E-Commerce Enterprises Financial Risk Prediction Based on FA-PSO-LSTM Neural Network Deep Learning Model

The rapid development of Internet information technology has made e-commerce enterprises face complex and changing financial problems. Combining artificial intelligence algorithms and dynamic monitoring of financial risks has been a current research hotspot. Based on this, this paper conducts an emp...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability Vol. 15; no. 7; p. 5882
Main Authors: Chen, Xiangzhou, Long, Zhi
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.04.2023
Subjects:
ISSN:2071-1050, 2071-1050
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The rapid development of Internet information technology has made e-commerce enterprises face complex and changing financial problems. Combining artificial intelligence algorithms and dynamic monitoring of financial risks has been a current research hotspot. Based on this, this paper conducts an empirical study with a sample of listed Chinese e-commerce enterprises from 2012 to 2022. Firstly, using factor analysis (FA) to obtain the common factors between the original financial and non-financial indicators has the effect of reducing the overfitting risk of the model. Secondly, the mean square error (MSE) of the output and predicted values of the Long Short-Term Memory neural network (LSTM) is used as the fitness function of the intelligent swarm optimization algorithm, and then the Particle Swarm Optimization (PSO) algorithm is used to optimize the learning rate (LR) and the number of hidden layer neurons in the Long Short-Term Memory (LSTM) neural network. Finally, a financial risk prediction model based on FA-PSO-LSTM deep learning is constructed, and multiple benchmark models are introduced for comparative analysis on each evaluation index. The study shows that for nonlinear multivariate data with complex structure, the fused deep learning model proposed in this paper achieves the lowest values in mean square error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). This indicates that the model has the best prediction effect, which is helpful to help managers make relevant decisions efficiently and scientifically and make the enterprise sustainable.
AbstractList The rapid development of Internet information technology has made e-commerce enterprises face complex and changing financial problems. Combining artificial intelligence algorithms and dynamic monitoring of financial risks has been a current research hotspot. Based on this, this paper conducts an empirical study with a sample of listed Chinese e-commerce enterprises from 2012 to 2022. Firstly, using factor analysis (FA) to obtain the common factors between the original financial and non-financial indicators has the effect of reducing the overfitting risk of the model. Secondly, the mean square error (MSE) of the output and predicted values of the Long Short-Term Memory neural network (LSTM) is used as the fitness function of the intelligent swarm optimization algorithm, and then the Particle Swarm Optimization (PSO) algorithm is used to optimize the learning rate (LR) and the number of hidden layer neurons in the Long Short-Term Memory (LSTM) neural network. Finally, a financial risk prediction model based on FA-PSO-LSTM deep learning is constructed, and multiple benchmark models are introduced for comparative analysis on each evaluation index. The study shows that for nonlinear multivariate data with complex structure, the fused deep learning model proposed in this paper achieves the lowest values in mean square error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). This indicates that the model has the best prediction effect, which is helpful to help managers make relevant decisions efficiently and scientifically and make the enterprise sustainable.
Audience Academic
Author Long, Zhi
Chen, Xiangzhou
Author_xml – sequence: 1
  givenname: Xiangzhou
  surname: Chen
  fullname: Chen, Xiangzhou
– sequence: 2
  givenname: Zhi
  surname: Long
  fullname: Long, Zhi
BookMark eNptkUtPGzEQx62KSgXKpZ_AUk8gLfixu14fQ5oAUniI0PPKsWdTw8YOtleFb49DkICqM4cZjX7z0H_20I7zDhD6Qckx55KcxIFWRFRNw76gXUYELSipyM6H_Bs6iPGeZOOcSlrvoj-TYuxXKwga8MQlCOtgI0Q8tU45bVWPb218wDcBjNXJeodPVQSDczIdFTfz62I2v7vEVzCEzF5B-uvDA_4FsMYzUMFZt8SX3kD_HX3tVB_h4C3uo9_Tyd34vJhdn12MR7NC87pJBa0505URWnElyEIZ3iw4UwyklmIhScMVN6YrgRlQHIgsBYBgJWOiqhtW8330czt3HfzjADG1934ILq9smZBSUMbkhjreUkvVQ2td51NQOruBldVZ1s7m-kiUtSwb-Tr28FNDZhI8paUaYmwv5ref2aMtq4OPMUDXZlFXKjy3lLSbT7Xvn8ow-QfWNqmN0vki2_-v5QVzPJS9
CitedBy_id crossref_primary_10_1016_j_eswa_2025_127746
crossref_primary_10_1016_j_heliyon_2024_e39286
crossref_primary_10_3390_math11112512
crossref_primary_10_3390_math12020200
crossref_primary_10_1016_j_heliyon_2024_e29714
crossref_primary_10_7717_peerj_cs_1911
crossref_primary_10_1177_14727978251317308
crossref_primary_10_1109_ACCESS_2024_3367228
crossref_primary_10_4018_JOEUC_350268
crossref_primary_10_1016_j_heliyon_2024_e32639
crossref_primary_10_1007_s44196_025_00950_0
crossref_primary_10_1080_09537325_2024_2326120
crossref_primary_10_1142_S0218126625503852
crossref_primary_10_3390_jtaer18040110
crossref_primary_10_3390_w17142118
crossref_primary_10_3390_w16101407
Cites_doi 10.1061/(ASCE)ME.1943-5479.0000733
10.1155/2022/1314798
10.1007/978-1-4757-3264-1
10.1016/j.irfa.2022.102140
10.3390/app11188613
10.1111/j.1540-6261.1968.tb00843.x
10.3390/su11195521
10.2307/2490171
10.1007/s00500-021-05861-8
10.1016/j.asoc.2019.105524
10.1007/s10614-020-09975-3
10.1109/ACCESS.2021.3056713
10.3390/sym12030363
10.1016/j.eswa.2019.01.083
10.3390/axioms11030105
10.52962/ipjaf.2017.1.3.15
10.1007/s11047-007-9049-5
10.1109/EITCE47263.2019.9094982
10.1007/s40031-018-0323-y
10.1088/1742-6596/1651/1/012029
10.1162/neco_a_01199
10.1016/j.knosys.2020.106417
10.1140/epjst/e2019-900046-x
10.1007/s10660-020-09454-9
10.1155/2022/5728470
10.12691/ajams-9-1-2
10.1016/j.eswa.2004.12.008
10.1016/0378-4266(77)90022-X
10.3390/su11061579
10.1080/13504851.2021.1965079
10.7717/peerj-cs.623
10.1016/j.physa.2018.11.061
10.1016/j.asoc.2022.109794
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/su15075882
DatabaseName CrossRef
Gale In Context: Science
University Readers
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
University Readers
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 2071-1050
ExternalDocumentID A746948926
10_3390_su15075882
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29Q
2WC
2XV
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
E3Z
ECGQY
ESTFP
FRS
GX1
IAO
IEP
ISR
ITC
KQ8
ML.
MODMG
M~E
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
4U-
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c368t-1632c5d7ca3a70bad38b32a2e9c97b9083a3ddf4e2dea3e0947ee724227568263
IEDL.DBID BENPR
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001197943200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2071-1050
IngestDate Mon Jun 30 07:46:04 EDT 2025
Tue Nov 04 18:22:57 EST 2025
Wed Nov 26 11:27:21 EST 2025
Sat Nov 29 07:10:33 EST 2025
Tue Nov 18 22:12:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-1632c5d7ca3a70bad38b32a2e9c97b9083a3ddf4e2dea3e0947ee724227568263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2799712296?pq-origsite=%requestingapplication%
PQID 2799712296
PQPubID 2032327
ParticipantIDs proquest_journals_2799712296
gale_infotracacademiconefile_A746948926
gale_incontextgauss_ISR_A746948926
crossref_primary_10_3390_su15075882
crossref_citationtrail_10_3390_su15075882
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhu (ref_8) 2022; 81
Zainuddin (ref_5) 2017; 1
Teng (ref_11) 2021; 25
Suddle (ref_42) 2022; 131
Huang (ref_7) 2020; 56
ref_13
ref_12
ref_10
ref_31
Chicco (ref_38) 2021; 7
Kachitvichyanukul (ref_40) 2012; 11
Beaver (ref_14) 1966; 4
Martin (ref_16) 1977; 1
ref_17
Paszke (ref_34) 2019; 32
Shrestha (ref_28) 2021; 9
Qiu (ref_41) 2020; 1651
Cao (ref_39) 2022; 22
Gao (ref_3) 2022; 11
Cao (ref_22) 2019; 519
Yu (ref_32) 2019; 31
Min (ref_18) 2005; 28
Halteh (ref_19) 2018; 44
Wang (ref_36) 2022; 2022
Jain (ref_30) 2018; 99
Ji (ref_44) 2021; 9
Pouyanfar (ref_4) 2018; 51
Altman (ref_15) 1968; 23
ref_21
ref_43
ref_20
Jang (ref_24) 2020; 36
ref_1
Singh (ref_37) 2020; 97
Smagulova (ref_33) 2019; 228
ref_2
ref_27
Ling (ref_25) 2022; 2022
Banks (ref_29) 2007; 6
ref_9
Nobre (ref_6) 2019; 125
Kamara (ref_23) 2020; 208
He (ref_35) 2022; 29
Lei (ref_26) 2022; 2022
References_xml – volume: 36
  start-page: 04019039
  year: 2020
  ident: ref_24
  article-title: Business Failure Prediction of Construction Contractors Using a LSTM RNN with Accounting, Construction Market, and Macroeconomic Variables
  publication-title: J. Manag. Eng.
  doi: 10.1061/(ASCE)ME.1943-5479.0000733
– volume: 2022
  start-page: 1314798
  year: 2022
  ident: ref_36
  article-title: A Study on Early Warning of Financial Indicators of Listed Companies Based on Random Forest
  publication-title: Discret. Dyn. Nat. Soc.
  doi: 10.1155/2022/1314798
– ident: ref_9
– ident: ref_17
  doi: 10.1007/978-1-4757-3264-1
– volume: 81
  start-page: 102140
  year: 2022
  ident: ref_8
  article-title: Research on optimization of an enterprise financial risk early warning method based on the DS-RF model
  publication-title: Int. Rev. Financ. Anal.
  doi: 10.1016/j.irfa.2022.102140
– ident: ref_12
  doi: 10.3390/app11188613
– volume: 23
  start-page: 589
  year: 1968
  ident: ref_15
  article-title: Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy
  publication-title: J. Financ.
  doi: 10.1111/j.1540-6261.1968.tb00843.x
– volume: 32
  start-page: 1
  year: 2019
  ident: ref_34
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_10
  doi: 10.3390/su11195521
– volume: 4
  start-page: 71
  year: 1966
  ident: ref_14
  article-title: Financial ratios as predictors of failure
  publication-title: J. Account. Res.
  doi: 10.2307/2490171
– volume: 25
  start-page: 12107
  year: 2021
  ident: ref_11
  article-title: Route planning method for cross-border e-commerce logistics of agricultural products based on recurrent neural network
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-05861-8
– volume: 97
  start-page: 105524
  year: 2020
  ident: ref_37
  article-title: Investigating the impact of data normalization on classification performance
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105524
– volume: 56
  start-page: 187
  year: 2020
  ident: ref_7
  article-title: Predicting extreme financial risks on imbalanced dataset: A combined kernel FCM and kernel SMOTE based SVM classifier
  publication-title: Comput. Econ.
  doi: 10.1007/s10614-020-09975-3
– volume: 9
  start-page: 23660
  year: 2021
  ident: ref_44
  article-title: A novel improved particle swarm optimization with long-short term memory hybrid model for stock indices forecast
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3056713
– ident: ref_1
  doi: 10.3390/sym12030363
– volume: 125
  start-page: 181
  year: 2019
  ident: ref_6
  article-title: Combining principal component analysis, discrete wavelet transform and XGBoost to trade in the financial markets
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.01.083
– volume: 11
  start-page: 1272
  year: 2022
  ident: ref_3
  article-title: Analysis of enterprise financial accounting information management from the perspective of big data
  publication-title: Int. J. Sci. Res.
– ident: ref_21
– volume: 11
  start-page: 215
  year: 2012
  ident: ref_40
  article-title: Comparison of Three Evolutionary Algorithms: GA, PSO, and DE
  publication-title: Ind. Eng. Manag. Syst.
– ident: ref_2
  doi: 10.3390/axioms11030105
– volume: 1
  start-page: 13
  year: 2017
  ident: ref_5
  article-title: A review of financial distress prediction models: Logistic regression and multivariate discriminant analysis
  publication-title: Indian-Pac. J. Account. Financ.
  doi: 10.52962/ipjaf.2017.1.3.15
– volume: 6
  start-page: 467
  year: 2007
  ident: ref_29
  article-title: A review of particle swarm optimization. Part I: Background and development
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-007-9049-5
– ident: ref_43
  doi: 10.1109/EITCE47263.2019.9094982
– volume: 99
  start-page: 407
  year: 2018
  ident: ref_30
  article-title: A review of particle swarm optimization
  publication-title: J. Inst. Eng. Ser. B
  doi: 10.1007/s40031-018-0323-y
– volume: 1651
  start-page: 012029
  year: 2020
  ident: ref_41
  article-title: Forecasting the railway freight volume in China based on combined PSO-LSTM model
  publication-title: J. Phys. Conf. Series
  doi: 10.1088/1742-6596/1651/1/012029
– volume: 31
  start-page: 1235
  year: 2019
  ident: ref_32
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01199
– volume: 208
  start-page: 106417
  year: 2020
  ident: ref_23
  article-title: A hybrid neural network for predicting Days on Market a measure of liquidity in real estate industry
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2020.106417
– ident: ref_31
– volume: 228
  start-page: 2313
  year: 2019
  ident: ref_33
  article-title: A survey on LSTM memristive neural network architectures and applications
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2019-900046-x
– ident: ref_27
– volume: 51
  start-page: 1
  year: 2018
  ident: ref_4
  article-title: A survey on deep learning: Algorithms, techniques, and applications
  publication-title: ACM Comput. Surv.
– volume: 22
  start-page: 21
  year: 2022
  ident: ref_39
  article-title: Study on early warning of E-commerce enterprise financial risk based on deep learning algorithm
  publication-title: Electron. Commer. Res.
  doi: 10.1007/s10660-020-09454-9
– volume: 2022
  start-page: 5728470
  year: 2022
  ident: ref_25
  article-title: Financial Crisis Prediction Based on Long-Term and Short-Term Memory Neural Network
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2022/5728470
– volume: 9
  start-page: 4
  year: 2021
  ident: ref_28
  article-title: Factor analysis as a tool for survey analysis
  publication-title: Am. J. Appl. Math. Stat.
  doi: 10.12691/ajams-9-1-2
– volume: 28
  start-page: 603
  year: 2005
  ident: ref_18
  article-title: Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2004.12.008
– ident: ref_13
– volume: 1
  start-page: 249
  year: 1977
  ident: ref_16
  article-title: Early warning of bank failure: A logit regression approach
  publication-title: J. Bank. Financ.
  doi: 10.1016/0378-4266(77)90022-X
– ident: ref_20
  doi: 10.3390/su11061579
– volume: 29
  start-page: 1880
  year: 2022
  ident: ref_35
  article-title: An evaluation of the effectiveness of three early-warning models on financial indexes
  publication-title: Appl. Econ. Lett.
  doi: 10.1080/13504851.2021.1965079
– volume: 44
  start-page: 759
  year: 2018
  ident: ref_19
  article-title: Financial distress prediction of Islamic banks using tree-based stochastic techniques
  publication-title: Manag. Financ.
– volume: 2022
  start-page: 4733220
  year: 2022
  ident: ref_26
  article-title: Construction and Simulation of the Market Risk Early-Warning Model Based on Deep Learning Methods
  publication-title: Sci. Program.
– volume: 7
  start-page: e623
  year: 2021
  ident: ref_38
  article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.623
– volume: 519
  start-page: 127
  year: 2019
  ident: ref_22
  article-title: Financial time series forecasting model based on CEEMDAN and LSTM
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2018.11.061
– volume: 131
  start-page: 109794
  year: 2022
  ident: ref_42
  article-title: Metaheuristics based long short term memory optimization for sentiment analysis
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109794
SSID ssj0000331916
Score 2.4750957
Snippet The rapid development of Internet information technology has made e-commerce enterprises face complex and changing financial problems. Combining artificial...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 5882
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Computational linguistics
Data analysis
Deep learning
Economic crisis
Electronic commerce
Financial research
Financial risk
Forecasting
Forecasts and trends
Genetic algorithms
Information technology
Language processing
Machine learning
Mathematical optimization
Natural language interfaces
Neural networks
Optimization
Support vector machines
Sustainability
Time series
Variables
Title E-Commerce Enterprises Financial Risk Prediction Based on FA-PSO-LSTM Neural Network Deep Learning Model
URI https://www.proquest.com/docview/2799712296
Volume 15
WOSCitedRecordID wos001197943200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2071-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331916
  issn: 2071-1050
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swEBZrO9he9qNbWba2iG0w9iDmWIpkPY20dVihyUzSQfdkZEluw0qSReke97fvLpYbCqUve7PxgQXfne5OuvuOkI-eVz2TVAlLuNdMCC-ZdkowK4QzVgpd2zVl_pkajbKLC13EA7cQyyrbPXG9Ubu5xTPyL6nSWnXTVMuvi98Mp0bh7WocobFFdpCpDPR85ygfFePbU5aEg4p1ZcNLyiG_B3wxBOplWXrHE92_H6-dzOD5_y7vBXkWw0vab_ThJXnkZ7vkSdt9HHbJXr7pbAPBaNrhFbnKGTaLYJ0LzZtKxGnwgQ5aSg46noZftFjizQ6iSY_AAToKD4M-Kybf2dnkfEiR7ANkR011OT3xfkEjh-slxcFr16_Jj0F-fvyNxTEMzHKZrRhEbKntOWUNNyqpjONZxVOTem21qjTEcIY7VwufOm-4h3xRea_A9SOzPGQvfI9sz-Yz_4ZQtHYvbSWd8QICh8wJ7Zw0EPfVdca7HfK5haS0kaMcR2Vcl5CrIHzlBr4O-XAru2iYOe6Veo_Ilkh1McNamktzE0J5OhmXfSWkFplOZYd8ikL1HH5nTWxNgEUjO9Ydyf0W_jIaeyg32L99-PM78hSn1TeFP_tke7W88Qfksf2zmoblYdTdQ7I1_JvDW3E6LH7-Azfg-60
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDmm88GMwURhg8UOIB4vUdu34AaHCWq1aW6K1SOMpOLYzKqa2NB2If4q_EV-TrJo08bYH3iLllET2l7vP9t13AC89z9omyiIaca-pEF5S7ZSgVghnrBQ6t2vJ_IEajeKTE51swZ-6FgbTKmufuHbUbm5xj_wtU1qrFmNavl_8oNg1Ck9X6xYaJSyO_O9fYclWvOsfhPl9xVivO_l4SKuuAtRyGa9oICDMtp2yhhsVZcbxOOPMMK-tVpkOlMRw53LhmfOG-7D8Ud6rEMlQKD2QcR6eewO2BYK9AdtJf5h8udjViXiAdEuWOqic6yjgCSlXO47Zpch3tf9fB7Xenf9tOO7C7Yo-k06J93uw5We7sFNXVxe7sNfdVO4Fw8p1FffhW5diMQzm8ZBumWk5LXxBerXkCDmeFt9JssSTK0Qr-RACvCPhotehyfgTHYwnQ4JiJsF2VGbPkwPvF6TSqD0l2Fju7AF8vpYR2IPGbD7zD4GgN_PSZtIZLwIxip3QzkkTeG2ex7zVhDc1BFJbabBjK5CzNKzFEC7pBi5NeHFhuyiVR660eo5ISlHKY4a5QqfmvCjS_vg47SghtYg1k014XRnl8_A6a6rSi_DRqP51yXK_hltaObMi3WDt0b9vP4Odw8lwkA76o6PHcIsFPlgmOe1DY7U890_gpv25mhbLp9V_Q-DrdWPzL0idVas
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDgEv_BhMKwyw-CHEg7XUdpP4AaFCW1GtK9E6pPEUHNvZKqa21B2If42_jnPjrJo08bYH3iLllETO57vP9t13AK8sL9oqKiIacSupEDam0iSCaiGM0rGQpV5J5g-T0Sg9PpbZBvypa2F8WmXtE1eO2sy03yPfY4mUSYsxGe-VIS0i6_bfz39Q30HKn7TW7TQqiOzb379w-ebeDbr4r18z1u8dffxEQ4cBqnmcLimSEabbJtGKqyQqlOFpwZliVmqZFBLpieLGlMIyYxW3uBRKrE0wqnnRdCTmHJ97AzaRkgvWgM1scJB9vdjhiTjCuxVXmqicywix5elXO03ZpSh4dSxYBbj-vf95aO7D3UCrSaeaBw9gw0634HZdde22YLu3ruhDw-DS3EM47VFfJOPze0ivysCcOOtIv5YiIYcT951kC3-i5VFMPmDgNwQv-h2ajT_T4fjogHiRE7QdVVn1pGvtnATt2hPiG86dPYIv1zIC29CYzqZ2B4j3cjbWRWyUFUiYUiOkMbFCvluWKW814W0Nh1wHbXbfIuQsxzWah06-hk4TXl7YzitFkiutXnhU5V7iY-oRcaLOncsH48O8k4hYilSyuAlvglE5w9dpFUoy8KO9Ktgly90aenlwci5f4-7xv28_h1sIyHw4GO0_gTsMaWKV-7QLjeXi3D6Fm_rncuIWz8IUIvDtuqH5F7L6Xms
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=E-Commerce+Enterprises+Financial+Risk+Prediction+Based+on+FA-PSO-LSTM+Neural+Network+Deep+Learning+Model&rft.jtitle=Sustainability&rft.au=Chen%2C+Xiangzhou&rft.au=Long%2C+Zhi&rft.date=2023-04-01&rft.pub=MDPI+AG&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=15&rft.issue=7&rft_id=info:doi/10.3390%2Fsu15075882&rft.externalDBID=ISR&rft.externalDocID=A746948926
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon