Information Theoretic Learning-Enhanced Dual-Generative Adversarial Networks With Causal Representation for Robust OOD Generalization

Recently, machine/deep learning techniques are achieving remarkable success in a variety of intelligent control and management systems, promising to change the future of artificial intelligence (AI) scenarios. However, they still suffer from some intractable difficulty or limitations for model train...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 36; H. 2; S. 2066 - 2079
Hauptverfasser: Zhou, Xiaokang, Zheng, Xuzhe, Shu, Tian, Liang, Wei, Wang, Kevin I-Kai, Qi, Lianyong, Shimizu, Shohei, Jin, Qun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.02.2025
Schlagworte:
ISSN:2162-237X, 2162-2388, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recently, machine/deep learning techniques are achieving remarkable success in a variety of intelligent control and management systems, promising to change the future of artificial intelligence (AI) scenarios. However, they still suffer from some intractable difficulty or limitations for model training, such as the out-of-distribution (OOD) issue, in modern smart manufacturing or intelligent transportation systems (ITSs). In this study, we newly design and introduce a deep generative model framework, which seamlessly incorporates the information theoretic learning (ITL) and causal representation learning (CRL) in a dual-generative adversarial network (Dual-GAN) architecture, aiming to enhance the robust OOD generalization in modern machine learning (ML) paradigms. In particular, an ITL- and CRL-enhanced Dual-GAN (ITCRL-DGAN) model is presented, which includes an autoencoder with CRL (AE-CRL) structure to aid the dual-adversarial training with causality-inspired feature representations and a Dual-GAN structure to improve the data augmentation in both feature and data levels. Following a newly designed feature separation strategy, a causal graph is built and improved based on the information theory, which can enhance the causally related factors among the separated core features and further enrich the feature representation with the counterfactual features via interventions based on the refined causal relationships. The ITL is incorporated to improve the extraction of low-dimensional feature representations and learn the optimized causal representations based on the idea of "information flow." A dual-adversarial training mechanism is then developed, which not only enables the generator to expand the boundary of feature distribution in accordance with the optimized feature representation from AE-CRL, but also allows the discriminator to further verify and improve the quality of the augmented data for OOD generalization. Experiment and evaluation results based on an open-source dataset demonstrate the outstanding learning efficiency and classification performance of our proposed model for robust OOD generalization in modern smart applications compared with three baseline methods.
AbstractList Recently, machine/deep learning techniques are achieving remarkable success in a variety of intelligent control and management systems, promising to change the future of artificial intelligence (AI) scenarios. However, they still suffer from some intractable difficulty or limitations for model training, such as the out-of-distribution (OOD) issue, in modern smart manufacturing or intelligent transportation systems (ITSs). In this study, we newly design and introduce a deep generative model framework, which seamlessly incorporates the information theoretic learning (ITL) and causal representation learning (CRL) in a dual-generative adversarial network (Dual-GAN) architecture, aiming to enhance the robust OOD generalization in modern machine learning (ML) paradigms. In particular, an ITL- and CRL-enhanced Dual-GAN (ITCRL-DGAN) model is presented, which includes an autoencoder with CRL (AE-CRL) structure to aid the dual-adversarial training with causality-inspired feature representations and a Dual-GAN structure to improve the data augmentation in both feature and data levels. Following a newly designed feature separation strategy, a causal graph is built and improved based on the information theory, which can enhance the causally related factors among the separated core features and further enrich the feature representation with the counterfactual features via interventions based on the refined causal relationships. The ITL is incorporated to improve the extraction of low-dimensional feature representations and learn the optimized causal representations based on the idea of "information flow." A dual-adversarial training mechanism is then developed, which not only enables the generator to expand the boundary of feature distribution in accordance with the optimized feature representation from AE-CRL, but also allows the discriminator to further verify and improve the quality of the augmented data for OOD generalization. Experiment and evaluation results based on an open-source dataset demonstrate the outstanding learning efficiency and classification performance of our proposed model for robust OOD generalization in modern smart applications compared with three baseline methods.
Recently, machine/deep learning techniques are achieving remarkable success in a variety of intelligent control and management systems, promising to change the future of artificial intelligence (AI) scenarios. However, they still suffer from some intractable difficulty or limitations for model training, such as the out-of-distribution (OOD) issue, in modern smart manufacturing or intelligent transportation systems (ITSs). In this study, we newly design and introduce a deep generative model framework, which seamlessly incorporates the information theoretic learning (ITL) and causal representation learning (CRL) in a dual-generative adversarial network (Dual-GAN) architecture, aiming to enhance the robust OOD generalization in modern machine learning (ML) paradigms. In particular, an ITL- and CRL-enhanced Dual-GAN (ITCRL-DGAN) model is presented, which includes an autoencoder with CRL (AE-CRL) structure to aid the dual-adversarial training with causality-inspired feature representations and a Dual-GAN structure to improve the data augmentation in both feature and data levels. Following a newly designed feature separation strategy, a causal graph is built and improved based on the information theory, which can enhance the causally related factors among the separated core features and further enrich the feature representation with the counterfactual features via interventions based on the refined causal relationships. The ITL is incorporated to improve the extraction of low-dimensional feature representations and learn the optimized causal representations based on the idea of "information flow." A dual-adversarial training mechanism is then developed, which not only enables the generator to expand the boundary of feature distribution in accordance with the optimized feature representation from AE-CRL, but also allows the discriminator to further verify and improve the quality of the augmented data for OOD generalization. Experiment and evaluation results based on an open-source dataset demonstrate the outstanding learning efficiency and classification performance of our proposed model for robust OOD generalization in modern smart applications compared with three baseline methods.Recently, machine/deep learning techniques are achieving remarkable success in a variety of intelligent control and management systems, promising to change the future of artificial intelligence (AI) scenarios. However, they still suffer from some intractable difficulty or limitations for model training, such as the out-of-distribution (OOD) issue, in modern smart manufacturing or intelligent transportation systems (ITSs). In this study, we newly design and introduce a deep generative model framework, which seamlessly incorporates the information theoretic learning (ITL) and causal representation learning (CRL) in a dual-generative adversarial network (Dual-GAN) architecture, aiming to enhance the robust OOD generalization in modern machine learning (ML) paradigms. In particular, an ITL- and CRL-enhanced Dual-GAN (ITCRL-DGAN) model is presented, which includes an autoencoder with CRL (AE-CRL) structure to aid the dual-adversarial training with causality-inspired feature representations and a Dual-GAN structure to improve the data augmentation in both feature and data levels. Following a newly designed feature separation strategy, a causal graph is built and improved based on the information theory, which can enhance the causally related factors among the separated core features and further enrich the feature representation with the counterfactual features via interventions based on the refined causal relationships. The ITL is incorporated to improve the extraction of low-dimensional feature representations and learn the optimized causal representations based on the idea of "information flow." A dual-adversarial training mechanism is then developed, which not only enables the generator to expand the boundary of feature distribution in accordance with the optimized feature representation from AE-CRL, but also allows the discriminator to further verify and improve the quality of the augmented data for OOD generalization. Experiment and evaluation results based on an open-source dataset demonstrate the outstanding learning efficiency and classification performance of our proposed model for robust OOD generalization in modern smart applications compared with three baseline methods.
Author Zhou, Xiaokang
Qi, Lianyong
Jin, Qun
Zheng, Xuzhe
Shu, Tian
Liang, Wei
Wang, Kevin I-Kai
Shimizu, Shohei
Author_xml – sequence: 1
  givenname: Xiaokang
  orcidid: 0000-0003-3488-4679
  surname: Zhou
  fullname: Zhou, Xiaokang
  email: zhou@biwako.shiga-u.ac.jp
  organization: Faculty of Data Science, Shiga University, Hikone, Japan
– sequence: 2
  givenname: Xuzhe
  orcidid: 0009-0001-5538-6890
  surname: Zheng
  fullname: Zheng, Xuzhe
  email: xuzhezheng245@gmail.com
  organization: School of Frontier Crossover Studies, Hunan University of Technology and Business, Changsha, China
– sequence: 3
  givenname: Tian
  orcidid: 0000-0002-6743-7755
  surname: Shu
  fullname: Shu, Tian
  email: wenbenst@gmail.com
  organization: Computer Science Institute, Hunan University of Technology and Business, Changsha, China
– sequence: 4
  givenname: Wei
  orcidid: 0000-0002-0689-256X
  surname: Liang
  fullname: Liang, Wei
  email: weiliang@csu.edu.cn
  organization: Changsha Social Laboratory of Artificial Intelligence, Hunan University of Technology and Business, Changsha, China
– sequence: 5
  givenname: Kevin I-Kai
  orcidid: 0000-0001-8450-2558
  surname: Wang
  fullname: Wang, Kevin I-Kai
  email: kevin.wang@auckland.ac.nz
  organization: Department of Electrical, Computer, Software Engineering, University of Auckland, Auckland, New Zealand
– sequence: 6
  givenname: Lianyong
  orcidid: 0000-0001-7746-4901
  surname: Qi
  fullname: Qi, Lianyong
  email: lianyongqi@upc.edu.cn
  organization: College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China
– sequence: 7
  givenname: Shohei
  orcidid: 0000-0002-1931-0733
  surname: Shimizu
  fullname: Shimizu, Shohei
  email: shohei-shimizu@biwako.shiga-u.ac.jp
  organization: Faculty of Data Science, Shiga University, Hikone, Japan
– sequence: 8
  givenname: Qun
  orcidid: 0000-0002-1325-4275
  surname: Jin
  fullname: Jin, Qun
  email: jin@waseda.jp
  organization: Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37976189$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1UREvbP4AQ8pFLtv5I_HGstqVUWu1KZSu4RY4zYQ1Ze2s7RXDnfzdtlgpxYC4ejZ_3HWne1-jABw8IvaFkRinRZ-vlcvFpxgjjM845UaJ8gY4YFaxgXKmD515-OUSnKX0jYwlSiVK_Qodcaimo0kfo97XvQtya7ILH6w2ECNlZvAATvfNfi0u_Md5Ciy8G0xdX4CGO7D3g8_YeYjLRmR4vIf8I8XvCn13e4LkZ0ji8gV2EBD5P3uMWfBOaIWW8Wl3gyal3v55-T9DLzvQJTvfvMbr9cLmefywWq6vr-fmisFyoXFDKRGeallJOZdOwknbAJCFAJQFhBJS26nhjNS1b1VTKSNJp1SluS6nbivJj9H7y3cVwN0DK9dYlC31vPIQh1UxpKitGFBvRd3t0aLbQ1rvotib-rP-cbgTYBNgYUorQPSOU1I8R1U8R1Y8R1fuIRpH6R2TddKAcjev_L307SR0A_LWLMyqZ5g9ccqCC
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_comcom_2023_12_024
crossref_primary_10_1109_TNNLS_2025_3563889
crossref_primary_10_1109_TCE_2025_3566725
crossref_primary_10_3390_electronics13071316
crossref_primary_10_1111_exsy_13685
crossref_primary_10_1109_TCE_2025_3566783
crossref_primary_10_3390_electronics14183569
crossref_primary_10_1039_D5MH00635J
crossref_primary_10_1109_JIOT_2025_3584811
crossref_primary_10_1111_mice_70001
crossref_primary_10_1109_JIOT_2025_3577616
crossref_primary_10_1109_JIOT_2024_3364528
crossref_primary_10_1016_j_neunet_2025_107872
crossref_primary_10_1109_TCE_2023_3341227
crossref_primary_10_1109_TSC_2025_3539201
Cites_doi 10.1109/TNNLS.2021.3107375
10.1109/CVPR.2019.01022
10.1109/TNN.2004.828762
10.1109/TNNLS.2021.3116419
10.1145/3485447.3512251
10.1109/TNNLS.2021.3105227
10.48550/arXiv.1503.02531
10.1109/CVPR52688.2022.00047
10.1109/TSP.2013.2265221
10.1109/TIP.2016.2588330
10.1109/TCSVT.2021.3089491
10.1109/TCBB.2007.1056
10.1109/JSAIT.2020.2991561
10.1109/tnnls.2022.3183864
10.1142/S0219525908001465
10.1609/aaai.v31i1.10480
10.1109/TIFS.2022.3152361
10.1609/aaai.v36i7.20703
10.1145/3460231.3474263
10.1109/TBME.2019.2908099
10.1109/TNNLS.2022.3159538
10.1109/tpami.2022.3166765
10.1109/TCYB.2020.2986463
10.1109/TNNLS.2020.3015215
10.1109/TNNLS.2021.3082158
10.1109/TNNLS.2021.3111911
10.1609/aaai.v34i04.6024
10.1109/CVPR46437.2021.00947
10.1109/ACCESS.2020.3007266
10.1109/JSTSP.2008.923858
10.1109/ACCESS.2019.2958864
10.1109/ACCESS.2022.3160283
10.1109/TCYB.2013.2290775
10.1109/JIOT.2022.3188283
10.1109/TPAMI.2021.3099829
10.1109/TPAMI.2022.3170302
10.1109/TKDE.2022.3159802
10.1038/s41598-019-52737-x
10.1109/TKDE.2021.3119185
10.1109/TKDE.2021.3112591
10.1126/science.290.5500.2323
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNNLS.2023.3330864
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2079
ExternalDocumentID 37976189
10_1109_TNNLS_2023_3330864
10321729
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Grants-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science (JSPS)
  grantid: 23K11064
– fundername: National Natural Science Foundation of China
  grantid: 62072171; 72091515
  funderid: 10.13039/501100001809
– fundername: 2022 and 2023 Waseda University Grants for Special Research Projects
  grantid: 2022R-036; 2023C-216
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c368t-1126fabd11317bb241fe2700e170e6a6e4c5f3bc914d8b58a70f98f83c479d513
IEDL.DBID RIE
ISICitedReferencesCount 80
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001123253500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 05:48:54 EDT 2025
Wed Dec 10 14:04:40 EST 2025
Tue Nov 18 21:01:01 EST 2025
Sat Nov 29 01:40:29 EST 2025
Wed Aug 27 01:52:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c368t-1126fabd11317bb241fe2700e170e6a6e4c5f3bc914d8b58a70f98f83c479d513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0001-5538-6890
0000-0001-8450-2558
0000-0001-7746-4901
0000-0002-1931-0733
0000-0002-6743-7755
0000-0002-0689-256X
0000-0003-3488-4679
0000-0002-1325-4275
OpenAccessLink https://ieeexplore.ieee.org/document/10321729
PMID 37976189
PQID 2891752082
PQPubID 23479
PageCount 14
ParticipantIDs crossref_primary_10_1109_TNNLS_2023_3330864
crossref_citationtrail_10_1109_TNNLS_2023_3330864
proquest_miscellaneous_2891752082
pubmed_primary_37976189
ieee_primary_10321729
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
Sricharan (ref10)
ref15
ref14
ref11
ref17
ref16
ref19
ref18
Ye (ref5); 34
Recht (ref4)
ref50
ref46
ref45
Yu (ref49)
ref47
ref41
ref44
ref43
Lee (ref42)
ref8
Vernekar (ref9) 2019
ref3
ref6
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref1
ref39
Liu (ref2)
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Pearl (ref48) 2016
ref28
ref27
Krueger (ref7)
ref29
References_xml – ident: ref23
  doi: 10.1109/TNNLS.2021.3107375
– ident: ref43
  doi: 10.1109/CVPR.2019.01022
– ident: ref13
  doi: 10.1109/TNN.2004.828762
– ident: ref37
  doi: 10.1109/TNNLS.2021.3116419
– volume-title: Causal Inference in Statistics: A Primer
  year: 2016
  ident: ref48
– start-page: 5815
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref7
  article-title: Out-of-distribution generalization via risk extrapolation
– start-page: 1
  volume-title: Proc. 3rd Workshop Bayesian Deep Learn. (NeurIPS)
  ident: ref10
  article-title: Building robust classifiers through generation of confident out of distribution examples
– ident: ref8
  doi: 10.1145/3485447.3512251
– ident: ref40
  doi: 10.1109/TNNLS.2021.3105227
– ident: ref46
  doi: 10.48550/arXiv.1503.02531
– ident: ref50
  doi: 10.1109/CVPR52688.2022.00047
– ident: ref16
  doi: 10.1109/TSP.2013.2265221
– ident: ref18
  doi: 10.1109/TIP.2016.2588330
– ident: ref25
  doi: 10.1109/TCSVT.2021.3089491
– ident: ref17
  doi: 10.1109/TCBB.2007.1056
– ident: ref15
  doi: 10.1109/JSAIT.2020.2991561
– ident: ref27
  doi: 10.1109/tnnls.2022.3183864
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref42
  article-title: Training confidence-calibrated classifiers for detecting out-of-distribution samples
– ident: ref47
  doi: 10.1142/S0219525908001465
– ident: ref11
  doi: 10.1609/aaai.v31i1.10480
– ident: ref20
  doi: 10.1109/TIFS.2022.3152361
– ident: ref6
  doi: 10.1609/aaai.v36i7.20703
– ident: ref12
  doi: 10.1145/3460231.3474263
– ident: ref21
  doi: 10.1109/TBME.2019.2908099
– ident: ref33
  doi: 10.1109/TNNLS.2022.3159538
– ident: ref28
  doi: 10.1109/tpami.2022.3166765
– ident: ref22
  doi: 10.1109/TCYB.2020.2986463
– volume: 34
  start-page: 23519
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref5
  article-title: Towards a theoretical framework of out-of-distribution generalization
– ident: ref14
  doi: 10.1109/TNNLS.2020.3015215
– ident: ref39
  doi: 10.1109/TNNLS.2021.3082158
– ident: ref35
  doi: 10.1109/TNNLS.2021.3111911
– year: 2019
  ident: ref9
  article-title: Out-of-distribution detection in classifiers via generation
  publication-title: arXiv:1910.04241
– ident: ref3
  doi: 10.1609/aaai.v34i04.6024
– ident: ref44
  doi: 10.1109/CVPR46437.2021.00947
– ident: ref38
  doi: 10.1109/ACCESS.2020.3007266
– start-page: 6804
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref2
  article-title: Heterogeneous risk minimization
– ident: ref19
  doi: 10.1109/JSTSP.2008.923858
– ident: ref34
  doi: 10.1109/ACCESS.2019.2958864
– ident: ref36
  doi: 10.1109/ACCESS.2022.3160283
– ident: ref29
  doi: 10.1109/TCYB.2013.2290775
– ident: ref31
  doi: 10.1109/JIOT.2022.3188283
– ident: ref41
  doi: 10.1109/TPAMI.2021.3099829
– ident: ref30
  doi: 10.1109/TPAMI.2022.3170302
– ident: ref24
  doi: 10.1109/TKDE.2022.3159802
– ident: ref1
  doi: 10.1038/s41598-019-52737-x
– ident: ref26
  doi: 10.1109/TKDE.2021.3119185
– ident: ref32
  doi: 10.1109/TKDE.2021.3112591
– ident: ref45
  doi: 10.1126/science.290.5500.2323
– start-page: 7154
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref49
  article-title: DAG-GNN: DAG structure learning with graph neural networks
– start-page: 5389
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref4
  article-title: Do ImageNet classifiers generalize to ImageNet?
SSID ssj0000605649
Score 2.6631107
Snippet Recently, machine/deep learning techniques are achieving remarkable success in a variety of intelligent control and management systems, promising to change the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2066
SubjectTerms Autoencoder (AE)
causal representation learning (CRL)
Data models
deep learning
Feature extraction
generative adversarial network (GAN)
information theoretic learning (ITL)
Object oriented modeling
out-of-distribution (OOD)
Predictive models
Representation learning
Task analysis
Training
Title Information Theoretic Learning-Enhanced Dual-Generative Adversarial Networks With Causal Representation for Robust OOD Generalization
URI https://ieeexplore.ieee.org/document/10321729
https://www.ncbi.nlm.nih.gov/pubmed/37976189
https://www.proquest.com/docview/2891752082
Volume 36
WOSCitedRecordID wos001123253500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEL
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0V1EMvhQItCxS5Um_ISxxn_XFEfIgDChVdxN4i27ELEspWJOk_4H9jO86KC5W4RZGdRHrjzIw9bx7Az6LIrDNuhh3RHBeMKb-kmMDOZVL7fMIJG5G-4mUpFgv5K5HVIxfGWhuLz-w0XMaz_Hpp-rBVdhyav3mHK9dgjXM2kLVWGyqZD8xZDHdzwnKcU74YSTKZPJ6X5dXvadAKn1KfwgsWBHko986YBIX3Vz4piqy8HW9Gv3Ox8c4v3oTPKcBEJ4NFfIEPttmCjVG8AaW1vA3PiYgUgEHzkc6IUr_VP_i8uY_FAeisV4946E4dfo0oSji3KhguKoci8hbdPXT36FT1rb95E4trE6epQf4t6Gap-7ZD19dnKPW5TvTPHbi9OJ-fXuKkyYANZaLDgXHklK4J8YGH1t7_OxvOri3hmWWK2cLMHNVGkqIWeiYUz5wUTlBTcFnPCP0K682ysbuAMkeJylluuOWFE8xHkrRWWrpak9pINgEyolKZ1LA86GY8VjFxyWQVQa0CqFUCdQJHqzl_h3Yd_x29EyB7NXJAawI_RvQrv9rCEYpq7LJvK5-e-ngr93HTBL4NZrGaPVrT3htP3YdPeRAPjiXfB7DePfX2O3w0_7qH9unQm_RCHEaTfgG81fGV
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFL0qBQk2lEcLU15GYoc8jeOMH8uqD7ViSFEZ1NlFtmO3laoMahL-gP_GdpxRN63ELorsJNK5jo_te-4B-FIUmXXGzbAjmuOCMeWHFBPYuUxqv55wwkak57wsxXIpfySxetTCWGtj8pmdhst4ll-vTB-2yvZC8Tc_4cpH8DhYZyW51npLJfPUnEXCmxOW45zy5SiTyeTeoiznP6fBLXxK_SJesGDJQ7mfjknweL8zK0WblfsZZ5x5jrf-85tfwPNEMdH-EBMvYcM2r2BrtG9AaTS_hr9JihSgQYtR0IhSxdVLfNRcxfQAdNirGzzUpw4_RxRNnFsVQheVQxp5iy6uuyt0oPrW3zyP6bVJ1dQg_xZ0vtJ926Gzs0OUKl0nAeg2_Do-Whyc4OTKgA1losNBc-SUrgnx1ENrzwCcDafXlvDMMsVsYWaOaiNJUQs9E4pnTgonqCm4rGeE7sBms2rsW0CZo0TlLDfc8sIJ5rkkrZWWrtakNpJNgIyoVCaVLA_OGTdVXLpksoqgVgHUKoE6ga_rPr-Hgh0Ptt4OkN1pOaA1gc8j-pUfb-EQRTV21beVX6B6xpV75jSBN0NYrHuP0bR7z1M_wdOTxfd5NT8tv72DZ3mwEo4J4O9hs7vt7Qd4Yv501-3txxjY_wDEmfP2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information+Theoretic+Learning-Enhanced+Dual-Generative+Adversarial+Networks+With+Causal+Representation+for+Robust+OOD+Generalization&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhou%2C+Xiaokang&rft.au=Zheng%2C+Xuzhe&rft.au=Shu%2C+Tian&rft.au=Liang%2C+Wei&rft.date=2025-02-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=36&rft.issue=2&rft.spage=2066&rft.epage=2079&rft_id=info:doi/10.1109%2FTNNLS.2023.3330864&rft_id=info%3Apmid%2F37976189&rft.externalDocID=10321729
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon