a review of Bayesian optimization
  publication-title: Proc. IEEE
– volume: 182
  start-page: 1
  year: 2002
  end-page: 26
  article-title: Neural network modeling for near wall turbulent flow
  publication-title: J. Comput. Phys.
– volume: 344
  start-page: 95
  year: 1997
  end-page: 136
  article-title: A direct numerical simulation study of flow past a freely vibrating cable
  publication-title: J. Fluid Mech.
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
– volume: 38
  start-page: 1499
  year: 1992
  end-page: 1511
  article-title: A hybrid neural network-first principles approach to process modeling
  publication-title: AIChE J.
– volume: 305
  start-page: 758
  year: 2016
  end-page: 774
  article-title: A paradigm for data-driven predictive modeling using field inversion and machine learning
  publication-title: J. Comput. Phys.
– volume: 27
  year: 2015
  article-title: Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty
  publication-title: Phys. Fluids
– volume: 677
  start-page: 342
  year: 2011
  end-page: 382
  article-title: Vortex-induced vibrations of a long flexible cylinder in shear flow
  publication-title: J. Fluid Mech.
– volume: 346
  start-page: 898
  year: 2009
  end-page: 913
  article-title: Solving initial-boundary value problems for systems of partial differential equations using neural networks and optimization techniques
  publication-title: J. Franklin Inst.
– volume: 807
  start-page: 155
  year: 2016
  end-page: 166
  article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
  publication-title: J. Fluid Mech.
– volume: 400
  start-page: 91
  year: 1999
  end-page: 124
  article-title: Dynamics and flow structures in the turbulent wake of rigid and flexible cylinders subject to vortex-induced vibrations
  publication-title: J. Fluid Mech.
– volume: 9
  start-page: 1
  year: 2015
  end-page: 79
  article-title: Brittleness of Bayesian inference under finite information in a continuous world
  publication-title: Electron. J. Statist.
– volume: 18
  start-page: 1
  issue: 153
  year: 2018
  end-page: 43
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Machine Learning Res.
– volume: 13
  start-page: 812
  year: 2015
  end-page: 828
  article-title: Bayesian numerical homogenization
  publication-title: Multiscale Model. Simul.
– ident: S0022112018008728_r11
  doi: 10.1093/acprof:oso/9780198528692.001.0001
– ident: S0022112018008728_r34
– ident: S0022112018008728_r30
– volume: 1
  volume-title: Fluid–Structure Interactions: Slender Structures and Axial Flow
  year: 1998
  ident: S0022112018008728_r23
– ident: S0022112018008728_r17
  doi: 10.1063/1.4927765
– volume: 1
  volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: S0022112018008728_r43
– ident: S0022112018008728_r1
– ident: S0022112018008728_r39
  doi: 10.1016/j.jcp.2017.07.050
– ident: S0022112018008728_r5
– ident: S0022112018008728_r7
  doi: 10.1017/S0022112099006606
– ident: S0022112018008728_r28
  doi: 10.1137/15M1055164
– ident: S0022112018008728_r46
  doi: 10.1016/j.jcp.2018.08.036
– ident: S0022112018008728_r29
  doi: 10.1002/aic.690381003
– ident: S0022112018008728_r31
– ident: S0022112018008728_r48
  doi: 10.2172/1562229
– ident: S0022112018008728_r38
  doi: 10.1016/j.jcp.2017.01.060
– ident: S0022112018008728_r45
  doi: 10.1109/JPROC.2015.2494218
– ident: S0022112018008728_r41
– start-page: 596
  volume-title: Neural Networks for Signal Processing IV. Proceedings of the 1994 IEEE Workshop
  year: 1994
  ident: S0022112018008728_r44
  doi: 10.1109/NNSP.1994.366006
– ident: S0022112018008728_r26
  doi: 10.1016/j.jcp.2015.11.012
– ident: S0022112018008728_r9
  doi: 10.1137/16M1075454
– ident: S0022112018008728_r13
– ident: S0022112018008728_r15
  doi: 10.1109/72.712178
– ident: S0022112018008728_r36
– volume: 2
  volume-title: Fluid–Structure Interactions: Slender Structures and Axial Flow
  year: 2004
  ident: S0022112018008728_r24
– ident: S0022112018008728_r6
  doi: 10.2514/6.2015-1284
– ident: S0022112018008728_r32
  doi: 10.1016/j.jcp.2017.11.039
– ident: S0022112018008728_r35
  doi: 10.1016/j.jcp.2017.11.039
– ident: S0022112018008728_r20
  doi: 10.1017/S002211209700582X
– ident: S0022112018008728_r47
  doi: 10.1098/rspa.2017.0844
– ident: S0022112018008728_r22
  doi: 10.1214/15-EJS989
– ident: S0022112018008728_r51
  doi: 10.1016/j.jcp.2018.04.018
– ident: S0022112018008728_r42
– ident: S0022112018008728_r25
  doi: 10.1016/j.jcp.2019.01.045
– ident: S0022112018008728_r4
  doi: 10.1017/jfm.2011.90
– ident: S0022112018008728_r3
  doi: 10.1016/j.jfranklin.2009.05.003
– ident: S0022112018008728_r12
– ident: S0022112018008728_r27
  doi: 10.1098/rspa.2016.0751
– ident: S0022112018008728_r50
  doi: 10.2514/6.2015-2460
– ident: S0022112018008728_r37
– ident: S0022112018008728_r33
– ident: S0022112018008728_r21
  doi: 10.1137/140974596
– volume: 18
  start-page: 1
  year: 2018
  ident: S0022112018008728_r2
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Machine Learning Res.
– ident: S0022112018008728_r16
  doi: 10.1017/jfm.2016.615
– volume-title: Proceedings of the Thirty-fifth International Conference on Machine Learning, Stockholm, Sweden
  year: 2018
  ident: S0022112018008728_r14
– volume: 374
  year: 2016
  ident: S0022112018008728_r18
  article-title: Understanding deep convolutional networks
  publication-title: Phil. Trans. R. Soc. Lond. A
– ident: S0022112018008728_r49
  doi: 10.1146/annurev.fluid.36.050802.122128
– ident: S0022112018008728_r19
  doi: 10.1006/jcph.2002.7146
– ident: S0022112018008728_r10
  doi: 10.1016/0893-6080(89)90020-8
– ident: S0022112018008728_r8
– ident: S0022112018008728_r40
  doi: 10.1137/17M1120762
SSID ssj0013097
Score 2.6918516
Snippet Vortex-induced vibrations of bluff bodies occur when the vortex shedding frequency is close to the natural frequency of the structure. Of interest is the...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Bluff bodies
Computational fluid dynamics
Computer applications
Data
Deep learning
Drag
Dyes
Dynamics
Equations of motion
Fields (mathematics)
Flow control
Fluid dynamics
Fluid flow
Fluid mechanics
Fluids
Hydrodynamics
Incompressible flow
Inverse problems
JFM Papers
Movement
Navier-Stokes equations
Neural networks
Optimization techniques
Physics
Pressure
Pressure dependence
Pressure field
Problems
Resonant frequencies
Resonant frequency
Reynolds number
Smoke
System identification
Time dependence
Training
Velocity
Velocity distribution
Vibrations
Vortex shedding
Vortex-induced vibrations
Vortices
Title Deep learning of vortex-induced vibrations
URI https://www.cambridge.org/core/product/identifier/S0022112018008728/type/journal_article
https://www.proquest.com/docview/2174404797
Volume 861
WOSCitedRecordID wos000527261700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: P5Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: PCBAR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M7S
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2O
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BCxIMFAqIQqkygJBAgTzsxpkQj1YMqFQ8JMQSOX4gEGpLUyp-PrbrNHQoC4uXnJLId7777Dt_B3AQ6a7vmEhXhT_pItHkLsVp6sY0xDymMU6l4Zm9jTod8vwcd-2BW2bLKnOfaBw17zN9Rn6moTPSfOjR-eDT1V2jdHbVttBYhLJmSQhM6d5DkUXw4ihnC1e4wrOF75oy-l3qa-g-OSWaG7igVZgNT7Pe2YScduW_P7sOaxZsOhcT69iABdGrQsUCT8cu66wKq79YCauwbKpCWbYJx9dCDBzbWOLV6UtnrGtzv121kVcmwZ2x3mwby92Cp3br8erGtc0VXBY2yUj5Xi5ZpMCRiCmVlPvSR1zBP4YUQPFZnKY8ZUEgPYoiybmUXsjUbop6jEvEQhpuQ6nX74kdcDRjPOECIxopPMYQQRjphF1AZFPBw7QGR9P5TewSyZJJeVmUKE0kWhOJ0kQNTvLZT5jlKNetMj7mSB9OpQcTbo45cvVcS8XnCxXt_v14D1bUi2JzjR3XoTQafol9WGLj0Vs2bED5stXp3jeU4QV3Zuw2jBGqsYtffgCyleFL
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT8JAEJ0gatSDKGpEUXvQmGiqpd3S9mCMUQlEJCZiwq1u98NgDCBF1D_lb3SnHyAHvXHw3M027bydebs78wZg38Gu77YrdRX-pE5EmevUDgLdo5bNPerZgYx0ZutOo-G2Wt5dBr7SWhhMq0x9YuSoeZfhGfkpUmeCeujOee9Vx65ReLuattCIYXEjPt_Vli08q10p-x6YZuW6eVnVk64COrPK7kA5HS6Zo1iB8CiVlJdkiXDFexhRkbnEvCDgATNNaVDiSM6lNCymthHUYFwSZlFLzTsDswS9f5QqeD--tTA8J1UnVzzGSBLtUaL6WWLZe8k9cVGLeCzjMBkOJ6NBFOIquf_2c1ZgOSHT2kWM_lXIiE4ecgmx1hK3FeZh6YfqYh7mo6xXFq7B0ZUQPS1pnPGkdaU2xNzjD73d4QryXBviYUK0MtfhYSpfsgHZTrcjNkFDRXyXC5tQR_FNRlxiE7yQNF1ZVvQ3KMDhyJ5-4gJCP06fc3xleR8t7yvLF-A4tbbPEg12bAXy8svog9HoXqw98su4YoqK8evHkNj6-_EeLFSbt3W_XmvcbMOimtSLSvbtImQH_TexA3NsOGiH_d0I7Bo8ThtA3zCKPdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+of+vortex-induced+vibrations&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Raissi%2C+Maziar&rft.au=Wang%2C+Zhicheng&rft.au=Triantafyllou%2C+Michael+S.&rft.au=Karniadakis%2C+George+Em&rft.date=2019-02-25&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=861&rft.spage=119&rft.epage=137&rft_id=info:doi/10.1017%2Fjfm.2018.872&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_jfm_2018_872
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon