Force-directed hybrid PSO–SNTO algorithm for acoustic source localization in sensor networks

As a smart combination of particle swarm optimization (PSO) and sequential number-theoretic optimization (SNTO), a new hybrid PSO–SNTO algorithm is proposed to handle the initialization dependence of basic PSO algorithm. We then apply the hybrid algorithm to the acoustic source localization problem...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Signal processing Ročník 89; číslo 8; s. 1671 - 1677
Hlavní autoři: Yu, Zhijun, Wei, Jianming, Liu, Haitao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.08.2009
Elsevier
Témata:
ISSN:0165-1684, 1872-7557
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:As a smart combination of particle swarm optimization (PSO) and sequential number-theoretic optimization (SNTO), a new hybrid PSO–SNTO algorithm is proposed to handle the initialization dependence of basic PSO algorithm. We then apply the hybrid algorithm to the acoustic source localization problem in sensor networks, which is modeled as a maximum likelihood estimation problem. Furthermore, a heuristic method based on virtual force is used to direct the particles of PSO to the global optimum, which can efficiently speed up the algorithm convergence. Simulation results demonstrate that the hybrid algorithm can achieve robust convergence with sophisticated estimation performance, and the convergence rate can be largely enhanced with the assistance of the force-directed heuristics.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0165-1684
1872-7557
DOI:10.1016/j.sigpro.2009.03.003