A moving pseudo-boundary method of fundamental solutions for void detection

We propose a new moving pseudo‐boundary method of fundamental solutions (MFS) for the determination of the boundary of a void. This problem can be modeled as an inverse boundary value problem for harmonic functions. The algorithm for imaging the interior of the medium also makes use of radial polar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations Jg. 29; H. 3; S. 935 - 960
Hauptverfasser: Karageorghis, Andreas, Lesnic, Daniel, Marin, Liviu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.05.2013
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0749-159X, 1098-2426
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We propose a new moving pseudo‐boundary method of fundamental solutions (MFS) for the determination of the boundary of a void. This problem can be modeled as an inverse boundary value problem for harmonic functions. The algorithm for imaging the interior of the medium also makes use of radial polar parametrization of the unknown void shape in two dimensions. The center of this radial polar parametrization is considered to be unknown. We also include the contraction and dilation factors to be part of the unknowns in the resulting nonlinear least‐squares problem. This approach addresses the major problem of locating the pseudo‐boundary in the MFS in a natural way, because the inverse problem in question is nonlinear anyway. The feasibility of this new method is illustrated by several numerical examples. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013
AbstractList We propose a new moving pseudo‐boundary method of fundamental solutions (MFS) for the determination of the boundary of a void. This problem can be modeled as an inverse boundary value problem for harmonic functions. The algorithm for imaging the interior of the medium also makes use of radial polar parametrization of the unknown void shape in two dimensions. The center of this radial polar parametrization is considered to be unknown. We also include the contraction and dilation factors to be part of the unknowns in the resulting nonlinear least‐squares problem. This approach addresses the major problem of locating the pseudo‐boundary in the MFS in a natural way, because the inverse problem in question is nonlinear anyway. The feasibility of this new method is illustrated by several numerical examples. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013
We propose a new moving pseudo-boundary method of fundamental solutions (MFS) for the determination of the boundary of a void. This problem can be modeled as an inverse boundary value problem for harmonic functions. The algorithm for imaging the interior of the medium also makes use of radial polar parametrization of the unknown void shape in two dimensions. The center of this radial polar parametrization is considered to be unknown. We also include the contraction and dilation factors to be part of the unknowns in the resulting nonlinear least-squares problem. This approach addresses the major problem of locating the pseudo-boundary in the MFS in a natural way, because the inverse problem in question is nonlinear anyway. The feasibility of this new method is illustrated by several numerical examples. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013 [PUBLICATION ABSTRACT]
We propose a new moving pseudo-boundary method of fundamental solutions (MFS) for the determination of the boundary of a void. This problem can be modeled as an inverse boundary value problem for harmonic functions. The algorithm for imaging the interior of the medium also makes use of radial polar parametrization of the unknown void shape in two dimensions. The center of this radial polar parametrization is considered to be unknown. We also include the contraction and dilation factors to be part of the unknowns in the resulting nonlinear least-squares problem. This approach addresses the major problem of locating the pseudo-boundary in the MFS in a natural way, because the inverse problem in question is nonlinear anyway. The feasibility of this new method is illustrated by several numerical examples. copyright 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013
Author Lesnic, Daniel
Karageorghis, Andreas
Marin, Liviu
Author_xml – sequence: 1
  givenname: Andreas
  surname: Karageorghis
  fullname: Karageorghis, Andreas
  email: andreask@ucy.ac.cy
  organization: Department of Mathematics and Statistics, University of Cyprus, Nicosia 1678, Cyprus
– sequence: 2
  givenname: Daniel
  surname: Lesnic
  fullname: Lesnic, Daniel
  organization: Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
– sequence: 3
  givenname: Liviu
  surname: Marin
  fullname: Marin, Liviu
  organization: Institute of Solid Mechanics, Romanian Academy, Bucharest 010141, Romania
BookMark eNp9kEtLxDAUhYMoOD4W_oOAG110TJq2aZYiOoovEGXchTS90WibjEmrzr-346gLQVcXDt85nHs20KrzDhDaoWRMCUkPXN-OU8qZWEEjSkSZpFlarKIR4ZlIaC7u19FGjE-EUJpTMULnh7j1r9Y94FmEvvZJ5XtXqzDHLXSPvsbeYLNQWnCdanD0Td9Z7yI2PuBXb2tcQwd6oW2hNaOaCNtfdxPdnRzfHp0mF9eTs6PDi0SzohSJSYFVmkEuuNZDCQ6C6EowIVReEWGYyZXiusigTImBmoIoeMVLUZmKGGLYJtpb5s6Cf-khdrK1UUPTKAe-j5LmGc0yxkg5oLu_0CffBze0k5TRUmQlI9lA7S8pHXyMAYycBdsOI0hK5GJWOcwqP2cd2INfrLadWrzfBWWb_xxvtoH539Hy6u7y25EsHTZ28P7jUOFZFpzxXE6vJvKe30yn5-xUXrIPbdGbOg
CitedBy_id crossref_primary_10_1108_EC_01_2020_0017
crossref_primary_10_1016_j_enganabound_2017_07_021
crossref_primary_10_1016_j_enganabound_2017_07_011
crossref_primary_10_1016_j_enganabound_2022_11_022
crossref_primary_10_1155_2017_2472060
crossref_primary_10_1016_j_enganabound_2016_09_004
crossref_primary_10_1137_13094921X
crossref_primary_10_1007_s00033_022_01765_1
crossref_primary_10_1016_j_enganabound_2017_07_005
crossref_primary_10_3390_fractalfract6020066
crossref_primary_10_1002_num_22404
crossref_primary_10_3103_S0025654420080117
crossref_primary_10_1016_j_amc_2021_126402
crossref_primary_10_1016_j_compstruc_2016_01_010
crossref_primary_10_1080_19475705_2018_1547324
crossref_primary_10_1016_j_ijmecsci_2018_05_002
crossref_primary_10_1016_j_enganabound_2019_04_009
crossref_primary_10_1080_15502287_2019_1631407
crossref_primary_10_1007_s10665_020_10082_3
crossref_primary_10_1007_s10665_020_10083_2
crossref_primary_10_1016_j_ijmecsci_2014_05_015
Cites_doi 10.1016/0307-904X(84)90161-6
10.1016/0021-9991(87)90176-8
10.1007/BF01582221
10.1216/jiea/1181075363
10.1137/0914086
10.1080/17415970802580263
10.1016/0041-5553(64)90006-0
10.1137/0806023
10.1137/1.9780898718836
10.1002/nme.1620141202
10.1002/nme.1763
10.1088/0266-5611/21/3/009
10.1088/0266-5611/15/5/306
10.1016/j.enganabound.2007.05.004
10.1016/0041-5553(64)90092-8
10.1006/jdeq.2000.3987
10.1093/imanum/9.2.231
10.1002/(SICI)1097-0207(19990420)44:11<1653::AID-NME558>3.0.CO;2-1
10.1137/0714043
10.1080/17415977.2011.551830
10.1016/j.enganabound.2010.09.014
10.1016/j.enganabound.2007.10.011
10.1002/num.10500
10.1016/j.cma.2008.02.011
ContentType Journal Article
Copyright Copyright © 2012 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2012 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/num.21739
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2426
EndPage 960
ExternalDocumentID 2924867121
10_1002_num_21739
NUM21739
ark_67375_WNG_X7RWWK3H_M
Genre article
GrantInformation_xml – fundername: CNCS–UEFISCDI
  funderid: PN–II–ID–PCE–2011–3–0521
– fundername: Romanian National Authority for Scientific Research
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
41~
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
RWS
WRC
AAYXX
CITATION
O8X
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3689-f2e3bc3e597cc5197e90cb9399a5b09f3f5aa7c64e820fed1e967b789bfb0f0f3
IEDL.DBID DRFUL
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316694100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0749-159X
IngestDate Sun Nov 09 11:38:39 EST 2025
Fri Jul 25 12:06:52 EDT 2025
Tue Nov 18 21:42:17 EST 2025
Sat Nov 29 05:35:12 EST 2025
Wed Jan 22 16:41:07 EST 2025
Sun Sep 21 06:23:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3689-f2e3bc3e597cc5197e90cb9399a5b09f3f5aa7c64e820fed1e967b789bfb0f0f3
Notes Romanian National Authority for Scientific Research
istex:3E090EC1096A693CC32CC3220A08AE75BC320E50
ArticleID:NUM21739
CNCS-UEFISCDI - No. PN-II-ID-PCE-2011-3-0521
ark:/67375/WNG-X7RWWK3H-M
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1318948304
PQPubID 1016406
PageCount 26
ParticipantIDs proquest_miscellaneous_1541443308
proquest_journals_1318948304
crossref_primary_10_1002_num_21739
crossref_citationtrail_10_1002_num_21739
wiley_primary_10_1002_num_21739_NUM21739
istex_primary_ark_67375_WNG_X7RWWK3H_M
PublicationCentury 2000
PublicationDate 2013-05
May 2013
2013-05-00
20130501
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York
PublicationTitle Numerical methods for partial differential equations
PublicationTitleAlternate Numer. Methods Partial Differential Eq
PublicationYear 2013
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References A. Karageorghis and D. Lesnic, The method of fundamental solutions for steady-state heat conduction in nonlinear materials, Commun Comput Phys 4( 2008), 911-928.
T. F. Coleman and Y. Li, An interior trust region approach for nonlinear minimization subject to bounds, SIAM J Optim 6( 1996), 418-445.
A. Karageorghis and G. Fairweather, The method of fundamental solutions for axisymmetric potential problems, Int J Numer Methods Eng 44( 1999), 1653-1669.
R. Tankelevich, G. Fairweather, A. Karageorghis, and Y.-S. Smyrlis, Potential field based geometric modelling using the method of fundamental solutions, Int J Numer Methods Eng 68( 2006), 1257-1280.
R. L. Johnston and G. Fairweather, The method of fundamental solutions for problems in potential flow, Appl Math Model 8( 1984), 265-270.
R. Mathon and R. L. Johnston, The approximate solution of elliptic boundary-value problems by fundamental solutions, SIAM J Numer Anal 14( 1977), 638-650.
Matlab, The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA.
A. Karageorghis, D. Lesnic, and L. Marin, A survey of applications of the MFS to inverse problems, Inverse Probl Sci Eng 19( 2011), 309-336.
T. F. Coleman and Y. Li, On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds, Math Programming 67( 1994), 189-224.
P. C. Hansen and D. P. O'Leary, The use of the L-curve in the regularization of discrete ill-posed problems, SIAM J Sci Comput 14( 1993), 1487-1503.
V. D. Kupradze, Potential methods in the theory of elasticity, Israel Program for Scientific Translations, Jerusalem, 1965.
A. Poullikkas, A. Karageorghis, G. Georgiou, and J. Ascough, The method of fundamental solutions for Stokes flows with a free surface, Numer Methods Partial Differential Equations 14( 1998), 667-678.
L. Marin, A. Karageorghis, and D. Lesnic, The MFS for numerical boundary identification in two-dimensional harmonic problems, Eng Anal Bound Elem 35( 2011), 342-354.
V. D. Kupradze and M. A. Aleksidze, The method of functional equations for the approximate solution of certain boundary value problems, Comput Math Math Phys 4( 1964), 82-126.
P. C. Hansen, Discrete inverse problems: insight and algorithms, SIAM, Philadelphia, 2010.
M. A. Aleksidze, On the question of a practical application of a new approximation method, Differencial'nye Uravnenija 2( 1966), 1625-1629.
P. Gorzelańczyk and J. A. Kołodziej, Some remarks concerning the shape of the source contour with application of the method of fundamental solutions to elastic torsion of prismatic rods, Eng Anal Bound Elem 37( 2008), 64-75.
O. Ivanyshyn and R. Kress, Nonlinear integral equations for solving inverse boundary value problems for inclusions and cracks, J Integral Equations Appl 18( 2006), 13-38.
V. D. Kupradze, On a method of solving approximately the limiting problems of mathematical physics, Comput Math Math Phys 4( 1964), 199-205.
A. Karageorghis and G. Fairweather, The method of fundamental solutions for the numerical solution of the biharmonic equation, J Comput Phys 69( 1987), 434-459.
A. Karageorghis and D. Lesnic, Detection of cavities using the method of fundamental solutions, Inverse Probl Sci Eng 17( 2009), 803-820.
H. Haddar and R. Kress, Conformal mappings and inverse boundary value problems, Inverse Problems 21( 2005), 935-953.
G. Alessandrini and L. Rondi, Optimal stability for the inverse problem of multiple cavities, J Diff Equations 176( 2001), 356-386.
N. F. M. Martins and A. L. Silvestre, An iterative MFS approach for the detection of immersed obstacles, Eng Anal Bound Elem 32( 2008), 517-524.
R. L. Johnston and R. Mathon, The computation of electric dipole fields in conducting media, Int J Numer Methods Eng 14( 1979), 1739-1760.
A. Karageorghis and D. Lesnic, Steady-state nonlinear heat conduction in composite materials using the method of fundamental solutions, Comput Methods Appl Mech Eng 197( 2008), 3122-3137.
A. Karageorghis and G. Fairweather, The method of fundamental solutions for the solution of nonlinear plane potential problems, IMA J Numer Anal 9( 1989), 231-242.
B. S. Garbow, K. E. Hillstrom, and J. J. Moré, Minpack project, Argonne National Laboratory, Argonne, Illinois, 1980.
1966; 2
1979; 14
2010
1964; 4
1989; 9
1994; 67
2008; 37
1999; 44
2006; 18
2005; 21
2008; 32
2011; 35
2008; 4
2011; 19
1999
1987; 69
2001; 176
1993; 14
1977; 14
2006; 68
1984; 8
1965
1982
1980
2008; 197
1998; 14
1996; 6
2009; 17
e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_9_2
Aleksidze M. A. (e_1_2_8_2_2) 1966; 2
Karageorghis A. (e_1_2_8_14_2) 2008; 4
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
Fairweather G. (e_1_2_8_7_2) 1982
e_1_2_8_8_2
e_1_2_8_20_2
e_1_2_8_21_2
e_1_2_8_22_2
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_15_2
Kupradze V. D. (e_1_2_8_4_2) 1965
Garbow B. S. (e_1_2_8_32_2) 1980
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_11_2
References_xml – reference: T. F. Coleman and Y. Li, An interior trust region approach for nonlinear minimization subject to bounds, SIAM J Optim 6( 1996), 418-445.
– reference: V. D. Kupradze and M. A. Aleksidze, The method of functional equations for the approximate solution of certain boundary value problems, Comput Math Math Phys 4( 1964), 82-126.
– reference: G. Alessandrini and L. Rondi, Optimal stability for the inverse problem of multiple cavities, J Diff Equations 176( 2001), 356-386.
– reference: R. L. Johnston and G. Fairweather, The method of fundamental solutions for problems in potential flow, Appl Math Model 8( 1984), 265-270.
– reference: R. Mathon and R. L. Johnston, The approximate solution of elliptic boundary-value problems by fundamental solutions, SIAM J Numer Anal 14( 1977), 638-650.
– reference: B. S. Garbow, K. E. Hillstrom, and J. J. Moré, Minpack project, Argonne National Laboratory, Argonne, Illinois, 1980.
– reference: H. Haddar and R. Kress, Conformal mappings and inverse boundary value problems, Inverse Problems 21( 2005), 935-953.
– reference: P. C. Hansen and D. P. O'Leary, The use of the L-curve in the regularization of discrete ill-posed problems, SIAM J Sci Comput 14( 1993), 1487-1503.
– reference: N. F. M. Martins and A. L. Silvestre, An iterative MFS approach for the detection of immersed obstacles, Eng Anal Bound Elem 32( 2008), 517-524.
– reference: R. L. Johnston and R. Mathon, The computation of electric dipole fields in conducting media, Int J Numer Methods Eng 14( 1979), 1739-1760.
– reference: Matlab, The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA.
– reference: A. Karageorghis, D. Lesnic, and L. Marin, A survey of applications of the MFS to inverse problems, Inverse Probl Sci Eng 19( 2011), 309-336.
– reference: A. Poullikkas, A. Karageorghis, G. Georgiou, and J. Ascough, The method of fundamental solutions for Stokes flows with a free surface, Numer Methods Partial Differential Equations 14( 1998), 667-678.
– reference: T. F. Coleman and Y. Li, On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds, Math Programming 67( 1994), 189-224.
– reference: R. Tankelevich, G. Fairweather, A. Karageorghis, and Y.-S. Smyrlis, Potential field based geometric modelling using the method of fundamental solutions, Int J Numer Methods Eng 68( 2006), 1257-1280.
– reference: V. D. Kupradze, On a method of solving approximately the limiting problems of mathematical physics, Comput Math Math Phys 4( 1964), 199-205.
– reference: L. Marin, A. Karageorghis, and D. Lesnic, The MFS for numerical boundary identification in two-dimensional harmonic problems, Eng Anal Bound Elem 35( 2011), 342-354.
– reference: P. C. Hansen, Discrete inverse problems: insight and algorithms, SIAM, Philadelphia, 2010.
– reference: V. D. Kupradze, Potential methods in the theory of elasticity, Israel Program for Scientific Translations, Jerusalem, 1965.
– reference: A. Karageorghis and G. Fairweather, The method of fundamental solutions for axisymmetric potential problems, Int J Numer Methods Eng 44( 1999), 1653-1669.
– reference: P. Gorzelańczyk and J. A. Kołodziej, Some remarks concerning the shape of the source contour with application of the method of fundamental solutions to elastic torsion of prismatic rods, Eng Anal Bound Elem 37( 2008), 64-75.
– reference: O. Ivanyshyn and R. Kress, Nonlinear integral equations for solving inverse boundary value problems for inclusions and cracks, J Integral Equations Appl 18( 2006), 13-38.
– reference: A. Karageorghis and D. Lesnic, The method of fundamental solutions for steady-state heat conduction in nonlinear materials, Commun Comput Phys 4( 2008), 911-928.
– reference: A. Karageorghis and G. Fairweather, The method of fundamental solutions for the solution of nonlinear plane potential problems, IMA J Numer Anal 9( 1989), 231-242.
– reference: A. Karageorghis and G. Fairweather, The method of fundamental solutions for the numerical solution of the biharmonic equation, J Comput Phys 69( 1987), 434-459.
– reference: M. A. Aleksidze, On the question of a practical application of a new approximation method, Differencial'nye Uravnenija 2( 1966), 1625-1629.
– reference: A. Karageorghis and D. Lesnic, Steady-state nonlinear heat conduction in composite materials using the method of fundamental solutions, Comput Methods Appl Mech Eng 197( 2008), 3122-3137.
– reference: A. Karageorghis and D. Lesnic, Detection of cavities using the method of fundamental solutions, Inverse Probl Sci Eng 17( 2009), 803-820.
– article-title: Matlab
  publication-title: The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA
– volume: 4
  start-page: 911
  year: 2008
  end-page: 928
  article-title: The method of fundamental solutions for steady‐state heat conduction in nonlinear materials
  publication-title: Commun Comput Phys
– volume: 14
  start-page: 1487
  year: 1993
  end-page: 1503
  article-title: The use of the ‐curve in the regularization of discrete ill‐posed problems
  publication-title: SIAM J Sci Comput
– volume: 14
  start-page: 1739
  year: 1979
  end-page: 1760
  article-title: The computation of electric dipole fields in conducting media
  publication-title: Int J Numer Methods Eng
– volume: 4
  start-page: 199
  year: 1964
  end-page: 205
  article-title: On a method of solving approximately the limiting problems of mathematical physics
  publication-title: Comput Math Math Phys
– volume: 67
  start-page: 189
  year: 1994
  end-page: 224
  article-title: On the convergence of interior‐reflective Newton methods for nonlinear minimization subject to bounds
  publication-title: Math Programming
– volume: 19
  start-page: 309
  year: 2011
  end-page: 336
  article-title: A survey of applications of the MFS to inverse problems
  publication-title: Inverse Probl Sci Eng
– volume: 44
  start-page: 1653
  year: 1999
  end-page: 1669
  article-title: The method of fundamental solutions for axisymmetric potential problems
  publication-title: Int J Numer Methods Eng
– volume: 6
  start-page: 418
  year: 1996
  end-page: 445
  article-title: An interior trust region approach for nonlinear minimization subject to bounds
  publication-title: SIAM J Optim
– volume: 14
  start-page: 667
  year: 1998
  end-page: 678
  article-title: The method of fundamental solutions for Stokes flows with a free surface
  publication-title: Numer Methods Partial Differential Equations
– volume: 9
  start-page: 231
  year: 1989
  end-page: 242
  article-title: The method of fundamental solutions for the solution of nonlinear plane potential problems
  publication-title: IMA J Numer Anal
– year: 2010
– start-page: 349
  year: 1982
  end-page: 359
– volume: 17
  start-page: 803
  year: 2009
  end-page: 820
  article-title: Detection of cavities using the method of fundamental solutions
  publication-title: Inverse Probl Sci Eng
– volume: 68
  start-page: 1257
  year: 2006
  end-page: 1280
  article-title: Potential field based geometric modelling using the method of fundamental solutions
  publication-title: Int J Numer Methods Eng
– volume: 37
  start-page: 64
  year: 2008
  end-page: 75
  article-title: Some remarks concerning the shape of the source contour with application of the method of fundamental solutions to elastic torsion of prismatic rods
  publication-title: Eng Anal Bound Elem
– volume: 2
  start-page: 1625
  year: 1966
  end-page: 1629
  article-title: On the question of a practical application of a new approximation method
  publication-title: Differencial'nye Uravnenija
– volume: 4
  start-page: 82
  year: 1964
  end-page: 126
  article-title: The method of functional equations for the approximate solution of certain boundary value problems
  publication-title: Comput Math Math Phys
– volume: 69
  start-page: 434
  year: 1987
  end-page: 459
  article-title: The method of fundamental solutions for the numerical solution of the biharmonic equation
  publication-title: J Comput Phys
– year: 1980
– year: 1965
– volume: 197
  start-page: 3122
  year: 2008
  end-page: 3137
  article-title: Steady‐state nonlinear heat conduction in composite materials using the method of fundamental solutions
  publication-title: Comput Methods Appl Mech Eng
– volume: 18
  start-page: 13
  year: 2006
  end-page: 38
  article-title: Nonlinear integral equations for solving inverse boundary value problems for inclusions and cracks
  publication-title: J Integral Equations Appl
– volume: 35
  start-page: 342
  year: 2011
  end-page: 354
  article-title: The MFS for numerical boundary identification in two‐dimensional harmonic problems
  publication-title: Eng Anal Bound Elem
– volume: 176
  start-page: 356
  year: 2001
  end-page: 386
  article-title: Optimal stability for the inverse problem of multiple cavities
  publication-title: J Diff Equations
– volume: 32
  start-page: 517
  year: 2008
  end-page: 524
  article-title: An iterative MFS approach for the detection of immersed obstacles
  publication-title: Eng Anal Bound Elem
– volume: 21
  start-page: 935
  year: 2005
  end-page: 953
  article-title: Conformal mappings and inverse boundary value problems
  publication-title: Inverse Problems
– volume: 14
  start-page: 638
  year: 1977
  end-page: 650
  article-title: The approximate solution of elliptic boundary–value problems by fundamental solutions
  publication-title: SIAM J Numer Anal
– volume: 8
  start-page: 265
  year: 1984
  end-page: 270
  article-title: The method of fundamental solutions for problems in potential flow
  publication-title: Appl Math Model
– year: 1999
– ident: e_1_2_8_10_2
  doi: 10.1016/0307-904X(84)90161-6
– ident: e_1_2_8_11_2
  doi: 10.1016/0021-9991(87)90176-8
– ident: e_1_2_8_24_2
  doi: 10.1007/BF01582221
– ident: e_1_2_8_26_2
  doi: 10.1216/jiea/1181075363
– ident: e_1_2_8_28_2
  doi: 10.1137/0914086
– ident: e_1_2_8_21_2
  doi: 10.1080/17415970802580263
– ident: e_1_2_8_5_2
  doi: 10.1016/0041-5553(64)90006-0
– ident: e_1_2_8_25_2
  doi: 10.1137/0806023
– ident: e_1_2_8_29_2
  doi: 10.1137/1.9780898718836
– volume-title: Potential methods in the theory of elasticity
  year: 1965
  ident: e_1_2_8_4_2
– ident: e_1_2_8_8_2
– ident: e_1_2_8_9_2
  doi: 10.1002/nme.1620141202
– volume-title: Minpack project
  year: 1980
  ident: e_1_2_8_32_2
– ident: e_1_2_8_31_2
  doi: 10.1002/nme.1763
– ident: e_1_2_8_18_2
  doi: 10.1088/0266-5611/21/3/009
– ident: e_1_2_8_20_2
  doi: 10.1088/0266-5611/15/5/306
– ident: e_1_2_8_22_2
  doi: 10.1016/j.enganabound.2007.05.004
– volume: 4
  start-page: 911
  year: 2008
  ident: e_1_2_8_14_2
  article-title: The method of fundamental solutions for steady‐state heat conduction in nonlinear materials
  publication-title: Commun Comput Phys
– ident: e_1_2_8_23_2
– ident: e_1_2_8_3_2
  doi: 10.1016/0041-5553(64)90092-8
– ident: e_1_2_8_19_2
  doi: 10.1006/jdeq.2000.3987
– ident: e_1_2_8_12_2
  doi: 10.1093/imanum/9.2.231
– ident: e_1_2_8_13_2
  doi: 10.1002/(SICI)1097-0207(19990420)44:11<1653::AID-NME558>3.0.CO;2-1
– ident: e_1_2_8_6_2
  doi: 10.1137/0714043
– start-page: 349
  volume-title: Treatment of integral equations by numerical methods
  year: 1982
  ident: e_1_2_8_7_2
– volume: 2
  start-page: 1625
  year: 1966
  ident: e_1_2_8_2_2
  article-title: On the question of a practical application of a new approximation method
  publication-title: Differencial'nye Uravnenija
– ident: e_1_2_8_17_2
  doi: 10.1080/17415977.2011.551830
– ident: e_1_2_8_30_2
  doi: 10.1016/j.enganabound.2010.09.014
– ident: e_1_2_8_27_2
  doi: 10.1016/j.enganabound.2007.10.011
– ident: e_1_2_8_16_2
  doi: 10.1002/num.10500
– ident: e_1_2_8_15_2
  doi: 10.1016/j.cma.2008.02.011
SSID ssj0011519
Score 2.1125412
Snippet We propose a new moving pseudo‐boundary method of fundamental solutions (MFS) for the determination of the boundary of a void. This problem can be modeled as...
We propose a new moving pseudo-boundary method of fundamental solutions (MFS) for the determination of the boundary of a void. This problem can be modeled as...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 935
SubjectTerms Algorithms
Imaging
inverse problem
Inverse problems
Mathematical models
method of fundamental solutions
Nonlinearity
Numerical analysis
Parametrization
void detection
Voids
Title A moving pseudo-boundary method of fundamental solutions for void detection
URI https://api.istex.fr/ark:/67375/WNG-X7RWWK3H-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnum.21739
https://www.proquest.com/docview/1318948304
https://www.proquest.com/docview/1541443308
Volume 29
WOSCitedRecordID wos000316694100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-2426
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011519
  issn: 0749-159X
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB3SbA_NoUm_6CZpUEspvbhRLO_KQ06h7TbQ7FJCt7s3YckShDZ2WO-G5pafkN-YX5KR7DUJNFDIxRhrDELSaN7o4z2A9zpBClqYR6h7lhIUISLtMI4yCk3cWpmLINP560iORul0ij9WYH95F6bmh2gX3LxnhPnaO3imq91bpKGL00-EpwU-go6_VEWZV-fL8WB81G4iUDDDmoUTI4ra0yWxEI9325_vhKOOb9m_d7DmbcQaQs5g_UGV3YCnDdJkB_XQeAYrtngOa8OWprV6AcMDdhpWFNhZZRd5eX15pYPM0uyC1dLSrHTM-S-1BgBrRyojsMvOy5Oc5XYejnMVL2E8-Prz82HU6CtERvRTjFxshTbCUk5hjL_AapEbjQRZsp7m6ITrZZk0_cQSTHA237PYl1qmqJ3mjjvxClaLsrCvgSEmuaHcjh5pQklRKmUqhMg5ZUui73gXPi6bWZmGfNxrYPxRNW1y7AVQVGihLrxrTc9qxo1_GX0IfdVaZLPf_oia7KnJ6JuayuPJ5Ls4VMMubC87UzXeWak9msgwSQVPuvC2LSa_8pslWWHLBdl4ffRECJ5S3UPX3l8bNRoPw8vm_5tuwZM4KGv4s5PbsDqfLewbeGzO5yfVbKcZyjdv2ve-
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD6sM4L64F12dNUoIr50N9t0mgR8WdRxZKdFlh1n3kKTJrC42y5zWfTNn-Bv9Jd4knbKLigIvpTSnEJIcnK-k8v3AbzSicSgJctI6qHFBIWxSDsZRwWGJmotL1mQ6fwy4Xku5nP5eQvebu7CNPwQ3YKb94wwX3sH9wvSe5dYQ9dnuwiombwG_SRlXPSg__5oNJ10uwgYzWRDwykjDNvzDbMQjfe6n6_Eo75v2m9XwOZlyBpizujO_9X2LtxusSY5aAbHPdiy1X24lXVErcsHkB2Qs7CmQM6Xdl3Wv3781EFoafGdNOLSpHbE-S-NCgDpxipBuEsu6pOSlHYVDnRVD2E6-nD8bhy1CguRYamQkYst04ZZzCqM8VdYraRGSwQtxVBT6ZgbFgU3aWIRKDhb7luZcs2F1E5TRx17BL2qruw2ECmT0mB2hw-RYFokOBeMsZJivsRSRwfwZtPOyrT0414F41Q1xMmxl0BRoYUG8LIzPW84N_5k9Dp0VmdRLL76Q2p8qGb5RzXnR7PZIRurbAA7m95UrX8u1T5OZTIRjCYDeNEVo2f57ZKisvUabbxCesIYFVj30Ld_r43Kp1l4efzvps_hxvg4m6jJp_zwCdyMg86GP0m5A73VYm2fwnVzsTpZLp614_o3QL_7rg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD60u1L0wVsVV6tGEfFlbDrJbOaAL8W6Vro7lOK6-xYmkwRK25llL0Xf_An-Rn-JSWZ2aEFB6MswTM5ASHJyvpPL9wG8URxd0EIdoUqMS1AYi5TFOMpdaKLGCM2CTOe3ociydDrF4w34sL4LU_NDtAtu3jPCfO0d3My03b3CGrq6eO8ANcNN6PIEE96B7sHJYDxsdxFcNMOahhMjF7ana2YhGu-2P1-LR13ftN-vgc2rkDXEnMG9m9X2PtxtsCbZrwfHA9gw5UO4M2qJWhfbMNonF2FNgcwWZqWr3z9_qSC0NP9BanFpUlli_ZdaBYC0Y5U4uEsuq1NNtFmGA13lIxgPPn39eBg1CgtRwfopRjY2TBXMuKyiKPwVVoO0UOhAS54oipbZJM9F0efGAQVr9J7BvlAiRWUVtdSyx9Apq9I8AYLIdeGyO_dIuUuLUiFSxpimLl9ifUt78G7dzrJo6Me9Csa5rImTYy-BIkML9eB1azqrOTf-ZvQ2dFZrkc_P_CE1kchJ9llOxclkcsQO5agHO-velI1_LuSem8qQp4zyHrxqi51n-e2SvDTVytl4hXTOGE1d3UPf_rs2MhuPwsvT_zd9CVvHBwM5_JIdPYPbcZDZ8Acpd6CznK_Mc7hVXC5PF_MXzbD-A9LT-yk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+moving+pseudo%E2%80%90boundary+method+of+fundamental+solutions+for+void+detection&rft.jtitle=Numerical+methods+for+partial+differential+equations&rft.au=Karageorghis%2C+Andreas&rft.au=Lesnic%2C+Daniel&rft.au=Marin%2C+Liviu&rft.date=2013-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0749-159X&rft.eissn=1098-2426&rft.volume=29&rft.issue=3&rft.spage=935&rft.epage=960&rft_id=info:doi/10.1002%2Fnum.21739&rft.externalDBID=10.1002%252Fnum.21739&rft.externalDocID=NUM21739
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-159X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-159X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-159X&client=summon