Self-tuning distributed measurement fusion Kalman estimator for the multi-channel ARMA signal

For the multisensor multi-channel autoregressive moving average (ARMA) signal with white measurement noises and a common disturbance measurement white noise, when the model parameters and the noise variances are all unknown, a multi-stage information fusion identification method is presented, where...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Signal processing Ročník 91; číslo 8; s. 2028 - 2041
Hlavní autoři: Ran, Chenjian, Deng, Zili
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.08.2011
Elsevier
Témata:
ISSN:0165-1684, 1872-7557
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For the multisensor multi-channel autoregressive moving average (ARMA) signal with white measurement noises and a common disturbance measurement white noise, when the model parameters and the noise variances are all unknown, a multi-stage information fusion identification method is presented, where the consistent fused estimates of the model parameters and noise variances are obtained by the multi-dimension recursive instrumental variable (RIV) algorithm, correlation method and Gevers–Wouters algorithm with a dead band. Substituting these estimates into the optimal distributed measurement fusion Kalman signal estimator, a self-tuning distributed measurement fusion Kalman signal estimator is presented. Its convergence is proved by the dynamic error system analysis (DESA) method, so that it has asymptotical global optimality. In order to reduce computational load, a fast recursive inversion algorithm for a high-dimension matrix is presented by the inversion formula of partitioned matrix. Especially, when the process and measurement noise variance matrices are all diagonal matrices, the inversion formula of a high-dimension matrix is presented, which extends the formula of the inverse of Pei–Radman matrix. Applying the proposed inversion algorithm, the computation of the fused measurement and fused noise variance is simplified and their computational burden is reduced. A simulation example shows effectiveness of the proposed method.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0165-1684
1872-7557
DOI:10.1016/j.sigpro.2011.03.010