E-Commerce Enterprises Financial Risk Prediction Based on FA-PSO-LSTM Neural Network Deep Learning Model
The rapid development of Internet information technology has made e-commerce enterprises face complex and changing financial problems. Combining artificial intelligence algorithms and dynamic monitoring of financial risks has been a current research hotspot. Based on this, this paper conducts an emp...
Saved in:
| Published in: | Sustainability Vol. 15; no. 7; p. 5882 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.04.2023
|
| Subjects: | |
| ISSN: | 2071-1050, 2071-1050 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The rapid development of Internet information technology has made e-commerce enterprises face complex and changing financial problems. Combining artificial intelligence algorithms and dynamic monitoring of financial risks has been a current research hotspot. Based on this, this paper conducts an empirical study with a sample of listed Chinese e-commerce enterprises from 2012 to 2022. Firstly, using factor analysis (FA) to obtain the common factors between the original financial and non-financial indicators has the effect of reducing the overfitting risk of the model. Secondly, the mean square error (MSE) of the output and predicted values of the Long Short-Term Memory neural network (LSTM) is used as the fitness function of the intelligent swarm optimization algorithm, and then the Particle Swarm Optimization (PSO) algorithm is used to optimize the learning rate (LR) and the number of hidden layer neurons in the Long Short-Term Memory (LSTM) neural network. Finally, a financial risk prediction model based on FA-PSO-LSTM deep learning is constructed, and multiple benchmark models are introduced for comparative analysis on each evaluation index. The study shows that for nonlinear multivariate data with complex structure, the fused deep learning model proposed in this paper achieves the lowest values in mean square error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). This indicates that the model has the best prediction effect, which is helpful to help managers make relevant decisions efficiently and scientifically and make the enterprise sustainable. |
|---|---|
| AbstractList | The rapid development of Internet information technology has made e-commerce enterprises face complex and changing financial problems. Combining artificial intelligence algorithms and dynamic monitoring of financial risks has been a current research hotspot. Based on this, this paper conducts an empirical study with a sample of listed Chinese e-commerce enterprises from 2012 to 2022. Firstly, using factor analysis (FA) to obtain the common factors between the original financial and non-financial indicators has the effect of reducing the overfitting risk of the model. Secondly, the mean square error (MSE) of the output and predicted values of the Long Short-Term Memory neural network (LSTM) is used as the fitness function of the intelligent swarm optimization algorithm, and then the Particle Swarm Optimization (PSO) algorithm is used to optimize the learning rate (LR) and the number of hidden layer neurons in the Long Short-Term Memory (LSTM) neural network. Finally, a financial risk prediction model based on FA-PSO-LSTM deep learning is constructed, and multiple benchmark models are introduced for comparative analysis on each evaluation index. The study shows that for nonlinear multivariate data with complex structure, the fused deep learning model proposed in this paper achieves the lowest values in mean square error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). This indicates that the model has the best prediction effect, which is helpful to help managers make relevant decisions efficiently and scientifically and make the enterprise sustainable. |
| Audience | Academic |
| Author | Long, Zhi Chen, Xiangzhou |
| Author_xml | – sequence: 1 givenname: Xiangzhou surname: Chen fullname: Chen, Xiangzhou – sequence: 2 givenname: Zhi surname: Long fullname: Long, Zhi |
| BookMark | eNptkUtPGzEQx62KSgXKpZ_AUk8gLfixu14fQ5oAUniI0PPKsWdTw8YOtleFb49DkICqM4cZjX7z0H_20I7zDhD6Qckx55KcxIFWRFRNw76gXUYELSipyM6H_Bs6iPGeZOOcSlrvoj-TYuxXKwga8MQlCOtgI0Q8tU45bVWPb218wDcBjNXJeodPVQSDczIdFTfz62I2v7vEVzCEzF5B-uvDA_4FsMYzUMFZt8SX3kD_HX3tVB_h4C3uo9_Tyd34vJhdn12MR7NC87pJBa0505URWnElyEIZ3iw4UwyklmIhScMVN6YrgRlQHIgsBYBgJWOiqhtW8330czt3HfzjADG1934ILq9smZBSUMbkhjreUkvVQ2td51NQOruBldVZ1s7m-kiUtSwb-Tr28FNDZhI8paUaYmwv5ref2aMtq4OPMUDXZlFXKjy3lLSbT7Xvn8ow-QfWNqmN0vki2_-v5QVzPJS9 |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_127746 crossref_primary_10_1016_j_heliyon_2024_e39286 crossref_primary_10_3390_math11112512 crossref_primary_10_3390_math12020200 crossref_primary_10_1016_j_heliyon_2024_e29714 crossref_primary_10_7717_peerj_cs_1911 crossref_primary_10_1177_14727978251317308 crossref_primary_10_1109_ACCESS_2024_3367228 crossref_primary_10_4018_JOEUC_350268 crossref_primary_10_1016_j_heliyon_2024_e32639 crossref_primary_10_1007_s44196_025_00950_0 crossref_primary_10_1080_09537325_2024_2326120 crossref_primary_10_1142_S0218126625503852 crossref_primary_10_3390_jtaer18040110 crossref_primary_10_3390_w17142118 crossref_primary_10_3390_w16101407 |
| Cites_doi | 10.1061/(ASCE)ME.1943-5479.0000733 10.1155/2022/1314798 10.1007/978-1-4757-3264-1 10.1016/j.irfa.2022.102140 10.3390/app11188613 10.1111/j.1540-6261.1968.tb00843.x 10.3390/su11195521 10.2307/2490171 10.1007/s00500-021-05861-8 10.1016/j.asoc.2019.105524 10.1007/s10614-020-09975-3 10.1109/ACCESS.2021.3056713 10.3390/sym12030363 10.1016/j.eswa.2019.01.083 10.3390/axioms11030105 10.52962/ipjaf.2017.1.3.15 10.1007/s11047-007-9049-5 10.1109/EITCE47263.2019.9094982 10.1007/s40031-018-0323-y 10.1088/1742-6596/1651/1/012029 10.1162/neco_a_01199 10.1016/j.knosys.2020.106417 10.1140/epjst/e2019-900046-x 10.1007/s10660-020-09454-9 10.1155/2022/5728470 10.12691/ajams-9-1-2 10.1016/j.eswa.2004.12.008 10.1016/0378-4266(77)90022-X 10.3390/su11061579 10.1080/13504851.2021.1965079 10.7717/peerj-cs.623 10.1016/j.physa.2018.11.061 10.1016/j.asoc.2022.109794 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 4U- ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.3390/su15075882 |
| DatabaseName | CrossRef Gale In Context: Science University Readers ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database University Readers ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 2071-1050 |
| ExternalDocumentID | A746948926 10_3390_su15075882 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29Q 2WC 2XV 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV ADMLS AENEX AFFHD AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION E3Z ECGQY ESTFP FRS GX1 IAO IEP ISR ITC KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC TR2 4U- ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c368t-1632c5d7ca3a70bad38b32a2e9c97b9083a3ddf4e2dea3e0947ee724227568263 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001197943200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2071-1050 |
| IngestDate | Mon Jun 30 07:46:04 EDT 2025 Tue Nov 04 18:22:57 EST 2025 Wed Nov 26 11:27:21 EST 2025 Sat Nov 29 07:10:33 EST 2025 Tue Nov 18 22:12:00 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c368t-1632c5d7ca3a70bad38b32a2e9c97b9083a3ddf4e2dea3e0947ee724227568263 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2799712296?pq-origsite=%requestingapplication% |
| PQID | 2799712296 |
| PQPubID | 2032327 |
| ParticipantIDs | proquest_journals_2799712296 gale_infotracacademiconefile_A746948926 gale_incontextgauss_ISR_A746948926 crossref_primary_10_3390_su15075882 crossref_citationtrail_10_3390_su15075882 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-01 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sustainability |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhu (ref_8) 2022; 81 Zainuddin (ref_5) 2017; 1 Teng (ref_11) 2021; 25 Suddle (ref_42) 2022; 131 Huang (ref_7) 2020; 56 ref_13 ref_12 ref_10 ref_31 Chicco (ref_38) 2021; 7 Kachitvichyanukul (ref_40) 2012; 11 Beaver (ref_14) 1966; 4 Martin (ref_16) 1977; 1 ref_17 Paszke (ref_34) 2019; 32 Shrestha (ref_28) 2021; 9 Qiu (ref_41) 2020; 1651 Cao (ref_39) 2022; 22 Gao (ref_3) 2022; 11 Cao (ref_22) 2019; 519 Yu (ref_32) 2019; 31 Min (ref_18) 2005; 28 Halteh (ref_19) 2018; 44 Wang (ref_36) 2022; 2022 Jain (ref_30) 2018; 99 Ji (ref_44) 2021; 9 Pouyanfar (ref_4) 2018; 51 Altman (ref_15) 1968; 23 ref_21 ref_43 ref_20 Jang (ref_24) 2020; 36 ref_1 Singh (ref_37) 2020; 97 Smagulova (ref_33) 2019; 228 ref_2 ref_27 Ling (ref_25) 2022; 2022 Banks (ref_29) 2007; 6 ref_9 Nobre (ref_6) 2019; 125 Kamara (ref_23) 2020; 208 He (ref_35) 2022; 29 Lei (ref_26) 2022; 2022 |
| References_xml | – volume: 36 start-page: 04019039 year: 2020 ident: ref_24 article-title: Business Failure Prediction of Construction Contractors Using a LSTM RNN with Accounting, Construction Market, and Macroeconomic Variables publication-title: J. Manag. Eng. doi: 10.1061/(ASCE)ME.1943-5479.0000733 – volume: 2022 start-page: 1314798 year: 2022 ident: ref_36 article-title: A Study on Early Warning of Financial Indicators of Listed Companies Based on Random Forest publication-title: Discret. Dyn. Nat. Soc. doi: 10.1155/2022/1314798 – ident: ref_9 – ident: ref_17 doi: 10.1007/978-1-4757-3264-1 – volume: 81 start-page: 102140 year: 2022 ident: ref_8 article-title: Research on optimization of an enterprise financial risk early warning method based on the DS-RF model publication-title: Int. Rev. Financ. Anal. doi: 10.1016/j.irfa.2022.102140 – ident: ref_12 doi: 10.3390/app11188613 – volume: 23 start-page: 589 year: 1968 ident: ref_15 article-title: Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy publication-title: J. Financ. doi: 10.1111/j.1540-6261.1968.tb00843.x – volume: 32 start-page: 1 year: 2019 ident: ref_34 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_10 doi: 10.3390/su11195521 – volume: 4 start-page: 71 year: 1966 ident: ref_14 article-title: Financial ratios as predictors of failure publication-title: J. Account. Res. doi: 10.2307/2490171 – volume: 25 start-page: 12107 year: 2021 ident: ref_11 article-title: Route planning method for cross-border e-commerce logistics of agricultural products based on recurrent neural network publication-title: Soft Comput. doi: 10.1007/s00500-021-05861-8 – volume: 97 start-page: 105524 year: 2020 ident: ref_37 article-title: Investigating the impact of data normalization on classification performance publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105524 – volume: 56 start-page: 187 year: 2020 ident: ref_7 article-title: Predicting extreme financial risks on imbalanced dataset: A combined kernel FCM and kernel SMOTE based SVM classifier publication-title: Comput. Econ. doi: 10.1007/s10614-020-09975-3 – volume: 9 start-page: 23660 year: 2021 ident: ref_44 article-title: A novel improved particle swarm optimization with long-short term memory hybrid model for stock indices forecast publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3056713 – ident: ref_1 doi: 10.3390/sym12030363 – volume: 125 start-page: 181 year: 2019 ident: ref_6 article-title: Combining principal component analysis, discrete wavelet transform and XGBoost to trade in the financial markets publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.01.083 – volume: 11 start-page: 1272 year: 2022 ident: ref_3 article-title: Analysis of enterprise financial accounting information management from the perspective of big data publication-title: Int. J. Sci. Res. – ident: ref_21 – volume: 11 start-page: 215 year: 2012 ident: ref_40 article-title: Comparison of Three Evolutionary Algorithms: GA, PSO, and DE publication-title: Ind. Eng. Manag. Syst. – ident: ref_2 doi: 10.3390/axioms11030105 – volume: 1 start-page: 13 year: 2017 ident: ref_5 article-title: A review of financial distress prediction models: Logistic regression and multivariate discriminant analysis publication-title: Indian-Pac. J. Account. Financ. doi: 10.52962/ipjaf.2017.1.3.15 – volume: 6 start-page: 467 year: 2007 ident: ref_29 article-title: A review of particle swarm optimization. Part I: Background and development publication-title: Nat. Comput. doi: 10.1007/s11047-007-9049-5 – ident: ref_43 doi: 10.1109/EITCE47263.2019.9094982 – volume: 99 start-page: 407 year: 2018 ident: ref_30 article-title: A review of particle swarm optimization publication-title: J. Inst. Eng. Ser. B doi: 10.1007/s40031-018-0323-y – volume: 1651 start-page: 012029 year: 2020 ident: ref_41 article-title: Forecasting the railway freight volume in China based on combined PSO-LSTM model publication-title: J. Phys. Conf. Series doi: 10.1088/1742-6596/1651/1/012029 – volume: 31 start-page: 1235 year: 2019 ident: ref_32 article-title: A review of recurrent neural networks: LSTM cells and network architectures publication-title: Neural Comput. doi: 10.1162/neco_a_01199 – volume: 208 start-page: 106417 year: 2020 ident: ref_23 article-title: A hybrid neural network for predicting Days on Market a measure of liquidity in real estate industry publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2020.106417 – ident: ref_31 – volume: 228 start-page: 2313 year: 2019 ident: ref_33 article-title: A survey on LSTM memristive neural network architectures and applications publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjst/e2019-900046-x – ident: ref_27 – volume: 51 start-page: 1 year: 2018 ident: ref_4 article-title: A survey on deep learning: Algorithms, techniques, and applications publication-title: ACM Comput. Surv. – volume: 22 start-page: 21 year: 2022 ident: ref_39 article-title: Study on early warning of E-commerce enterprise financial risk based on deep learning algorithm publication-title: Electron. Commer. Res. doi: 10.1007/s10660-020-09454-9 – volume: 2022 start-page: 5728470 year: 2022 ident: ref_25 article-title: Financial Crisis Prediction Based on Long-Term and Short-Term Memory Neural Network publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2022/5728470 – volume: 9 start-page: 4 year: 2021 ident: ref_28 article-title: Factor analysis as a tool for survey analysis publication-title: Am. J. Appl. Math. Stat. doi: 10.12691/ajams-9-1-2 – volume: 28 start-page: 603 year: 2005 ident: ref_18 article-title: Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2004.12.008 – ident: ref_13 – volume: 1 start-page: 249 year: 1977 ident: ref_16 article-title: Early warning of bank failure: A logit regression approach publication-title: J. Bank. Financ. doi: 10.1016/0378-4266(77)90022-X – ident: ref_20 doi: 10.3390/su11061579 – volume: 29 start-page: 1880 year: 2022 ident: ref_35 article-title: An evaluation of the effectiveness of three early-warning models on financial indexes publication-title: Appl. Econ. Lett. doi: 10.1080/13504851.2021.1965079 – volume: 44 start-page: 759 year: 2018 ident: ref_19 article-title: Financial distress prediction of Islamic banks using tree-based stochastic techniques publication-title: Manag. Financ. – volume: 2022 start-page: 4733220 year: 2022 ident: ref_26 article-title: Construction and Simulation of the Market Risk Early-Warning Model Based on Deep Learning Methods publication-title: Sci. Program. – volume: 7 start-page: e623 year: 2021 ident: ref_38 article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.623 – volume: 519 start-page: 127 year: 2019 ident: ref_22 article-title: Financial time series forecasting model based on CEEMDAN and LSTM publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2018.11.061 – volume: 131 start-page: 109794 year: 2022 ident: ref_42 article-title: Metaheuristics based long short term memory optimization for sentiment analysis publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109794 |
| SSID | ssj0000331916 |
| Score | 2.4750957 |
| Snippet | The rapid development of Internet information technology has made e-commerce enterprises face complex and changing financial problems. Combining artificial... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 5882 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Computational linguistics Data analysis Deep learning Economic crisis Electronic commerce Financial research Financial risk Forecasting Forecasts and trends Genetic algorithms Information technology Language processing Machine learning Mathematical optimization Natural language interfaces Neural networks Optimization Support vector machines Sustainability Time series Variables |
| Title | E-Commerce Enterprises Financial Risk Prediction Based on FA-PSO-LSTM Neural Network Deep Learning Model |
| URI | https://www.proquest.com/docview/2799712296 |
| Volume | 15 |
| WOSCitedRecordID | wos001197943200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swEBZrO9he9qNbWba2iG0w9iDmWIpkPY20dVihyUzSQfdkZEluw0qSReke97fvLpYbCqUve7PxgQXfne5OuvuOkI-eVz2TVAlLuNdMCC-ZdkowK4QzVgpd2zVl_pkajbKLC13EA7cQyyrbPXG9Ubu5xTPyL6nSWnXTVMuvi98Mp0bh7WocobFFdpCpDPR85ygfFePbU5aEg4p1ZcNLyiG_B3wxBOplWXrHE92_H6-dzOD5_y7vBXkWw0vab_ThJXnkZ7vkSdt9HHbJXr7pbAPBaNrhFbnKGTaLYJ0LzZtKxGnwgQ5aSg46noZftFjizQ6iSY_AAToKD4M-Kybf2dnkfEiR7ANkR011OT3xfkEjh-slxcFr16_Jj0F-fvyNxTEMzHKZrRhEbKntOWUNNyqpjONZxVOTem21qjTEcIY7VwufOm-4h3xRea_A9SOzPGQvfI9sz-Yz_4ZQtHYvbSWd8QICh8wJ7Zw0EPfVdca7HfK5haS0kaMcR2Vcl5CrIHzlBr4O-XAru2iYOe6Veo_Ilkh1McNamktzE0J5OhmXfSWkFplOZYd8ikL1HH5nTWxNgEUjO9Ydyf0W_jIaeyg32L99-PM78hSn1TeFP_tke7W88Qfksf2zmoblYdTdQ7I1_JvDW3E6LH7-Azfg-60 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDmm88GMwURhg8UOIB4vUdu34AaHCWq1aW6K1SOMpOLYzKqa2NB2If4q_EV-TrJo08bYH3iLllET2l7vP9t13AC89z9omyiIaca-pEF5S7ZSgVghnrBQ6t2vJ_IEajeKTE51swZ-6FgbTKmufuHbUbm5xj_wtU1qrFmNavl_8oNg1Ck9X6xYaJSyO_O9fYclWvOsfhPl9xVivO_l4SKuuAtRyGa9oICDMtp2yhhsVZcbxOOPMMK-tVpkOlMRw53LhmfOG-7D8Ud6rEMlQKD2QcR6eewO2BYK9AdtJf5h8udjViXiAdEuWOqic6yjgCSlXO47Zpch3tf9fB7Xenf9tOO7C7Yo-k06J93uw5We7sFNXVxe7sNfdVO4Fw8p1FffhW5diMQzm8ZBumWk5LXxBerXkCDmeFt9JssSTK0Qr-RACvCPhotehyfgTHYwnQ4JiJsF2VGbPkwPvF6TSqD0l2Fju7AF8vpYR2IPGbD7zD4GgN_PSZtIZLwIxip3QzkkTeG2ex7zVhDc1BFJbabBjK5CzNKzFEC7pBi5NeHFhuyiVR660eo5ISlHKY4a5QqfmvCjS_vg47SghtYg1k014XRnl8_A6a6rSi_DRqP51yXK_hltaObMi3WDt0b9vP4Odw8lwkA76o6PHcIsFPlgmOe1DY7U890_gpv25mhbLp9V_Q-DrdWPzL0idVas |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDgEv_BhMKwyw-CHEg7XUdpP4AaFCW1GtK9E6pPEUHNvZKqa21B2If42_jnPjrJo08bYH3iLllETO57vP9t13AK8sL9oqKiIacSupEDam0iSCaiGM0rGQpV5J5g-T0Sg9PpbZBvypa2F8WmXtE1eO2sy03yPfY4mUSYsxGe-VIS0i6_bfz39Q30HKn7TW7TQqiOzb379w-ebeDbr4r18z1u8dffxEQ4cBqnmcLimSEabbJtGKqyQqlOFpwZliVmqZFBLpieLGlMIyYxW3uBRKrE0wqnnRdCTmHJ97AzaRkgvWgM1scJB9vdjhiTjCuxVXmqicywix5elXO03ZpSh4dSxYBbj-vf95aO7D3UCrSaeaBw9gw0634HZdde22YLu3ruhDw-DS3EM47VFfJOPze0ivysCcOOtIv5YiIYcT951kC3-i5VFMPmDgNwQv-h2ajT_T4fjogHiRE7QdVVn1pGvtnATt2hPiG86dPYIv1zIC29CYzqZ2B4j3cjbWRWyUFUiYUiOkMbFCvluWKW814W0Nh1wHbXbfIuQsxzWah06-hk4TXl7YzitFkiutXnhU5V7iY-oRcaLOncsH48O8k4hYilSyuAlvglE5w9dpFUoy8KO9Ktgly90aenlwci5f4-7xv28_h1sIyHw4GO0_gTsMaWKV-7QLjeXi3D6Fm_rncuIWz8IUIvDtuqH5F7L6Xms |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=E-Commerce+Enterprises+Financial+Risk+Prediction+Based+on+FA-PSO-LSTM+Neural+Network+Deep+Learning+Model&rft.jtitle=Sustainability&rft.au=Chen%2C+Xiangzhou&rft.au=Long%2C+Zhi&rft.date=2023-04-01&rft.pub=MDPI+AG&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=15&rft.issue=7&rft_id=info:doi/10.3390%2Fsu15075882&rft.externalDBID=ISR&rft.externalDocID=A746948926 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |