A moving pseudo-boundary method of fundamental solutions for void detection
We propose a new moving pseudo‐boundary method of fundamental solutions (MFS) for the determination of the boundary of a void. This problem can be modeled as an inverse boundary value problem for harmonic functions. The algorithm for imaging the interior of the medium also makes use of radial polar...
Gespeichert in:
| Veröffentlicht in: | Numerical methods for partial differential equations Jg. 29; H. 3; S. 935 - 960 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.05.2013
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 0749-159X, 1098-2426 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We propose a new moving pseudo‐boundary method of fundamental solutions (MFS) for the determination of the boundary of a void. This problem can be modeled as an inverse boundary value problem for harmonic functions. The algorithm for imaging the interior of the medium also makes use of radial polar parametrization of the unknown void shape in two dimensions. The center of this radial polar parametrization is considered to be unknown. We also include the contraction and dilation factors to be part of the unknowns in the resulting nonlinear least‐squares problem. This approach addresses the major problem of locating the pseudo‐boundary in the MFS in a natural way, because the inverse problem in question is nonlinear anyway. The feasibility of this new method is illustrated by several numerical examples. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013 |
|---|---|
| AbstractList | We propose a new moving pseudo‐boundary method of fundamental solutions (MFS) for the determination of the boundary of a void. This problem can be modeled as an inverse boundary value problem for harmonic functions. The algorithm for imaging the interior of the medium also makes use of radial polar parametrization of the unknown void shape in two dimensions. The center of this radial polar parametrization is considered to be unknown. We also include the contraction and dilation factors to be part of the unknowns in the resulting nonlinear least‐squares problem. This approach addresses the major problem of locating the pseudo‐boundary in the MFS in a natural way, because the inverse problem in question is nonlinear anyway. The feasibility of this new method is illustrated by several numerical examples. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013 We propose a new moving pseudo-boundary method of fundamental solutions (MFS) for the determination of the boundary of a void. This problem can be modeled as an inverse boundary value problem for harmonic functions. The algorithm for imaging the interior of the medium also makes use of radial polar parametrization of the unknown void shape in two dimensions. The center of this radial polar parametrization is considered to be unknown. We also include the contraction and dilation factors to be part of the unknowns in the resulting nonlinear least-squares problem. This approach addresses the major problem of locating the pseudo-boundary in the MFS in a natural way, because the inverse problem in question is nonlinear anyway. The feasibility of this new method is illustrated by several numerical examples. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013 [PUBLICATION ABSTRACT] We propose a new moving pseudo-boundary method of fundamental solutions (MFS) for the determination of the boundary of a void. This problem can be modeled as an inverse boundary value problem for harmonic functions. The algorithm for imaging the interior of the medium also makes use of radial polar parametrization of the unknown void shape in two dimensions. The center of this radial polar parametrization is considered to be unknown. We also include the contraction and dilation factors to be part of the unknowns in the resulting nonlinear least-squares problem. This approach addresses the major problem of locating the pseudo-boundary in the MFS in a natural way, because the inverse problem in question is nonlinear anyway. The feasibility of this new method is illustrated by several numerical examples. copyright 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013 |
| Author | Lesnic, Daniel Karageorghis, Andreas Marin, Liviu |
| Author_xml | – sequence: 1 givenname: Andreas surname: Karageorghis fullname: Karageorghis, Andreas email: andreask@ucy.ac.cy organization: Department of Mathematics and Statistics, University of Cyprus, Nicosia 1678, Cyprus – sequence: 2 givenname: Daniel surname: Lesnic fullname: Lesnic, Daniel organization: Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom – sequence: 3 givenname: Liviu surname: Marin fullname: Marin, Liviu organization: Institute of Solid Mechanics, Romanian Academy, Bucharest 010141, Romania |
| BookMark | eNp9kEtLxDAUhYMoOD4W_oOAG110TJq2aZYiOoovEGXchTS90WibjEmrzr-346gLQVcXDt85nHs20KrzDhDaoWRMCUkPXN-OU8qZWEEjSkSZpFlarKIR4ZlIaC7u19FGjE-EUJpTMULnh7j1r9Y94FmEvvZJ5XtXqzDHLXSPvsbeYLNQWnCdanD0Td9Z7yI2PuBXb2tcQwd6oW2hNaOaCNtfdxPdnRzfHp0mF9eTs6PDi0SzohSJSYFVmkEuuNZDCQ6C6EowIVReEWGYyZXiusigTImBmoIoeMVLUZmKGGLYJtpb5s6Cf-khdrK1UUPTKAe-j5LmGc0yxkg5oLu_0CffBze0k5TRUmQlI9lA7S8pHXyMAYycBdsOI0hK5GJWOcwqP2cd2INfrLadWrzfBWWb_xxvtoH539Hy6u7y25EsHTZ28P7jUOFZFpzxXE6vJvKe30yn5-xUXrIPbdGbOg |
| CitedBy_id | crossref_primary_10_1108_EC_01_2020_0017 crossref_primary_10_1016_j_enganabound_2017_07_021 crossref_primary_10_1016_j_enganabound_2017_07_011 crossref_primary_10_1016_j_enganabound_2022_11_022 crossref_primary_10_1155_2017_2472060 crossref_primary_10_1016_j_enganabound_2016_09_004 crossref_primary_10_1137_13094921X crossref_primary_10_1007_s00033_022_01765_1 crossref_primary_10_1016_j_enganabound_2017_07_005 crossref_primary_10_3390_fractalfract6020066 crossref_primary_10_1002_num_22404 crossref_primary_10_3103_S0025654420080117 crossref_primary_10_1016_j_amc_2021_126402 crossref_primary_10_1016_j_compstruc_2016_01_010 crossref_primary_10_1080_19475705_2018_1547324 crossref_primary_10_1016_j_ijmecsci_2018_05_002 crossref_primary_10_1016_j_enganabound_2019_04_009 crossref_primary_10_1080_15502287_2019_1631407 crossref_primary_10_1007_s10665_020_10082_3 crossref_primary_10_1007_s10665_020_10083_2 crossref_primary_10_1016_j_ijmecsci_2014_05_015 |
| Cites_doi | 10.1016/0307-904X(84)90161-6 10.1016/0021-9991(87)90176-8 10.1007/BF01582221 10.1216/jiea/1181075363 10.1137/0914086 10.1080/17415970802580263 10.1016/0041-5553(64)90006-0 10.1137/0806023 10.1137/1.9780898718836 10.1002/nme.1620141202 10.1002/nme.1763 10.1088/0266-5611/21/3/009 10.1088/0266-5611/15/5/306 10.1016/j.enganabound.2007.05.004 10.1016/0041-5553(64)90092-8 10.1006/jdeq.2000.3987 10.1093/imanum/9.2.231 10.1002/(SICI)1097-0207(19990420)44:11<1653::AID-NME558>3.0.CO;2-1 10.1137/0714043 10.1080/17415977.2011.551830 10.1016/j.enganabound.2010.09.014 10.1016/j.enganabound.2007.10.011 10.1002/num.10500 10.1016/j.cma.2008.02.011 |
| ContentType | Journal Article |
| Copyright | Copyright © 2012 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: Copyright © 2012 Wiley Periodicals, Inc. |
| DBID | BSCLL AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| DOI | 10.1002/num.21739 |
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database CrossRef Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1098-2426 |
| EndPage | 960 |
| ExternalDocumentID | 2924867121 10_1002_num_21739 NUM21739 ark_67375_WNG_X7RWWK3H_M |
| Genre | article |
| GrantInformation_xml | – fundername: CNCS–UEFISCDI funderid: PN–II–ID–PCE–2011–3–0521 – fundername: Romanian National Authority for Scientific Research |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 41~ 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI RWS WRC AAYXX CITATION O8X 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3689-f2e3bc3e597cc5197e90cb9399a5b09f3f5aa7c64e820fed1e967b789bfb0f0f3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316694100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0749-159X |
| IngestDate | Sun Nov 09 11:38:39 EST 2025 Fri Jul 25 12:06:52 EDT 2025 Tue Nov 18 21:42:17 EST 2025 Sat Nov 29 05:35:12 EST 2025 Wed Jan 22 16:41:07 EST 2025 Sun Sep 21 06:23:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3689-f2e3bc3e597cc5197e90cb9399a5b09f3f5aa7c64e820fed1e967b789bfb0f0f3 |
| Notes | Romanian National Authority for Scientific Research istex:3E090EC1096A693CC32CC3220A08AE75BC320E50 ArticleID:NUM21739 CNCS-UEFISCDI - No. PN-II-ID-PCE-2011-3-0521 ark:/67375/WNG-X7RWWK3H-M ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 1318948304 |
| PQPubID | 1016406 |
| PageCount | 26 |
| ParticipantIDs | proquest_miscellaneous_1541443308 proquest_journals_1318948304 crossref_primary_10_1002_num_21739 crossref_citationtrail_10_1002_num_21739 wiley_primary_10_1002_num_21739_NUM21739 istex_primary_ark_67375_WNG_X7RWWK3H_M |
| PublicationCentury | 2000 |
| PublicationDate | 2013-05 May 2013 2013-05-00 20130501 |
| PublicationDateYYYYMMDD | 2013-05-01 |
| PublicationDate_xml | – month: 05 year: 2013 text: 2013-05 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: New York |
| PublicationTitle | Numerical methods for partial differential equations |
| PublicationTitleAlternate | Numer. Methods Partial Differential Eq |
| PublicationYear | 2013 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley Subscription Services, Inc |
| References | A. Karageorghis and D. Lesnic, The method of fundamental solutions for steady-state heat conduction in nonlinear materials, Commun Comput Phys 4( 2008), 911-928. T. F. Coleman and Y. Li, An interior trust region approach for nonlinear minimization subject to bounds, SIAM J Optim 6( 1996), 418-445. A. Karageorghis and G. Fairweather, The method of fundamental solutions for axisymmetric potential problems, Int J Numer Methods Eng 44( 1999), 1653-1669. R. Tankelevich, G. Fairweather, A. Karageorghis, and Y.-S. Smyrlis, Potential field based geometric modelling using the method of fundamental solutions, Int J Numer Methods Eng 68( 2006), 1257-1280. R. L. Johnston and G. Fairweather, The method of fundamental solutions for problems in potential flow, Appl Math Model 8( 1984), 265-270. R. Mathon and R. L. Johnston, The approximate solution of elliptic boundary-value problems by fundamental solutions, SIAM J Numer Anal 14( 1977), 638-650. Matlab, The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA. A. Karageorghis, D. Lesnic, and L. Marin, A survey of applications of the MFS to inverse problems, Inverse Probl Sci Eng 19( 2011), 309-336. T. F. Coleman and Y. Li, On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds, Math Programming 67( 1994), 189-224. P. C. Hansen and D. P. O'Leary, The use of the L-curve in the regularization of discrete ill-posed problems, SIAM J Sci Comput 14( 1993), 1487-1503. V. D. Kupradze, Potential methods in the theory of elasticity, Israel Program for Scientific Translations, Jerusalem, 1965. A. Poullikkas, A. Karageorghis, G. Georgiou, and J. Ascough, The method of fundamental solutions for Stokes flows with a free surface, Numer Methods Partial Differential Equations 14( 1998), 667-678. L. Marin, A. Karageorghis, and D. Lesnic, The MFS for numerical boundary identification in two-dimensional harmonic problems, Eng Anal Bound Elem 35( 2011), 342-354. V. D. Kupradze and M. A. Aleksidze, The method of functional equations for the approximate solution of certain boundary value problems, Comput Math Math Phys 4( 1964), 82-126. P. C. Hansen, Discrete inverse problems: insight and algorithms, SIAM, Philadelphia, 2010. M. A. Aleksidze, On the question of a practical application of a new approximation method, Differencial'nye Uravnenija 2( 1966), 1625-1629. P. Gorzelańczyk and J. A. Kołodziej, Some remarks concerning the shape of the source contour with application of the method of fundamental solutions to elastic torsion of prismatic rods, Eng Anal Bound Elem 37( 2008), 64-75. O. Ivanyshyn and R. Kress, Nonlinear integral equations for solving inverse boundary value problems for inclusions and cracks, J Integral Equations Appl 18( 2006), 13-38. V. D. Kupradze, On a method of solving approximately the limiting problems of mathematical physics, Comput Math Math Phys 4( 1964), 199-205. A. Karageorghis and G. Fairweather, The method of fundamental solutions for the numerical solution of the biharmonic equation, J Comput Phys 69( 1987), 434-459. A. Karageorghis and D. Lesnic, Detection of cavities using the method of fundamental solutions, Inverse Probl Sci Eng 17( 2009), 803-820. H. Haddar and R. Kress, Conformal mappings and inverse boundary value problems, Inverse Problems 21( 2005), 935-953. G. Alessandrini and L. Rondi, Optimal stability for the inverse problem of multiple cavities, J Diff Equations 176( 2001), 356-386. N. F. M. Martins and A. L. Silvestre, An iterative MFS approach for the detection of immersed obstacles, Eng Anal Bound Elem 32( 2008), 517-524. R. L. Johnston and R. Mathon, The computation of electric dipole fields in conducting media, Int J Numer Methods Eng 14( 1979), 1739-1760. A. Karageorghis and D. Lesnic, Steady-state nonlinear heat conduction in composite materials using the method of fundamental solutions, Comput Methods Appl Mech Eng 197( 2008), 3122-3137. A. Karageorghis and G. Fairweather, The method of fundamental solutions for the solution of nonlinear plane potential problems, IMA J Numer Anal 9( 1989), 231-242. B. S. Garbow, K. E. Hillstrom, and J. J. Moré, Minpack project, Argonne National Laboratory, Argonne, Illinois, 1980. 1966; 2 1979; 14 2010 1964; 4 1989; 9 1994; 67 2008; 37 1999; 44 2006; 18 2005; 21 2008; 32 2011; 35 2008; 4 2011; 19 1999 1987; 69 2001; 176 1993; 14 1977; 14 2006; 68 1984; 8 1965 1982 1980 2008; 197 1998; 14 1996; 6 2009; 17 e_1_2_8_27_2 e_1_2_8_28_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_24_2 e_1_2_8_25_2 e_1_2_8_26_2 e_1_2_8_9_2 Aleksidze M. A. (e_1_2_8_2_2) 1966; 2 Karageorghis A. (e_1_2_8_14_2) 2008; 4 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_5_2 Fairweather G. (e_1_2_8_7_2) 1982 e_1_2_8_8_2 e_1_2_8_20_2 e_1_2_8_21_2 e_1_2_8_22_2 e_1_2_8_16_2 e_1_2_8_17_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_13_2 e_1_2_8_15_2 Kupradze V. D. (e_1_2_8_4_2) 1965 Garbow B. S. (e_1_2_8_32_2) 1980 e_1_2_8_31_2 e_1_2_8_30_2 e_1_2_8_10_2 e_1_2_8_11_2 |
| References_xml | – reference: T. F. Coleman and Y. Li, An interior trust region approach for nonlinear minimization subject to bounds, SIAM J Optim 6( 1996), 418-445. – reference: V. D. Kupradze and M. A. Aleksidze, The method of functional equations for the approximate solution of certain boundary value problems, Comput Math Math Phys 4( 1964), 82-126. – reference: G. Alessandrini and L. Rondi, Optimal stability for the inverse problem of multiple cavities, J Diff Equations 176( 2001), 356-386. – reference: R. L. Johnston and G. Fairweather, The method of fundamental solutions for problems in potential flow, Appl Math Model 8( 1984), 265-270. – reference: R. Mathon and R. L. Johnston, The approximate solution of elliptic boundary-value problems by fundamental solutions, SIAM J Numer Anal 14( 1977), 638-650. – reference: B. S. Garbow, K. E. Hillstrom, and J. J. Moré, Minpack project, Argonne National Laboratory, Argonne, Illinois, 1980. – reference: H. Haddar and R. Kress, Conformal mappings and inverse boundary value problems, Inverse Problems 21( 2005), 935-953. – reference: P. C. Hansen and D. P. O'Leary, The use of the L-curve in the regularization of discrete ill-posed problems, SIAM J Sci Comput 14( 1993), 1487-1503. – reference: N. F. M. Martins and A. L. Silvestre, An iterative MFS approach for the detection of immersed obstacles, Eng Anal Bound Elem 32( 2008), 517-524. – reference: R. L. Johnston and R. Mathon, The computation of electric dipole fields in conducting media, Int J Numer Methods Eng 14( 1979), 1739-1760. – reference: Matlab, The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA. – reference: A. Karageorghis, D. Lesnic, and L. Marin, A survey of applications of the MFS to inverse problems, Inverse Probl Sci Eng 19( 2011), 309-336. – reference: A. Poullikkas, A. Karageorghis, G. Georgiou, and J. Ascough, The method of fundamental solutions for Stokes flows with a free surface, Numer Methods Partial Differential Equations 14( 1998), 667-678. – reference: T. F. Coleman and Y. Li, On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds, Math Programming 67( 1994), 189-224. – reference: R. Tankelevich, G. Fairweather, A. Karageorghis, and Y.-S. Smyrlis, Potential field based geometric modelling using the method of fundamental solutions, Int J Numer Methods Eng 68( 2006), 1257-1280. – reference: V. D. Kupradze, On a method of solving approximately the limiting problems of mathematical physics, Comput Math Math Phys 4( 1964), 199-205. – reference: L. Marin, A. Karageorghis, and D. Lesnic, The MFS for numerical boundary identification in two-dimensional harmonic problems, Eng Anal Bound Elem 35( 2011), 342-354. – reference: P. C. Hansen, Discrete inverse problems: insight and algorithms, SIAM, Philadelphia, 2010. – reference: V. D. Kupradze, Potential methods in the theory of elasticity, Israel Program for Scientific Translations, Jerusalem, 1965. – reference: A. Karageorghis and G. Fairweather, The method of fundamental solutions for axisymmetric potential problems, Int J Numer Methods Eng 44( 1999), 1653-1669. – reference: P. Gorzelańczyk and J. A. Kołodziej, Some remarks concerning the shape of the source contour with application of the method of fundamental solutions to elastic torsion of prismatic rods, Eng Anal Bound Elem 37( 2008), 64-75. – reference: O. Ivanyshyn and R. Kress, Nonlinear integral equations for solving inverse boundary value problems for inclusions and cracks, J Integral Equations Appl 18( 2006), 13-38. – reference: A. Karageorghis and D. Lesnic, The method of fundamental solutions for steady-state heat conduction in nonlinear materials, Commun Comput Phys 4( 2008), 911-928. – reference: A. Karageorghis and G. Fairweather, The method of fundamental solutions for the solution of nonlinear plane potential problems, IMA J Numer Anal 9( 1989), 231-242. – reference: A. Karageorghis and G. Fairweather, The method of fundamental solutions for the numerical solution of the biharmonic equation, J Comput Phys 69( 1987), 434-459. – reference: M. A. Aleksidze, On the question of a practical application of a new approximation method, Differencial'nye Uravnenija 2( 1966), 1625-1629. – reference: A. Karageorghis and D. Lesnic, Steady-state nonlinear heat conduction in composite materials using the method of fundamental solutions, Comput Methods Appl Mech Eng 197( 2008), 3122-3137. – reference: A. Karageorghis and D. Lesnic, Detection of cavities using the method of fundamental solutions, Inverse Probl Sci Eng 17( 2009), 803-820. – article-title: Matlab publication-title: The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA – volume: 4 start-page: 911 year: 2008 end-page: 928 article-title: The method of fundamental solutions for steady‐state heat conduction in nonlinear materials publication-title: Commun Comput Phys – volume: 14 start-page: 1487 year: 1993 end-page: 1503 article-title: The use of the ‐curve in the regularization of discrete ill‐posed problems publication-title: SIAM J Sci Comput – volume: 14 start-page: 1739 year: 1979 end-page: 1760 article-title: The computation of electric dipole fields in conducting media publication-title: Int J Numer Methods Eng – volume: 4 start-page: 199 year: 1964 end-page: 205 article-title: On a method of solving approximately the limiting problems of mathematical physics publication-title: Comput Math Math Phys – volume: 67 start-page: 189 year: 1994 end-page: 224 article-title: On the convergence of interior‐reflective Newton methods for nonlinear minimization subject to bounds publication-title: Math Programming – volume: 19 start-page: 309 year: 2011 end-page: 336 article-title: A survey of applications of the MFS to inverse problems publication-title: Inverse Probl Sci Eng – volume: 44 start-page: 1653 year: 1999 end-page: 1669 article-title: The method of fundamental solutions for axisymmetric potential problems publication-title: Int J Numer Methods Eng – volume: 6 start-page: 418 year: 1996 end-page: 445 article-title: An interior trust region approach for nonlinear minimization subject to bounds publication-title: SIAM J Optim – volume: 14 start-page: 667 year: 1998 end-page: 678 article-title: The method of fundamental solutions for Stokes flows with a free surface publication-title: Numer Methods Partial Differential Equations – volume: 9 start-page: 231 year: 1989 end-page: 242 article-title: The method of fundamental solutions for the solution of nonlinear plane potential problems publication-title: IMA J Numer Anal – year: 2010 – start-page: 349 year: 1982 end-page: 359 – volume: 17 start-page: 803 year: 2009 end-page: 820 article-title: Detection of cavities using the method of fundamental solutions publication-title: Inverse Probl Sci Eng – volume: 68 start-page: 1257 year: 2006 end-page: 1280 article-title: Potential field based geometric modelling using the method of fundamental solutions publication-title: Int J Numer Methods Eng – volume: 37 start-page: 64 year: 2008 end-page: 75 article-title: Some remarks concerning the shape of the source contour with application of the method of fundamental solutions to elastic torsion of prismatic rods publication-title: Eng Anal Bound Elem – volume: 2 start-page: 1625 year: 1966 end-page: 1629 article-title: On the question of a practical application of a new approximation method publication-title: Differencial'nye Uravnenija – volume: 4 start-page: 82 year: 1964 end-page: 126 article-title: The method of functional equations for the approximate solution of certain boundary value problems publication-title: Comput Math Math Phys – volume: 69 start-page: 434 year: 1987 end-page: 459 article-title: The method of fundamental solutions for the numerical solution of the biharmonic equation publication-title: J Comput Phys – year: 1980 – year: 1965 – volume: 197 start-page: 3122 year: 2008 end-page: 3137 article-title: Steady‐state nonlinear heat conduction in composite materials using the method of fundamental solutions publication-title: Comput Methods Appl Mech Eng – volume: 18 start-page: 13 year: 2006 end-page: 38 article-title: Nonlinear integral equations for solving inverse boundary value problems for inclusions and cracks publication-title: J Integral Equations Appl – volume: 35 start-page: 342 year: 2011 end-page: 354 article-title: The MFS for numerical boundary identification in two‐dimensional harmonic problems publication-title: Eng Anal Bound Elem – volume: 176 start-page: 356 year: 2001 end-page: 386 article-title: Optimal stability for the inverse problem of multiple cavities publication-title: J Diff Equations – volume: 32 start-page: 517 year: 2008 end-page: 524 article-title: An iterative MFS approach for the detection of immersed obstacles publication-title: Eng Anal Bound Elem – volume: 21 start-page: 935 year: 2005 end-page: 953 article-title: Conformal mappings and inverse boundary value problems publication-title: Inverse Problems – volume: 14 start-page: 638 year: 1977 end-page: 650 article-title: The approximate solution of elliptic boundary–value problems by fundamental solutions publication-title: SIAM J Numer Anal – volume: 8 start-page: 265 year: 1984 end-page: 270 article-title: The method of fundamental solutions for problems in potential flow publication-title: Appl Math Model – year: 1999 – ident: e_1_2_8_10_2 doi: 10.1016/0307-904X(84)90161-6 – ident: e_1_2_8_11_2 doi: 10.1016/0021-9991(87)90176-8 – ident: e_1_2_8_24_2 doi: 10.1007/BF01582221 – ident: e_1_2_8_26_2 doi: 10.1216/jiea/1181075363 – ident: e_1_2_8_28_2 doi: 10.1137/0914086 – ident: e_1_2_8_21_2 doi: 10.1080/17415970802580263 – ident: e_1_2_8_5_2 doi: 10.1016/0041-5553(64)90006-0 – ident: e_1_2_8_25_2 doi: 10.1137/0806023 – ident: e_1_2_8_29_2 doi: 10.1137/1.9780898718836 – volume-title: Potential methods in the theory of elasticity year: 1965 ident: e_1_2_8_4_2 – ident: e_1_2_8_8_2 – ident: e_1_2_8_9_2 doi: 10.1002/nme.1620141202 – volume-title: Minpack project year: 1980 ident: e_1_2_8_32_2 – ident: e_1_2_8_31_2 doi: 10.1002/nme.1763 – ident: e_1_2_8_18_2 doi: 10.1088/0266-5611/21/3/009 – ident: e_1_2_8_20_2 doi: 10.1088/0266-5611/15/5/306 – ident: e_1_2_8_22_2 doi: 10.1016/j.enganabound.2007.05.004 – volume: 4 start-page: 911 year: 2008 ident: e_1_2_8_14_2 article-title: The method of fundamental solutions for steady‐state heat conduction in nonlinear materials publication-title: Commun Comput Phys – ident: e_1_2_8_23_2 – ident: e_1_2_8_3_2 doi: 10.1016/0041-5553(64)90092-8 – ident: e_1_2_8_19_2 doi: 10.1006/jdeq.2000.3987 – ident: e_1_2_8_12_2 doi: 10.1093/imanum/9.2.231 – ident: e_1_2_8_13_2 doi: 10.1002/(SICI)1097-0207(19990420)44:11<1653::AID-NME558>3.0.CO;2-1 – ident: e_1_2_8_6_2 doi: 10.1137/0714043 – start-page: 349 volume-title: Treatment of integral equations by numerical methods year: 1982 ident: e_1_2_8_7_2 – volume: 2 start-page: 1625 year: 1966 ident: e_1_2_8_2_2 article-title: On the question of a practical application of a new approximation method publication-title: Differencial'nye Uravnenija – ident: e_1_2_8_17_2 doi: 10.1080/17415977.2011.551830 – ident: e_1_2_8_30_2 doi: 10.1016/j.enganabound.2010.09.014 – ident: e_1_2_8_27_2 doi: 10.1016/j.enganabound.2007.10.011 – ident: e_1_2_8_16_2 doi: 10.1002/num.10500 – ident: e_1_2_8_15_2 doi: 10.1016/j.cma.2008.02.011 |
| SSID | ssj0011519 |
| Score | 2.1125412 |
| Snippet | We propose a new moving pseudo‐boundary method of fundamental solutions (MFS) for the determination of the boundary of a void. This problem can be modeled as... We propose a new moving pseudo-boundary method of fundamental solutions (MFS) for the determination of the boundary of a void. This problem can be modeled as... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 935 |
| SubjectTerms | Algorithms Imaging inverse problem Inverse problems Mathematical models method of fundamental solutions Nonlinearity Numerical analysis Parametrization void detection Voids |
| Title | A moving pseudo-boundary method of fundamental solutions for void detection |
| URI | https://api.istex.fr/ark:/67375/WNG-X7RWWK3H-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnum.21739 https://www.proquest.com/docview/1318948304 https://www.proquest.com/docview/1541443308 |
| Volume | 29 |
| WOSCitedRecordID | wos000316694100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1098-2426 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011519 issn: 0749-159X databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB3SbA_NoUm_6CZpUEspvbhRLO_KQ06h7TbQ7FJCt7s3YckShDZ2WO-G5pafkN-YX5KR7DUJNFDIxRhrDELSaN7o4z2A9zpBClqYR6h7lhIUISLtMI4yCk3cWpmLINP560iORul0ij9WYH95F6bmh2gX3LxnhPnaO3imq91bpKGL00-EpwU-go6_VEWZV-fL8WB81G4iUDDDmoUTI4ra0yWxEI9325_vhKOOb9m_d7DmbcQaQs5g_UGV3YCnDdJkB_XQeAYrtngOa8OWprV6AcMDdhpWFNhZZRd5eX15pYPM0uyC1dLSrHTM-S-1BgBrRyojsMvOy5Oc5XYejnMVL2E8-Prz82HU6CtERvRTjFxshTbCUk5hjL_AapEbjQRZsp7m6ITrZZk0_cQSTHA237PYl1qmqJ3mjjvxClaLsrCvgSEmuaHcjh5pQklRKmUqhMg5ZUui73gXPi6bWZmGfNxrYPxRNW1y7AVQVGihLrxrTc9qxo1_GX0IfdVaZLPf_oia7KnJ6JuayuPJ5Ls4VMMubC87UzXeWak9msgwSQVPuvC2LSa_8pslWWHLBdl4ffRECJ5S3UPX3l8bNRoPw8vm_5tuwZM4KGv4s5PbsDqfLewbeGzO5yfVbKcZyjdv2ve- |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD6sM4L64F12dNUoIr50N9t0mgR8WdRxZKdFlh1n3kKTJrC42y5zWfTNn-Bv9Jd4knbKLigIvpTSnEJIcnK-k8v3AbzSicSgJctI6qHFBIWxSDsZRwWGJmotL1mQ6fwy4Xku5nP5eQvebu7CNPwQ3YKb94wwX3sH9wvSe5dYQ9dnuwiombwG_SRlXPSg__5oNJ10uwgYzWRDwykjDNvzDbMQjfe6n6_Eo75v2m9XwOZlyBpizujO_9X2LtxusSY5aAbHPdiy1X24lXVErcsHkB2Qs7CmQM6Xdl3Wv3781EFoafGdNOLSpHbE-S-NCgDpxipBuEsu6pOSlHYVDnRVD2E6-nD8bhy1CguRYamQkYst04ZZzCqM8VdYraRGSwQtxVBT6ZgbFgU3aWIRKDhb7luZcs2F1E5TRx17BL2qruw2ECmT0mB2hw-RYFokOBeMsZJivsRSRwfwZtPOyrT0414F41Q1xMmxl0BRoYUG8LIzPW84N_5k9Dp0VmdRLL76Q2p8qGb5RzXnR7PZIRurbAA7m95UrX8u1T5OZTIRjCYDeNEVo2f57ZKisvUabbxCesIYFVj30Ld_r43Kp1l4efzvps_hxvg4m6jJp_zwCdyMg86GP0m5A73VYm2fwnVzsTpZLp614_o3QL_7rg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD60u1L0wVsVV6tGEfFlbDrJbOaAL8W6Vro7lOK6-xYmkwRK25llL0Xf_An-Rn-JSWZ2aEFB6MswTM5ASHJyvpPL9wG8URxd0EIdoUqMS1AYi5TFOMpdaKLGCM2CTOe3ociydDrF4w34sL4LU_NDtAtu3jPCfO0d3My03b3CGrq6eO8ANcNN6PIEE96B7sHJYDxsdxFcNMOahhMjF7ana2YhGu-2P1-LR13ftN-vgc2rkDXEnMG9m9X2PtxtsCbZrwfHA9gw5UO4M2qJWhfbMNonF2FNgcwWZqWr3z9_qSC0NP9BanFpUlli_ZdaBYC0Y5U4uEsuq1NNtFmGA13lIxgPPn39eBg1CgtRwfopRjY2TBXMuKyiKPwVVoO0UOhAS54oipbZJM9F0efGAQVr9J7BvlAiRWUVtdSyx9Apq9I8AYLIdeGyO_dIuUuLUiFSxpimLl9ifUt78G7dzrJo6Me9Csa5rImTYy-BIkML9eB1azqrOTf-ZvQ2dFZrkc_P_CE1kchJ9llOxclkcsQO5agHO-velI1_LuSem8qQp4zyHrxqi51n-e2SvDTVytl4hXTOGE1d3UPf_rs2MhuPwsvT_zd9CVvHBwM5_JIdPYPbcZDZ8Acpd6CznK_Mc7hVXC5PF_MXzbD-A9LT-yk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+moving+pseudo%E2%80%90boundary+method+of+fundamental+solutions+for+void+detection&rft.jtitle=Numerical+methods+for+partial+differential+equations&rft.au=Karageorghis%2C+Andreas&rft.au=Lesnic%2C+Daniel&rft.au=Marin%2C+Liviu&rft.date=2013-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0749-159X&rft.eissn=1098-2426&rft.volume=29&rft.issue=3&rft.spage=935&rft.epage=960&rft_id=info:doi/10.1002%2Fnum.21739&rft.externalDBID=10.1002%252Fnum.21739&rft.externalDocID=NUM21739 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-159X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-159X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-159X&client=summon |