Self-tuning distributed measurement fusion Kalman estimator for the multi-channel ARMA signal

For the multisensor multi-channel autoregressive moving average (ARMA) signal with white measurement noises and a common disturbance measurement white noise, when the model parameters and the noise variances are all unknown, a multi-stage information fusion identification method is presented, where...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Signal processing Ročník 91; číslo 8; s. 2028 - 2041
Hlavní autoři: Ran, Chenjian, Deng, Zili
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.08.2011
Elsevier
Témata:
ISSN:0165-1684, 1872-7557
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract For the multisensor multi-channel autoregressive moving average (ARMA) signal with white measurement noises and a common disturbance measurement white noise, when the model parameters and the noise variances are all unknown, a multi-stage information fusion identification method is presented, where the consistent fused estimates of the model parameters and noise variances are obtained by the multi-dimension recursive instrumental variable (RIV) algorithm, correlation method and Gevers–Wouters algorithm with a dead band. Substituting these estimates into the optimal distributed measurement fusion Kalman signal estimator, a self-tuning distributed measurement fusion Kalman signal estimator is presented. Its convergence is proved by the dynamic error system analysis (DESA) method, so that it has asymptotical global optimality. In order to reduce computational load, a fast recursive inversion algorithm for a high-dimension matrix is presented by the inversion formula of partitioned matrix. Especially, when the process and measurement noise variance matrices are all diagonal matrices, the inversion formula of a high-dimension matrix is presented, which extends the formula of the inverse of Pei–Radman matrix. Applying the proposed inversion algorithm, the computation of the fused measurement and fused noise variance is simplified and their computational burden is reduced. A simulation example shows effectiveness of the proposed method.
AbstractList For the multisensor multi-channel autoregressive moving average (ARMA) signal with white measurement noises and a common disturbance measurement white noise, when the model parameters and the noise variances are all unknown, a multi-stage information fusion identification method is presented, where the consistent fused estimates of the model parameters and noise variances are obtained by the multi-dimension recursive instrumental variable (RIV) algorithm, correlation method and Gevers-Wouters algorithm with a dead band. Substituting these estimates into the optimal distributed measurement fusion Kalman signal estimator, a self-tuning distributed measurement fusion Kalman signal estimator is presented. Its convergence is proved by the dynamic error system analysis (DESA) method, so that it has asymptotical global optimality. In order to reduce computational load, a fast recursive inversion algorithm for a high-dimension matrix is presented by the inversion formula of partitioned matrix. Especially, when the process and measurement noise variance matrices are all diagonal matrices, the inversion formula of a high-dimension matrix is presented, which extends the formula of the inverse of Pei-Radman matrix. Applying the proposed inversion algorithm, the computation of the fused measurement and fused noise variance is simplified and their computational burden is reduced. A simulation example shows effectiveness of the proposed method.
Author Deng, Zili
Ran, Chenjian
Author_xml – sequence: 1
  givenname: Chenjian
  surname: Ran
  fullname: Ran, Chenjian
– sequence: 2
  givenname: Zili
  surname: Deng
  fullname: Deng, Zili
  email: dzl@hlju.edu.cn
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24177818$$DView record in Pascal Francis
BookMark eNqFkEuLFTEQRoOM4J3Rf-AiG3HVbdLpR64L4TL4whHBx1JCdaUyk0s6PSZpwX9vhju4cKGLojbn-6g65-wsrpEYeypFK4UcXxzb7K9v09p2QspWqFZI8YDtpJ66ZhqG6YztKjY0ctT9I3ae81EIIdUoduz7FwquKVv08Zpbn0vy81bI8oUgb4kWioW7Lfs18g8QFoiccvELlDVxV6fcEF-2UHyDNxAjBX74_PHA60ERwmP20EHI9OR-X7Bvb15_vXzXXH16-_7ycNWgGnVpulnA7KTrUCm9h1HtlUVQXT9ZsGroRuhn7dCJvepoBkuIDq1yVqIC7WZ1wZ6fequEH1s90Cw-I4UAkdYtG63FOExylJV8dk9CRgguQUSfzW2qL6VfpuvlNGmpK9efOExrzoncH0QKcyfdHM1JurmTboQyVXqNvfwrhr5AqfZKAh_-F351ClNV9dNTMhk9RSTrE2ExdvX_LvgN46ekpA
CODEN SPRODR
CitedBy_id crossref_primary_10_1016_j_dsp_2019_102636
crossref_primary_10_1002_acs_2503
crossref_primary_10_1002_rnc_3649
crossref_primary_10_1049_iet_cta_2016_0803
crossref_primary_10_1002_oca_2374
crossref_primary_10_1016_j_ins_2014_06_008
crossref_primary_10_1080_02664763_2015_1126811
crossref_primary_10_1016_j_matcom_2020_09_013
crossref_primary_10_1016_S1874_1029_14_60404_3
crossref_primary_10_3390_s19204436
crossref_primary_10_1002_acs_2277
crossref_primary_10_1016_j_sigpro_2013_12_013
crossref_primary_10_1109_ACCESS_2018_2874444
crossref_primary_10_18667_cienciaypoderaereo_9
crossref_primary_10_1016_j_proeng_2012_01_018
crossref_primary_10_1016_j_sigpro_2015_02_010
crossref_primary_10_1016_j_dsp_2014_03_011
crossref_primary_10_1109_TAES_2016_130691
crossref_primary_10_1016_j_csda_2012_01_001
crossref_primary_10_1080_00207721_2015_1018368
crossref_primary_10_1007_s00034_017_0578_6
crossref_primary_10_1016_j_jfranklin_2016_12_023
crossref_primary_10_4028_www_scientific_net_AMM_373_375_940
Cites_doi 10.1109/ICCA.2010.5524102
10.1109/7.7186
10.1109/WCICA.2008.4593476
10.1109/WCICA.2010.5554765
10.1109/7.104265
10.1016/j.automatica.2007.07.008
10.1016/0005-1098(96)85549-X
10.1109/JSEN.2009.2033260
10.1007/s11768-005-0011-8
10.1002/acs.1178
10.1109/CCDC.2009.5191948
10.1049/ip-vis:20041260
10.1016/j.sigpro.2008.10.019
10.1016/j.automatica.2004.01.014
10.1016/j.automatica.2007.01.010
10.1109/ICCA.2010.5524182
10.1109/ICCA.2010.5524057
10.1016/j.automatica.2005.04.020
10.1109/7.913685
10.1109/TAES.2009.4805272
10.1016/j.automatica.2004.03.012
10.1109/WCICA.2010.5554235
10.1109/TIT.1977.1055719
10.1109/TAC.1984.1103464
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.sigpro.2011.03.010
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1872-7557
EndPage 2041
ExternalDocumentID 24177818
10_1016_j_sigpro_2011_03_010
S0165168411000855
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c368t-2b0abf1f2c3389a6393dca3247dad3526a4b8fcf0932ebadeccfcd3fd1c3a8fb3
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000291291700031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-1684
IngestDate Sun Sep 28 03:22:42 EDT 2025
Mon Jul 21 09:15:28 EDT 2025
Sat Nov 29 08:13:48 EST 2025
Tue Nov 18 22:42:14 EST 2025
Fri Feb 23 02:28:10 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Fast inversion algorithm
Asymptotical global optimality
Distributed measurement fusion
Self-tuning fused signal estimator
Multisensor information fusion
Multi-channel ARMA signal
Convergence
Performance evaluation
ARMA model
Information integration
Error estimation
Sensor fusion
Dynamical system
Correlation method
White noise
Fast algorithm
Multistage method
Multisensor
Recursive algorithm
Computational complexity
Inverse problem
Simulation
Matrix inversion
Information processing
Recursive method
Signal processing
Data fusion
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c368t-2b0abf1f2c3389a6393dca3247dad3526a4b8fcf0932ebadeccfcd3fd1c3a8fb3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 880657161
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_880657161
pascalfrancis_primary_24177818
crossref_primary_10_1016_j_sigpro_2011_03_010
crossref_citationtrail_10_1016_j_sigpro_2011_03_010
elsevier_sciencedirect_doi_10_1016_j_sigpro_2011_03_010
PublicationCentury 2000
PublicationDate 2011-08-01
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Signal processing
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Xu, Deng, Zhang (bib20) 2010; 10
Deng, Gao, Li, Hao (bib18) 2008; 44
Hagander, Wittenmark (bib15) 1977; 23
Rudin (bib33) 2004
Y. Gao, H.Q. Xu, Z.L. Deng, Multi-stage information fusion identification method for multisensor ARMA signals with white measurement noises, in: 8th IEEE International Conference on Control and Automation, Xiamen, China, 2010, pp. 1115–1119.
Anderson, Moore (bib3) 1979
Sun, Deng (bib7) 2004; 40
Gevers, Wouters (bib21) 1978; 19
Sun (bib13) 2005; 2
Y. Gao, Z.L. Deng, Self-tuning measurement fusion filter and its convergence analysis, in: Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China, 2008, pp. 3470–3475.
Sun (bib8) 2004; 40
Deng, Gao (bib12) 2005; 27
Ran, Tao, Liu, Deng (bib23) 2009; 9
J.F. Liu, Z.L. Deng, Self-tuning information fusion Wiener filter for ARMA signals and its convergence, in: 29th Chinese Control Conference, Beijing, China, 2010, pp. 2739–2744.
Chui, Chen (bib32) 1987
Sun, Zhang (bib14) 2005; 152
Roy, Iltis (bib10) 1991; 27
G.L. Tao, W. Wang, Z.L. Deng, The self-tuning distributed information fusion Wiener filter for the ARMA signals, in: Proceedings of the 8th World Congress on Intelligent Control and Automation, Jinan, China, 2010, pp. 6897–6902.
Sun, Deng (bib30) 2009; 89
Gan, Harris (bib5) 2001; 37
Ljung (bib19) 1999
Bar-Shalom, Li (bib1) 1995
Gao, Ran, Sun, Deng (bib34) 2010; 24
G.L. Tao, Z.L. Deng, Convergence of self-tuning Riccati equation for systems with unknown parameters and noise variances, in: Proceedings of the 8th World Congress on Intelligent Control and Automation, Jinan, China, 2010, pp. 5732–5736.
Song, Zhu, Zhou, You (bib11) 2007; 43
Roecker, McGillem (bib4) 1988; 24
C.J. Ran, Z.L. Deng, Self-tuning measurement fusion Kalman filter for multisensor systems with companion form and common disturbance noise, in: 29th Chinese Control Conference, Beijing, China, 2010, pp. 1172–1177.
Deng, Gao, Mao, Li, Hao (bib6) 2005; 41
Gao, Jia, Sun, Deng (bib31) 2009; 45
Ran, Hui, Gu, Deng (bib9) 2008; 34
Moir, Grimble (bib16) 1984; 29
Y. Gao, Z.L. Deng, Self-tuning weighted measurement fusion Wiener signal filter, in: 29th Chinese Control Conference, Beijing, China, 2010, pp. 1103–1108.
Liggins, Hall, Llinas (bib2) 2009
G.L. Tao, X.H. Guan, Z.L. Deng, Self-tuning distributed fusion Kalman filter with asymptotic global optimality, in: 29th Chinese Control Conference, Beijing, China, 2010, pp. 1268–1272.
Deng, Zhang, Liu, Zhou (bib17) 1996; 32
Chen, Chen (bib35) 2001
10.1016/j.sigpro.2011.03.010_bib22
Roy (10.1016/j.sigpro.2011.03.010_bib10) 1991; 27
Ljung (10.1016/j.sigpro.2011.03.010_bib19) 1999
Moir (10.1016/j.sigpro.2011.03.010_bib16) 1984; 29
Sun (10.1016/j.sigpro.2011.03.010_bib7) 2004; 40
Sun (10.1016/j.sigpro.2011.03.010_bib14) 2005; 152
Gao (10.1016/j.sigpro.2011.03.010_bib34) 2010; 24
Ran (10.1016/j.sigpro.2011.03.010_bib9) 2008; 34
Roecker (10.1016/j.sigpro.2011.03.010_bib4) 1988; 24
Sun (10.1016/j.sigpro.2011.03.010_bib8) 2004; 40
Chui (10.1016/j.sigpro.2011.03.010_bib32) 1987
10.1016/j.sigpro.2011.03.010_bib36
Deng (10.1016/j.sigpro.2011.03.010_bib6) 2005; 41
Gao (10.1016/j.sigpro.2011.03.010_bib31) 2009; 45
Bar-Shalom (10.1016/j.sigpro.2011.03.010_bib1) 1995
Sun (10.1016/j.sigpro.2011.03.010_bib13) 2005; 2
Song (10.1016/j.sigpro.2011.03.010_bib11) 2007; 43
Liggins (10.1016/j.sigpro.2011.03.010_bib2) 2009
Deng (10.1016/j.sigpro.2011.03.010_bib17) 1996; 32
Anderson (10.1016/j.sigpro.2011.03.010_bib3) 1979
Xu (10.1016/j.sigpro.2011.03.010_bib20) 2010; 10
Hagander (10.1016/j.sigpro.2011.03.010_bib15) 1977; 23
Gan (10.1016/j.sigpro.2011.03.010_bib5) 2001; 37
Deng (10.1016/j.sigpro.2011.03.010_bib12) 2005; 27
Gevers (10.1016/j.sigpro.2011.03.010_bib21) 1978; 19
Deng (10.1016/j.sigpro.2011.03.010_bib18) 2008; 44
Rudin (10.1016/j.sigpro.2011.03.010_bib33) 2004
Chen (10.1016/j.sigpro.2011.03.010_bib35) 2001
Sun (10.1016/j.sigpro.2011.03.010_bib30) 2009; 89
10.1016/j.sigpro.2011.03.010_bib29
Ran (10.1016/j.sigpro.2011.03.010_bib23) 2009; 9
10.1016/j.sigpro.2011.03.010_bib28
10.1016/j.sigpro.2011.03.010_bib27
10.1016/j.sigpro.2011.03.010_bib26
10.1016/j.sigpro.2011.03.010_bib25
10.1016/j.sigpro.2011.03.010_bib24
References_xml – volume: 27
  start-page: 939
  year: 1991
  end-page: 941
  ident: bib10
  article-title: Decentralized linear estimation in correlated measurement noise
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
– reference: Y. Gao, H.Q. Xu, Z.L. Deng, Multi-stage information fusion identification method for multisensor ARMA signals with white measurement noises, in: 8th IEEE International Conference on Control and Automation, Xiamen, China, 2010, pp. 1115–1119.
– volume: 29
  start-page: 128
  year: 1984
  end-page: 137
  ident: bib16
  article-title: Optimal self-tuning filtering, prediction, and smoothering for discrete multivariable processes
  publication-title: IEEE Transactions on Automatic Control
– volume: 40
  start-page: 1447
  year: 2004
  end-page: 1453
  ident: bib8
  article-title: Multi-sensor information fusion white noise filter weighted by scalars based on Kalman predictor
  publication-title: Automatica
– year: 2004
  ident: bib33
  article-title: Principles of Mathematical Analysis
– year: 2009
  ident: bib2
  article-title: Handbook of Multisensor Data Fusion: Theory and Practice
– reference: C.J. Ran, Z.L. Deng, Self-tuning measurement fusion Kalman filter for multisensor systems with companion form and common disturbance noise, in: 29th Chinese Control Conference, Beijing, China, 2010, pp. 1172–1177.
– volume: 34
  start-page: 233
  year: 2008
  end-page: 239
  ident: bib9
  article-title: Correlated measurement fusion steady-state Kalman filtering algorithms and their optimality
  publication-title: Acta Automatica Sinica
– reference: G.L. Tao, X.H. Guan, Z.L. Deng, Self-tuning distributed fusion Kalman filter with asymptotic global optimality, in: 29th Chinese Control Conference, Beijing, China, 2010, pp. 1268–1272.
– volume: 43
  start-page: 1450
  year: 2007
  end-page: 1456
  ident: bib11
  article-title: Optimality Kalman filtering fusion with cross-correlated sensor noises
  publication-title: Automatica
– volume: 40
  start-page: 1017
  year: 2004
  end-page: 1023
  ident: bib7
  article-title: Multi-sensor optimal information fusion Kalman filter
  publication-title: Automatica
– volume: 10
  start-page: 366
  year: 2010
  end-page: 371
  ident: bib20
  article-title: Multidimensional and multiple recursive instrumental variable identification algorithms
  publication-title: Science Technology and Engineering
– volume: 19
  start-page: 90
  year: 1978
  end-page: 109
  ident: bib21
  article-title: An innovations approach to the discrete-time stochastic realization problem
  publication-title: Quarterly Journal on Automatic
– volume: 152
  start-page: 583
  year: 2005
  end-page: 589
  ident: bib14
  article-title: Optimal information fusion distributed smoother for discrete multichannel ARMA signals
  publication-title: IEE Proceedings—Vision, Image and Signal Processing
– volume: 37
  start-page: 273
  year: 2001
  end-page: 279
  ident: bib5
  article-title: Comparison of two measurement fusion methods for Kalman-filter-based multisensor data fusion
  publication-title: IEEE Transactions on Aerospace and Electronic systems
– volume: 2
  start-page: 168
  year: 2005
  end-page: 172
  ident: bib13
  article-title: Optimal multi-sensor Kalman smothering fusion for discrete multichannel ARMA signal
  publication-title: Journal of Control Theory and Applications
– reference: Y. Gao, Z.L. Deng, Self-tuning measurement fusion filter and its convergence analysis, in: Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China, 2008, pp. 3470–3475.
– volume: 89
  start-page: 738
  year: 2009
  end-page: 752
  ident: bib30
  article-title: Optimal and self-tuning weighted measurement fusion Wiener filter for the multisensor multichannel ARMA signals
  publication-title: Signal Processing
– volume: 24
  start-page: 447
  year: 1988
  end-page: 449
  ident: bib4
  article-title: Comparison of two-sensor tracking methods based on state vector fusion and measurement fusion
  publication-title: IEEE Transactions on Aerospace and Electronics Systems
– reference: G.L. Tao, W. Wang, Z.L. Deng, The self-tuning distributed information fusion Wiener filter for the ARMA signals, in: Proceedings of the 8th World Congress on Intelligent Control and Automation, Jinan, China, 2010, pp. 6897–6902.
– volume: 23
  start-page: 377
  year: 1977
  end-page: 384
  ident: bib15
  article-title: A self-tuning filter for fixed-lag smoothing
  publication-title: IEEE Transactions on Information Theory
– year: 1987
  ident: bib32
  article-title: Kalman Filtering with Real-Time Applications
– volume: 24
  start-page: 982
  year: 2010
  end-page: 1004
  ident: bib34
  article-title: Optimal and self-tuning weighted measurement fusion Kalman filters and their asymptotic global optimality
  publication-title: International Journal of Adaptive Control and Signal Processing
– year: 2001
  ident: bib35
  article-title: Special Matrix
– reference: Y. Gao, Z.L. Deng, Self-tuning weighted measurement fusion Wiener signal filter, in: 29th Chinese Control Conference, Beijing, China, 2010, pp. 1103–1108.
– year: 1995
  ident: bib1
  article-title: Multitarget-multisensor Tracking, Principles and Techniques
– volume: 9
  start-page: 2024
  year: 2009
  end-page: 2032
  ident: bib23
  article-title: Self-tuning decoupled fusion Kalman predictor and its convergence analysis
  publication-title: IEEE Sensors Journal
– volume: 45
  start-page: 179
  year: 2009
  end-page: 191
  ident: bib31
  article-title: Self-tuning multisensor weighted measurement fusion Kalman filter
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
– year: 1999
  ident: bib19
  article-title: System Identification: Theory for the User
– volume: 44
  start-page: 685
  year: 2008
  end-page: 695
  ident: bib18
  article-title: Self-tuning decoupled information fusion Wiener state component filters and their convergence
  publication-title: Automatica
– reference: G.L. Tao, Z.L. Deng, Convergence of self-tuning Riccati equation for systems with unknown parameters and noise variances, in: Proceedings of the 8th World Congress on Intelligent Control and Automation, Jinan, China, 2010, pp. 5732–5736.
– volume: 32
  start-page: 199
  year: 1996
  end-page: 216
  ident: bib17
  article-title: Optimal and self-tuning white noise estimators with applications to deconvolution and filtering problem
  publication-title: Automatica
– year: 1979
  ident: bib3
  article-title: Optimal Filtering
– volume: 41
  start-page: 1695
  year: 2005
  end-page: 1710
  ident: bib6
  article-title: New approach to information fusion steady-state Kalman filtering
  publication-title: Automatica
– volume: 27
  start-page: 1416
  year: 2005
  end-page: 1419
  ident: bib12
  article-title: Multichannel ARMA signal information fusion Wiener filter
  publication-title: Journal of Electronics & Information Technology
– reference: J.F. Liu, Z.L. Deng, Self-tuning information fusion Wiener filter for ARMA signals and its convergence, in: 29th Chinese Control Conference, Beijing, China, 2010, pp. 2739–2744.
– ident: 10.1016/j.sigpro.2011.03.010_bib27
  doi: 10.1109/ICCA.2010.5524102
– year: 1995
  ident: 10.1016/j.sigpro.2011.03.010_bib1
– volume: 24
  start-page: 447
  issue: 4
  year: 1988
  ident: 10.1016/j.sigpro.2011.03.010_bib4
  article-title: Comparison of two-sensor tracking methods based on state vector fusion and measurement fusion
  publication-title: IEEE Transactions on Aerospace and Electronics Systems
  doi: 10.1109/7.7186
– ident: 10.1016/j.sigpro.2011.03.010_bib29
  doi: 10.1109/WCICA.2008.4593476
– year: 2001
  ident: 10.1016/j.sigpro.2011.03.010_bib35
– volume: 27
  start-page: 1416
  issue: 9
  year: 2005
  ident: 10.1016/j.sigpro.2011.03.010_bib12
  article-title: Multichannel ARMA signal information fusion Wiener filter
  publication-title: Journal of Electronics & Information Technology
– ident: 10.1016/j.sigpro.2011.03.010_bib36
  doi: 10.1109/WCICA.2010.5554765
– volume: 27
  start-page: 939
  issue: 6
  year: 1991
  ident: 10.1016/j.sigpro.2011.03.010_bib10
  article-title: Decentralized linear estimation in correlated measurement noise
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
  doi: 10.1109/7.104265
– year: 2009
  ident: 10.1016/j.sigpro.2011.03.010_bib2
– volume: 44
  start-page: 685
  year: 2008
  ident: 10.1016/j.sigpro.2011.03.010_bib18
  article-title: Self-tuning decoupled information fusion Wiener state component filters and their convergence
  publication-title: Automatica
  doi: 10.1016/j.automatica.2007.07.008
– year: 1999
  ident: 10.1016/j.sigpro.2011.03.010_bib19
– volume: 32
  start-page: 199
  issue: 2
  year: 1996
  ident: 10.1016/j.sigpro.2011.03.010_bib17
  article-title: Optimal and self-tuning white noise estimators with applications to deconvolution and filtering problem
  publication-title: Automatica
  doi: 10.1016/0005-1098(96)85549-X
– volume: 9
  start-page: 2024
  issue: 12
  year: 2009
  ident: 10.1016/j.sigpro.2011.03.010_bib23
  article-title: Self-tuning decoupled fusion Kalman predictor and its convergence analysis
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2009.2033260
– volume: 2
  start-page: 168
  year: 2005
  ident: 10.1016/j.sigpro.2011.03.010_bib13
  article-title: Optimal multi-sensor Kalman smothering fusion for discrete multichannel ARMA signal
  publication-title: Journal of Control Theory and Applications
  doi: 10.1007/s11768-005-0011-8
– volume: 24
  start-page: 982
  year: 2010
  ident: 10.1016/j.sigpro.2011.03.010_bib34
  article-title: Optimal and self-tuning weighted measurement fusion Kalman filters and their asymptotic global optimality
  publication-title: International Journal of Adaptive Control and Signal Processing
  doi: 10.1002/acs.1178
– year: 2004
  ident: 10.1016/j.sigpro.2011.03.010_bib33
– ident: 10.1016/j.sigpro.2011.03.010_bib28
  doi: 10.1109/CCDC.2009.5191948
– volume: 152
  start-page: 583
  issue: 5
  year: 2005
  ident: 10.1016/j.sigpro.2011.03.010_bib14
  article-title: Optimal information fusion distributed smoother for discrete multichannel ARMA signals
  publication-title: IEE Proceedings—Vision, Image and Signal Processing
  doi: 10.1049/ip-vis:20041260
– volume: 89
  start-page: 738
  issue: 5
  year: 2009
  ident: 10.1016/j.sigpro.2011.03.010_bib30
  article-title: Optimal and self-tuning weighted measurement fusion Wiener filter for the multisensor multichannel ARMA signals
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2008.10.019
– volume: 40
  start-page: 1017
  year: 2004
  ident: 10.1016/j.sigpro.2011.03.010_bib7
  article-title: Multi-sensor optimal information fusion Kalman filter
  publication-title: Automatica
  doi: 10.1016/j.automatica.2004.01.014
– volume: 43
  start-page: 1450
  year: 2007
  ident: 10.1016/j.sigpro.2011.03.010_bib11
  article-title: Optimality Kalman filtering fusion with cross-correlated sensor noises
  publication-title: Automatica
  doi: 10.1016/j.automatica.2007.01.010
– year: 1987
  ident: 10.1016/j.sigpro.2011.03.010_bib32
– ident: 10.1016/j.sigpro.2011.03.010_bib25
  doi: 10.1109/ICCA.2010.5524182
– ident: 10.1016/j.sigpro.2011.03.010_bib22
  doi: 10.1109/ICCA.2010.5524057
– volume: 41
  start-page: 1695
  year: 2005
  ident: 10.1016/j.sigpro.2011.03.010_bib6
  article-title: New approach to information fusion steady-state Kalman filtering
  publication-title: Automatica
  doi: 10.1016/j.automatica.2005.04.020
– year: 1979
  ident: 10.1016/j.sigpro.2011.03.010_bib3
– volume: 37
  start-page: 273
  issue: 1
  year: 2001
  ident: 10.1016/j.sigpro.2011.03.010_bib5
  article-title: Comparison of two measurement fusion methods for Kalman-filter-based multisensor data fusion
  publication-title: IEEE Transactions on Aerospace and Electronic systems
  doi: 10.1109/7.913685
– volume: 34
  start-page: 233
  issue: 3
  year: 2008
  ident: 10.1016/j.sigpro.2011.03.010_bib9
  article-title: Correlated measurement fusion steady-state Kalman filtering algorithms and their optimality
  publication-title: Acta Automatica Sinica
– volume: 45
  start-page: 179
  issue: 1
  year: 2009
  ident: 10.1016/j.sigpro.2011.03.010_bib31
  article-title: Self-tuning multisensor weighted measurement fusion Kalman filter
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
  doi: 10.1109/TAES.2009.4805272
– volume: 19
  start-page: 90
  year: 1978
  ident: 10.1016/j.sigpro.2011.03.010_bib21
  article-title: An innovations approach to the discrete-time stochastic realization problem
  publication-title: Quarterly Journal on Automatic
– volume: 40
  start-page: 1447
  issue: 8
  year: 2004
  ident: 10.1016/j.sigpro.2011.03.010_bib8
  article-title: Multi-sensor information fusion white noise filter weighted by scalars based on Kalman predictor
  publication-title: Automatica
  doi: 10.1016/j.automatica.2004.03.012
– ident: 10.1016/j.sigpro.2011.03.010_bib26
  doi: 10.1109/WCICA.2010.5554235
– volume: 10
  start-page: 366
  issue: 2
  year: 2010
  ident: 10.1016/j.sigpro.2011.03.010_bib20
  article-title: Multidimensional and multiple recursive instrumental variable identification algorithms
  publication-title: Science Technology and Engineering
– ident: 10.1016/j.sigpro.2011.03.010_bib24
– volume: 23
  start-page: 377
  year: 1977
  ident: 10.1016/j.sigpro.2011.03.010_bib15
  article-title: A self-tuning filter for fixed-lag smoothing
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1977.1055719
– volume: 29
  start-page: 128
  year: 1984
  ident: 10.1016/j.sigpro.2011.03.010_bib16
  article-title: Optimal self-tuning filtering, prediction, and smoothering for discrete multivariable processes
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1984.1103464
SSID ssj0001360
Score 2.1756191
Snippet For the multisensor multi-channel autoregressive moving average (ARMA) signal with white measurement noises and a common disturbance measurement white noise,...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2028
SubjectTerms Algorithms
Applied sciences
Asymptotical global optimality
Computation
Convergence
Detection, estimation, filtering, equalization, prediction
Distributed measurement fusion
Estimates
Estimators
Exact sciences and technology
Fast inversion algorithm
Information theory
Information, signal and communications theory
Inversions
Mathematical models
Matrices
Multi-channel ARMA signal
Multisensor information fusion
Noise
Self-tuning fused signal estimator
Signal and communications theory
Signal, noise
Telecommunications and information theory
Title Self-tuning distributed measurement fusion Kalman estimator for the multi-channel ARMA signal
URI https://dx.doi.org/10.1016/j.sigpro.2011.03.010
https://www.proquest.com/docview/880657161
Volume 91
WOSCitedRecordID wos000291291700031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdg4wGEEF8T5WPyA-Kl8pTES-M8VtCJj1EQ66QKCVmOP6RWXRbWFu3P5y52slQVKjzwErVWUje-n8_n8939CHmdJLmOhBYsdemAwX5DsdwpzUANCsOt1Sp1NdlENh6L6TT_GthGlzWdQFaW4vo6r_6rqKENhI2ps_8g7vZHoQE-g9DhCmKH618J_swuHFuta3-HwbK4yGgFZuXFjTew79boJOt_Ugt04WOhjQvcfLcxh3WYIcOk4NKCCL99HvYx0CN0HWzZs7qlX_lUg2YJrM-Mwkm-Lecd9L2zXq98ny1mXWeD954GZ0PwPw5SFg88q1ujQPO4AxTR1YZRSPy24auvcbWltb0DYX4EbwL_OdRV5UdRCHjdKJI9_iJPzk9P5WQ0nbypfjLkD8Nz9kCmcpvsJ1mag37bH34YTT-2q3LM64zx9gWaNMo61m-74z-ZKfcrtYTJ4zzrydYCXlslk4fkQdhO0KGHwSNyy5aPyb1Okckn5EcHELQDCNoBBPWAoB4QtAUEBUBQAATdAARFQFAPiKfk_GQ0efueBVINpvlArFhSRKpwsUs0B1tVgYHKjVZgVmdGGSRLUMeFcNpFYNjbQhmY4k4b7kysuRKu4Adkr7ws7TNCHdKVJ5yrGCMEeKQiA_sFZ1Ts8mOjsh7hzRhKHSrOI_HJQjahhXPpR17iyMuISxj5HmHtU5WvuLLj_qwRjwxWo7cGJcBrx5OHG9JsuwOrNsvAku0R2ohXgtbFozRV2sv1UgqMR8hgt_R89y0vyN2bqfSS7K2u1vYVuaN_rWbLq8OA098LPqiV
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-tuning+distributed+measurement+fusion+Kalman+estimator+for+the+multi-channel+ARMA+signal&rft.jtitle=Signal+processing&rft.au=Ran%2C+Chenjian&rft.au=Deng%2C+Zili&rft.date=2011-08-01&rft.issn=0165-1684&rft.volume=91&rft.issue=8&rft.spage=2028&rft.epage=2041&rft_id=info:doi/10.1016%2Fj.sigpro.2011.03.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon