EDF-LPR: a new encoder–decoder framework for license plate recognition
Although automatic license plate recognition (ALPR) has been studied for decades, the final recognition result can be accurate only if the license plate is detected and the standard format is unambiguous. However, since an image may contain license plates with different formats and scales, license p...
Gespeichert in:
| Veröffentlicht in: | IET intelligent transport systems Jg. 14; H. 8; S. 959 - 969 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
The Institution of Engineering and Technology
01.08.2020
|
| Schlagworte: | |
| ISSN: | 1751-956X, 1751-9578 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Although automatic license plate recognition (ALPR) has been studied for decades, the final recognition result can be accurate only if the license plate is detected and the standard format is unambiguous. However, since an image may contain license plates with different formats and scales, license plate detection and standard format classification may fail. In this study, a new ALPR codec framework named EDF-LPR is presented. As for the encoder, at the first stage, candidate license plate characters are detected and recognised directly without considering the format of license plate, and candidate regions of characters are extracted by density-based spatial clustering of applications with noise-like algorithm; at the second stage, poor regions are processed by tilt correction and scale normalisation to obtain more accurate candidate characters. As for the decoder, a sequence learning model is trained to convert each unordered coded sequence into a sequence composed of marks that indicate a way to construct the final result string. Experiments are designed to evaluate the performance of EDF-LPR on both detection rate and recognition rate. The experimental results on public datasets show that the detection rate and recognition rate are 99.51 and 95.3%, respectively, at about 40 fps. |
|---|---|
| AbstractList | Although automatic license plate recognition (ALPR) has been studied for decades, the final recognition result can be accurate only if the license plate is detected and the standard format is unambiguous. However, since an image may contain license plates with different formats and scales, license plate detection and standard format classification may fail. In this study, a new ALPR codec framework named EDF-LPR is presented. As for the encoder, at the first stage, candidate license plate characters are detected and recognised directly without considering the format of license plate, and candidate regions of characters are extracted by density-based spatial clustering of applications with noise-like algorithm; at the second stage, poor regions are processed by tilt correction and scale normalisation to obtain more accurate candidate characters. As for the decoder, a sequence learning model is trained to convert each unordered coded sequence into a sequence composed of marks that indicate a way to construct the final result string. Experiments are designed to evaluate the performance of EDF-LPR on both detection rate and recognition rate. The experimental results on public datasets show that the detection rate and recognition rate are 99.51 and 95.3%, respectively, at about 40 fps. |
| Author | Cai, Yichao Lu, Shufang Gao, Fei Ge, Yisu |
| Author_xml | – sequence: 1 givenname: Fei surname: Gao fullname: Gao, Fei email: feig@zjut.edu.cn organization: Department of Computer Science, Zhejiang University of Technology, Hangzhou, People's Republic of China – sequence: 2 givenname: Yichao orcidid: 0000-0002-5134-9320 surname: Cai fullname: Cai, Yichao organization: Department of Computer Science, Zhejiang University of Technology, Hangzhou, People's Republic of China – sequence: 3 givenname: Yisu surname: Ge fullname: Ge, Yisu organization: Department of Computer Science, Zhejiang University of Technology, Hangzhou, People's Republic of China – sequence: 4 givenname: Shufang surname: Lu fullname: Lu, Shufang organization: Department of Computer Science, Zhejiang University of Technology, Hangzhou, People's Republic of China |
| BookMark | eNqFkMFOAjEURRuDiYB-gLtuXQy2HTpt2SmCkJBoEBN3TWfamuLQIZ0hhJ3_4B_6Jc6IMcYYXL23uOe-l9MBLV94A8A5Rj2M-uLSmSpyVdkjCIseIjQ-Am3MKI4EZbz1vSdPJ6BTlkuEaEIIboPJ6GYcze7nA6igN1tofFZoE95f37T53KANamW2RXiBtggwd5nxpYHrXFUGhjrz7F3lCn8Kjq3KS3P2NbvgcTxaDCfR7O52OryaRVmccBFRlqlYaIYNN9wKS_s6IYzRhKeJSoUlKlUJU4pzJDDnaV8wlnJNucCxJprEXcD2vVkoyjIYKzNXqeaDKiiXS4xkI0TWQmQtRDZCZCOkJvEvch3cSoXdQWawZ7YuN7v_ATldzMn1GCEuRA1He7iJLYtN8LWYg8cu_shPR4u69eHHjbW28Qcss5cq |
| CitedBy_id | crossref_primary_10_3390_s24092791 crossref_primary_10_1049_iet_ipr_2020_1130 crossref_primary_10_1109_TITS_2023_3237581 crossref_primary_10_1155_2022_3364921 crossref_primary_10_1007_s11554_021_01118_7 |
| Cites_doi | 10.1109/CISP.2015.7408016 10.7148/2017-0285 10.1016/j.compeleceng.2015.02.014 10.1016/j.compeleceng.2016.09.010 10.1109/TIP.2012.2199506 10.1109/ATC.2014.7043406 10.1109/TITS.2017.2784093 10.1109/ICAMechS.2019.8861691 10.1016/j.imavis.2004.02.006 10.1007/978-3-319-46448-0_2 10.1049/iet-ipr.2017.0368 10.1145/3373647 10.1109/CVPR.2017.690 10.1109/TITS.2016.2552778 10.1016/j.neucom.2018.08.023 10.1109/TITS.2016.2595526 10.1109/AVSS.2017.8078501 10.1016/j.eswa.2017.09.036 10.1109/TCSVT.2012.2203741 10.1109/AVSS.2017.8078493 10.1109/TPAMI.2016.2577031 10.1016/j.jvcir.2017.03.020 10.1109/IJCNN.2018.8489629 10.1049/iet-its.2017.0224 10.1016/j.jvcir.2017.01.003 10.1007/s12555-016-0332-z 10.1109/TVT.2012.2226218 10.1007/s00500-017-2696-2 10.1049/iet-cds.2012.0064 10.1109/ICCE.2016.7430718 10.1016/j.tics.2007.05.005 10.1049/iet-its.2017.0138 10.1109/STUDENT.2010.5686998 10.1109/TITS.2014.2304515 10.1109/ICASI.2018.8394573 10.1126/science.1127647 10.1109/TITS.2016.2639020 10.1049/iet-its.2017.0136 10.1109/TITS.2011.2119372 10.1109/TITS.2008.922938 10.1109/TIP.2016.2631901 10.1016/j.neucom.2015.07.135 10.1016/j.procs.2016.09.447 10.1109/TITS.2015.2496545 10.1109/TITS.2018.2859035 10.1109/TITS.2018.2847291 10.1016/j.imavis.2018.02.002 10.1049/iet-its.2019.0481 10.1109/ICCIT48885.2019.9038583 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/iet-its.2019.0253 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-9578 |
| EndPage | 969 |
| ExternalDocumentID | 10_1049_iet_its_2019_0253 ITR2BF00899 |
| Genre | article |
| GrantInformation_xml | – fundername: Natural Science Foundation of Zhejiang Province grantid: No. LY19F020027 – fundername: National Natural Science Foundation of China grantid: No. 61402410 – fundername: Zhejiang Provincial Science and Technology Key Research Planning Project of China grantid: No. 2018C01064 – fundername: Zhejiang Provincial Science and Technology Planning Key Project of China funderid: 2018C01064 – fundername: National Natural Science Foundation of China funderid: 61976193 – fundername: Zhejiang Provincial Natural Science Foundation of China funderid: LY19F020027 |
| GroupedDBID | 0R 24P 29I 29J 4.4 5GY 6IK 8FE 8FG AAJGR ABJCF ACGFS ACIWK AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BFFAM BGLVJ CS3 EBS EJD HCIFZ HZ IFIPE IPLJI JAVBF L6V LAI M43 M7S O9- OCL P2P P62 PTHSS RIE RIG RNS RUI UNR .DC 0R~ 1OC AAHHS AAHJG ABMDY ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADZOD AEEZP AEQDE AIAGR AIWBW AJBDE ALUQN AVUZU CCPQU GROUPED_DOAJ HZ~ IAO ITC MCNEO OK1 ROL AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c3689-57ca39d71e8e8f9f54d6277568b6ab9f2aba67aa8809188b4977b8d58913d2d23 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000559792600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-956X |
| IngestDate | Tue Nov 18 22:27:20 EST 2025 Wed Oct 29 21:27:50 EDT 2025 Wed Jan 22 16:32:16 EST 2025 Tue Jan 05 21:44:04 EST 2021 Tue Aug 04 07:59:36 EDT 2020 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | object recognition standard format classification detection rate object detection character recognition traffic engineering computing decoding EDF-LPR automatic license plate recognition encoder–decoder framework pattern clustering final recognition result image segmentation feature extraction accurate candidate characters license plate detection edge detection learning (artificial intelligence) image recognition ALPR codec framework candidate license plate characters recognition rate |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3689-57ca39d71e8e8f9f54d6277568b6ab9f2aba67aa8809188b4977b8d58913d2d23 |
| ORCID | 0000-0002-5134-9320 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1049_iet_its_2019_0253 crossref_primary_10_1049_iet_its_2019_0253 iet_journals_10_1049_iet_its_2019_0253 wiley_primary_10_1049_iet_its_2019_0253_ITR2BF00899 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 20200800 August 2020 2020-08-00 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 8 year: 2020 text: 20200800 |
| PublicationDecade | 2020 |
| PublicationTitle | IET intelligent transport systems |
| PublicationYear | 2020 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Bulan, O.; Kozitsky, V.; Ramesh, P. (C45) 2017; 18 Huang, X.; He, P.; Rangarajan, A. (C13) 2020; 6 Yepez, J.; Ko, S. (C23) 2018; 12 Dun, J.; Zhang, S.; Ye, X. (C24) 2015; 7 Buch, N.; Velastin, S.A.; Orwell, J. (C3) 2011; 12 Matas, J.; Chum, O.; Urban, M. (C27) 2004; 22 Saini, M.K.; Saini, S. (C21) 2017; 44 Zhou, W.; Li, H.; Lu, Y. (C28) 2012; 21 Al-shemarry, M.S.; Li, Y.; Abdulla, S. (C29) 2018; 92 Hinton, G.E.; Salakhutdinov, R.R. (C1) 2006; 313 Yuan, Y.; Zou, W.; Zhao, Y. (C17) 2017; 26 Xie, L.; Ahmad, T.; Jin, L. (C49) 2018; 19 Asif, M.R.; Chun, Q.; Hussain, S. (C22) 2017; 46 Tian, J.; Wang, R.; Wang, G. (C39) 2015; 46 Wang, J.; Huang, H.; Qian, X. (C9) 2018; 317 Bar, M. (C12) 2007; 11 Guo, Q.; Wang, F.; Lei, J. (C44) 2016; 184 Li, H.; Wang, P.; You, M. (C11) 2018; 72 Hsu, G.; Chen, J.; Chung, Y. (C16) 2013; 62 Kim, H.H.; Park, J.K.; Oh, J.H. (C42) 2017; 15 Anagnostopoulos, C.E.; Anagnostopoulos, I.E.; Psoroulas, I.D. (C2) 2008; 9 Castro-Zunti, R.D.; Yépez, J.; Ko, S. (C54) 2020; 14 Khan, M.A.; Sharif, M.; Javed, M.Y. (C35) 2018; 12 Ren, S.; He, K.; Girshick, R. (C19) 2017; 39 Yang, Y.; Li, D.; Duan, Z. (C41) 2018; 12 Zhao, Y.; Yu, Z.; Li, X. (C6) 2018; 12 Rafique, M.A.; Pedrycz, W.; Jeon, M. (C30) 2018; 22 Li, H.; Wang, P.; Shen, C. (C10) 2019; 20 Zhai, X.; Bensaali, F.; Ramalingam, S. (C55) 2011; 7 Du, S.; Ibrahim, M.; Shehata, M. (C4) 2013; 23 Molina-Moreno, M.; González-Díaz, I.; Díaz-de-María, F. (C31) 2019; 20 Gou, C.; Wang, K.; Yao, Y. (C38) 2016; 17 Tian, B.; Morris, B.T.; Tang, M. (C5) 2017; 18 Ashtari, A.H.; Nordin, M.J.; Fathy, M. (C25) 2014; 15 Safaei, A.; Tang, H.L.; Sanei, S. (C32) 2016; 56 Ke, R.; Li, Z.; Kim, S. (C14) 2016; 18 2004; 22 29 August–1 September 2017 2017; 26 2010 2013; 23 2013; 62 2017; 44 2017; 46 2008; 9 2020; 14 2011; 12 2016; 18 2006; 313 2018; 22 2016; 17 2007; 11 2015; 7 2011; 7 2016; 56 2016; 184 2015; 46 8–16 October 2016 2018; 19 2020; 6 2019; 20 2017; 15 2018; 317 2017; 39 2018; 92 2019 2014; 15 2018 2017 2016 2017; 18 2015 2018; 72 2014 2018; 12 2012; 21 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_28_1 Vinyals O. (e_1_2_7_53_1) 2015 Dun J. (e_1_2_7_25_1) 2015; 7 e_1_2_7_50_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 Sutskever I. (e_1_2_7_16_1) 2014 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Silva S.M. (e_1_2_7_49_1) 2017 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_57_1 e_1_2_7_20_1 Menotti D. (e_1_2_7_34_1) 2016 e_1_2_7_36_1 e_1_2_7_38_1 |
| References_xml | – volume: 62 start-page: 552 issue: 2 year: 2013 end-page: 561 ident: C16 article-title: Application-oriented license plate recognition publication-title: IEEE Trans. Veh. Technol. – volume: 17 start-page: 1096 issue: 4 year: 2016 end-page: 1107 ident: C38 article-title: Vehicle license plate recognition based on extremal regions and restricted Boltzmann machines publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 14 start-page: 119 issue: 2 year: 2020 end-page: 126 ident: C54 article-title: License plate segmentation and recognition system using deep learning and OpenVINO publication-title: IET Intell. Transp. Syst. – volume: 18 start-page: 25 issue: 1 year: 2017 end-page: 48 ident: C5 article-title: Hierarchical and networked vehicle surveillance in ITS: a survey publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 12 start-page: 375 issue: 5 year: 2018 end-page: 385 ident: C6 article-title: Evaluation methodology for license plate recognition systems and experimental results publication-title: IET Intell. Transp. Syst. – volume: 21 start-page: 4269 issue: 9 year: 2012 end-page: 4279 ident: C28 article-title: Principal visual word discovery for automatic license plate detection publication-title: IEEE Trans. Image Process. – volume: 184 start-page: 78 year: 2016 end-page: 90 ident: C44 article-title: Convolutional feature learning and hybrid CNN-HMM for scene number recognition publication-title: Neurocomputing – volume: 12 start-page: 200 issue: 2 year: 2018 end-page: 209 ident: C35 article-title: License number plate recognition system using entropy-based features selection approach with SVM publication-title: IET Image Process. – volume: 7 start-page: 51 issue: 3 year: 2015 end-page: 61 ident: C24 article-title: Chinese license plate localization in multi-lane with complex background based on concomitant colors publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 18 start-page: 2351 issue: 9 year: 2017 end-page: 2363 ident: C45 article-title: Segmentation- and annotation-free license plate recognition with deep localization and failure identification publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 44 start-page: 128 issue: 4 year: 2017 end-page: 138 ident: C21 article-title: Multiwavelet transform based license plate detection publication-title: J. Vis. Commun. Image Represent. – volume: 46 start-page: 539 issue: 8 year: 2015 end-page: 553 ident: C39 article-title: A two-stage character segmentation method for Chinese license publication-title: Comput. Electr. Eng. – volume: 18 start-page: 890 issue: 4 year: 2016 end-page: 901 ident: C14 article-title: Real-time bidirectional traffic flow parameter estimation from aerial videos publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 92 start-page: 216 issue: 2 year: 2018 end-page: 235 ident: C29 article-title: Ensemble of adaboost cascades of 3L-LBPs classifiers for license plates detection with low quality images publication-title: Expert Syst. Appl. – volume: 39 start-page: 1137 issue: 6 year: 2017 end-page: 1149 ident: C19 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 317 start-page: 149 year: 2018 end-page: 158 ident: C9 article-title: Sequence recognition of Chinese license plates publication-title: Neurocomputing – volume: 313 start-page: 504 issue: 5786 year: 2006 end-page: 507 ident: C1 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 56 start-page: 15 issue: 11 year: 2016 end-page: 29 ident: C32 article-title: Real-time search-free multiple license plate recognition via likelihood estimation of saliency publication-title: Comput. Electr. Eng. – volume: 15 start-page: 2942 issue: 6 year: 2017 end-page: 2949 ident: C42 article-title: Multi-task convolutional neural network system for license plate recognition publication-title: Int. J. Control Autom. Syst. – volume: 9 start-page: 377 issue: 3 year: 2008 end-page: 391 ident: C2 article-title: License plate recognition from still images and video sequences: a survey publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 23 start-page: 311 issue: 2 year: 2013 end-page: 325 ident: C4 article-title: Automatic license plate recognition (ALPR): a state-of-the-art review publication-title: IEEE Circuits Syst. Video Technol. – volume: 19 start-page: 507 issue: 2 year: 2018 end-page: 517 ident: C49 article-title: A new CNN-based method for multi-directional car license plate detection publication-title: IEEE Trans. Intell. Transp. – volume: 12 start-page: 542 issue: 6 year: 2018 end-page: 549 ident: C23 article-title: Improved license plate localisation algorithm based on morphological operations publication-title: IET Intell. Transp. Syst. – volume: 20 start-page: 1126 issue: 3 year: 2019 end-page: 1136 ident: C10 article-title: Towards end-to-end car license plates detection and recognition with deep neural networks publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 15 start-page: 1690 issue: 4 year: 2014 end-page: 1705 ident: C25 article-title: An Iranian license plate recognition system based on color features publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 72 start-page: 14 year: 2018 end-page: 23 ident: C11 article-title: Reading car license plates using deep neural networks publication-title: Image Vis. Comput. – volume: 20 start-page: 2109 issue: 6 year: 2019 end-page: 2121 ident: C31 article-title: Efficient scale-adaptive license plate detection system publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 6 start-page: 1 issue: 2 year: 2020 end-page: 28 ident: C13 article-title: Intelligent intersection: two-stream convolutional networks for real-time near-accident detection in traffic video publication-title: ACM Trans. Spatial Algorithms Syst. – volume: 12 start-page: 920 issue: 3 year: 2011 end-page: 939 ident: C3 article-title: A review of computer vision techniques for the analysis of urban traffic publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 46 start-page: 176 issue: 7 year: 2017 end-page: 186 ident: C22 article-title: Multinational vehicle license plate detection in complex backgrounds publication-title: J. Vis. Commun. Image Represent. – volume: 12 start-page: 213 issue: 3 year: 2018 end-page: 219 ident: C41 article-title: Chinese vehicle license plate recognition using kernel-based extreme learning machine with deep convolutional features publication-title: IET Intell. Transp. Syst. – volume: 22 start-page: 761 issue: 10 year: 2004 end-page: 767 ident: C27 article-title: Robust wide baseline stereo from maximally stable extremal regions publication-title: Image Vis. Comput. – volume: 22 start-page: 6429 issue: 19 year: 2018 end-page: 6440 ident: C30 article-title: Vehicle license plate detection using region-based convolutional neural networks publication-title: Soft Comput. – volume: 11 start-page: 280 issue: 7 year: 2007 end-page: 289 ident: C12 article-title: The proactive brain: using analogies and associations to generate predictions publication-title: Trends Cogn. Sci. – volume: 26 start-page: 1102 issue: 3 year: 2017 end-page: 1114 ident: C17 article-title: A robust and efficient approach to license plate detection publication-title: IEEE Trans. Image Process. – volume: 7 start-page: 93 issue: 2 year: 2011 end-page: 103 ident: C55 article-title: Improved number plate localisation algorithm and its efficient field programmable gate arrays implementation publication-title: IET Circuits Devices Syst. – volume: 46 start-page: 176 issue: 7 year: 2017 end-page: 186 article-title: Multinational vehicle license plate detection in complex backgrounds publication-title: J. Vis. Commun. Image Represent. – volume: 12 start-page: 200 issue: 2 year: 2018 end-page: 209 article-title: License number plate recognition system using entropy‐based features selection approach with SVM publication-title: IET Image Process. – volume: 6 start-page: 1 issue: 2 year: 2020 end-page: 28 article-title: Intelligent intersection: two‐stream convolutional networks for real‐time near‐accident detection in traffic video publication-title: ACM Trans. Spatial Algorithms Syst. – start-page: 954 year: 2015 end-page: 958 – start-page: 55 year: 2017 end-page: 62 – volume: 92 start-page: 216 issue: 2 year: 2018 end-page: 235 article-title: Ensemble of adaboost cascades of 3L‐LBPs classifiers for license plates detection with low quality images publication-title: Expert Syst. Appl. – volume: 317 start-page: 149 year: 2018 end-page: 158 article-title: Sequence recognition of Chinese license plates publication-title: Neurocomputing – volume: 23 start-page: 311 issue: 2 year: 2013 end-page: 325 article-title: Automatic license plate recognition (ALPR): a state‐of‐the‐art review publication-title: IEEE Circuits Syst. Video Technol. – volume: 21 start-page: 4269 issue: 9 year: 2012 end-page: 4279 article-title: Principal visual word discovery for automatic license plate detection publication-title: IEEE Trans. Image Process. – volume: 15 start-page: 2942 issue: 6 year: 2017 end-page: 2949 article-title: Multi‐task convolutional neural network system for license plate recognition publication-title: Int. J. Control Autom. Syst. – volume: 20 start-page: 2109 issue: 6 year: 2019 end-page: 2121 article-title: Efficient scale‐adaptive license plate detection system publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 532 year: 2016 end-page: 533 – start-page: 1 year: 2019 end-page: 6 – volume: 9 start-page: 377 issue: 3 year: 2008 end-page: 391 article-title: License plate recognition from still images and video sequences: a survey publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 3156 year: 2015 end-page: 3164 – start-page: 326 year: 2014 end-page: 331 – volume: 12 start-page: 542 issue: 6 year: 2018 end-page: 549 article-title: Improved license plate localisation algorithm based on morphological operations publication-title: IET Intell. Transp. Syst. – start-page: 95 year: 2010 end-page: 98 – volume: 12 start-page: 213 issue: 3 year: 2018 end-page: 219 article-title: Chinese vehicle license plate recognition using kernel‐based extreme learning machine with deep convolutional features publication-title: IET Intell. Transp. Syst. – volume: 26 start-page: 1102 issue: 3 year: 2017 end-page: 1114 article-title: A robust and efficient approach to license plate detection publication-title: IEEE Trans. Image Process. – volume: 184 start-page: 78 year: 2016 end-page: 90 article-title: Convolutional feature learning and hybrid CNN‐HMM for scene number recognition publication-title: Neurocomputing – start-page: 6517 year: 2017 end-page: 6525 – volume: 72 start-page: 14 year: 2018 end-page: 23 article-title: Reading car license plates using deep neural networks publication-title: Image Vis. Comput. – volume: 17 start-page: 1096 issue: 4 year: 2016 end-page: 1107 article-title: Vehicle license plate recognition based on extremal regions and restricted Boltzmann machines publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 2577 year: 2016 end-page: 2582 – volume: 12 start-page: 375 issue: 5 year: 2018 end-page: 385 article-title: Evaluation methodology for license plate recognition systems and experimental results publication-title: IET Intell. Transp. Syst. – volume: 44 start-page: 128 issue: 4 year: 2017 end-page: 138 article-title: Multiwavelet transform based license plate detection publication-title: J. Vis. Commun. Image Represent. – start-page: 3104 year: 2014 end-page: 3112 – start-page: 229 year: 2019 end-page: 234 – volume: 11 start-page: 280 issue: 7 year: 2007 end-page: 289 article-title: The proactive brain: using analogies and associations to generate predictions publication-title: Trends Cogn. Sci. – volume: 18 start-page: 2351 issue: 9 year: 2017 end-page: 2363 article-title: Segmentation‐ and annotation‐free license plate recognition with deep localization and failure identification publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 18 start-page: 25 issue: 1 year: 2017 end-page: 48 article-title: Hierarchical and networked vehicle surveillance in ITS: a survey publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 1 year: 2018 end-page: 10 – volume: 39 start-page: 1137 issue: 6 year: 2017 end-page: 1149 article-title: Faster R‐CNN: towards real‐time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 313 start-page: 504 issue: 5786 year: 2006 end-page: 507 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – start-page: 588 year: 2016 end-page: 594 – volume: 18 start-page: 890 issue: 4 year: 2016 end-page: 901 article-title: Real‐time bidirectional traffic flow parameter estimation from aerial videos publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 22 start-page: 6429 issue: 19 year: 2018 end-page: 6440 article-title: Vehicle license plate detection using region‐based convolutional neural networks publication-title: Soft Comput. – start-page: 21 year: 8–16 October 2016 end-page: 37 – volume: 7 start-page: 93 issue: 2 year: 2011 end-page: 103 article-title: Improved number plate localisation algorithm and its efficient field programmable gate arrays implementation publication-title: IET Circuits Devices Syst. – volume: 7 start-page: 51 issue: 3 year: 2015 end-page: 61 article-title: Chinese license plate localization in multi‐lane with complex background based on concomitant colors publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 12 start-page: 920 issue: 3 year: 2011 end-page: 939 article-title: A review of computer vision techniques for the analysis of urban traffic publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 1 year: 29 August–1 September 2017 end-page: 6 – volume: 62 start-page: 552 issue: 2 year: 2013 end-page: 561 article-title: Application‐oriented license plate recognition publication-title: IEEE Trans. Veh. Technol. – volume: 20 start-page: 1126 issue: 3 year: 2019 end-page: 1136 article-title: Towards end‐to‐end car license plates detection and recognition with deep neural networks publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 46 start-page: 539 issue: 8 year: 2015 end-page: 553 article-title: A two‐stage character segmentation method for Chinese license publication-title: Comput. Electr. Eng. – start-page: 1 year: 2017 end-page: 6 – volume: 56 start-page: 15 issue: 11 year: 2016 end-page: 29 article-title: Real‐time search‐free multiple license plate recognition via likelihood estimation of saliency publication-title: Comput. Electr. Eng. – volume: 22 start-page: 761 issue: 10 year: 2004 end-page: 767 article-title: Robust wide baseline stereo from maximally stable extremal regions publication-title: Image Vis. Comput. – start-page: 224 year: 2018 end-page: 227 – volume: 15 start-page: 1690 issue: 4 year: 2014 end-page: 1705 article-title: An Iranian license plate recognition system based on color features publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 285 year: 2017 end-page: 291 – volume: 14 start-page: 119 issue: 2 year: 2020 end-page: 126 article-title: License plate segmentation and recognition system using deep learning and OpenVINO publication-title: IET Intell. Transp. Syst. – volume: 19 start-page: 507 issue: 2 year: 2018 end-page: 517 article-title: A new CNN‐based method for multi‐directional car license plate detection publication-title: IEEE Trans. Intell. Transp. – ident: e_1_2_7_37_1 doi: 10.1109/CISP.2015.7408016 – ident: e_1_2_7_38_1 doi: 10.7148/2017-0285 – ident: e_1_2_7_40_1 doi: 10.1016/j.compeleceng.2015.02.014 – ident: e_1_2_7_33_1 doi: 10.1016/j.compeleceng.2016.09.010 – ident: e_1_2_7_29_1 doi: 10.1109/TIP.2012.2199506 – start-page: 3104 volume-title: Conf. on Neural Information Processing Systems year: 2014 ident: e_1_2_7_16_1 – ident: e_1_2_7_57_1 doi: 10.1109/ATC.2014.7043406 – ident: e_1_2_7_50_1 doi: 10.1109/TITS.2017.2784093 – ident: e_1_2_7_54_1 doi: 10.1109/ICAMechS.2019.8861691 – ident: e_1_2_7_28_1 doi: 10.1016/j.imavis.2004.02.006 – ident: e_1_2_7_21_1 doi: 10.1007/978-3-319-46448-0_2 – ident: e_1_2_7_36_1 doi: 10.1049/iet-ipr.2017.0368 – ident: e_1_2_7_14_1 doi: 10.1145/3373647 – start-page: 3156 volume-title: Proc. IEEE Conf. Computer Vision Pattern Recognition year: 2015 ident: e_1_2_7_53_1 – ident: e_1_2_7_47_1 doi: 10.1109/CVPR.2017.690 – start-page: 55 volume-title: Proc. 30th Conf. on Graphics Patterns Images year: 2017 ident: e_1_2_7_49_1 – ident: e_1_2_7_6_1 doi: 10.1109/TITS.2016.2552778 – ident: e_1_2_7_10_1 doi: 10.1016/j.neucom.2018.08.023 – ident: e_1_2_7_15_1 doi: 10.1109/TITS.2016.2595526 – ident: e_1_2_7_19_1 – ident: e_1_2_7_9_1 doi: 10.1109/AVSS.2017.8078501 – ident: e_1_2_7_30_1 doi: 10.1016/j.eswa.2017.09.036 – ident: e_1_2_7_5_1 doi: 10.1109/TCSVT.2012.2203741 – ident: e_1_2_7_51_1 doi: 10.1109/AVSS.2017.8078493 – ident: e_1_2_7_20_1 doi: 10.1109/TPAMI.2016.2577031 – ident: e_1_2_7_23_1 doi: 10.1016/j.jvcir.2017.03.020 – ident: e_1_2_7_48_1 doi: 10.1109/IJCNN.2018.8489629 – ident: e_1_2_7_24_1 doi: 10.1049/iet-its.2017.0224 – ident: e_1_2_7_22_1 doi: 10.1016/j.jvcir.2017.01.003 – ident: e_1_2_7_43_1 doi: 10.1007/s12555-016-0332-z – ident: e_1_2_7_17_1 doi: 10.1109/TVT.2012.2226218 – ident: e_1_2_7_31_1 doi: 10.1007/s00500-017-2696-2 – start-page: 2577 volume-title: Proc. 19th IEEE Int. Conf. on Intelligent Transportation Systems year: 2016 ident: e_1_2_7_34_1 – ident: e_1_2_7_56_1 doi: 10.1049/iet-cds.2012.0064 – volume: 7 start-page: 51 issue: 3 year: 2015 ident: e_1_2_7_25_1 article-title: Chinese license plate localization in multi‐lane with complex background based on concomitant colors publication-title: IEEE Trans. Intell. Transp. Syst. – ident: e_1_2_7_35_1 doi: 10.1109/ICCE.2016.7430718 – ident: e_1_2_7_13_1 doi: 10.1016/j.tics.2007.05.005 – ident: e_1_2_7_7_1 doi: 10.1049/iet-its.2017.0138 – ident: e_1_2_7_27_1 doi: 10.1109/STUDENT.2010.5686998 – ident: e_1_2_7_44_1 – ident: e_1_2_7_26_1 doi: 10.1109/TITS.2014.2304515 – ident: e_1_2_7_52_1 doi: 10.1109/ICASI.2018.8394573 – ident: e_1_2_7_2_1 doi: 10.1126/science.1127647 – ident: e_1_2_7_46_1 doi: 10.1109/TITS.2016.2639020 – ident: e_1_2_7_42_1 doi: 10.1049/iet-its.2017.0136 – ident: e_1_2_7_4_1 doi: 10.1109/TITS.2011.2119372 – ident: e_1_2_7_3_1 doi: 10.1109/TITS.2008.922938 – ident: e_1_2_7_18_1 doi: 10.1109/TIP.2016.2631901 – ident: e_1_2_7_45_1 doi: 10.1016/j.neucom.2015.07.135 – ident: e_1_2_7_41_1 doi: 10.1016/j.procs.2016.09.447 – ident: e_1_2_7_39_1 doi: 10.1109/TITS.2015.2496545 – ident: e_1_2_7_32_1 doi: 10.1109/TITS.2018.2859035 – ident: e_1_2_7_11_1 doi: 10.1109/TITS.2018.2847291 – ident: e_1_2_7_12_1 doi: 10.1016/j.imavis.2018.02.002 – ident: e_1_2_7_55_1 doi: 10.1049/iet-its.2019.0481 – ident: e_1_2_7_8_1 doi: 10.1109/ICCIT48885.2019.9038583 |
| SSID | ssj0056221 |
| Score | 2.2261708 |
| Snippet | Although automatic license plate recognition (ALPR) has been studied for decades, the final recognition result can be accurate only if the license plate is... |
| SourceID | crossref wiley iet |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 959 |
| SubjectTerms | accurate candidate characters ALPR codec framework automatic license plate recognition candidate license plate characters character recognition decoding detection rate EDF‐LPR edge detection encoder–decoder framework feature extraction final recognition result image recognition image segmentation learning (artificial intelligence) license plate detection object detection object recognition pattern clustering recognition rate Research Article standard format classification traffic engineering computing |
| Title | EDF-LPR: a new encoder–decoder framework for license plate recognition |
| URI | http://digital-library.theiet.org/content/journals/10.1049/iet-its.2019.0253 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-its.2019.0253 |
| Volume | 14 |
| WOSCitedRecordID | wos000559792600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1751-9578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056221 issn: 1751-956X databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-9578 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056221 issn: 1751-956X databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9swED_Sbg_dQ7f-Y2nXIUrpw8CtLSmWtLe1TVhGCaHLurwZ_TMEghOSbM_9CIN9w3ySnuwkbRh0MPZihH2yzZ1O95PudAdwSo01ygof8dTJiDPvI8ltaDHq0V5wUW5l392ITkf2-6pbg6vlWZgqP8Rqwy1oRjlfBwXXpqpCgqAWhTjws2gwCxm3E3WOlpttwIskYSIMbcq7y-kY7Xt1-EqEevKNtL9ybaqLP16xZpw28PE6ZC1tTuv1f_nbN7C9gJzkUzVGdqDmi1149SQR4R58aV635ve_brq3H4kmiLRJyG_p_GR-_9v5skXyZRgXQZxLhjjBFFNPxkMEq2QVhjQq9uFbq9m7-hwtqixElqVSRQ1hNVNOJF56mau8wV1KhWik0qTaqJxqo1OhNSq6SqQ0HBGjkS5UI2SOOsoOYLMYFf4tkDhXxsc2dsqhwJVW3HLvOBpH511uVR3iJXszu0hBHiphDLPSFc5VhmzKkE1ZYFMW2FSHD6su4yr_xnPEZ-HeQgunzxGerBG2m72s3fv6SJCNXV4HVkr079_Fvrf0shUHF-rhP_U6gi0aFvJlZOE72JxNfvhjeGl_zgbTyftyQOP1e7vzAPxV-hg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD5sKqgP3sV5DSI-CNUuzZrENy8bTucYc8reQpukMBjd2KbP_gTBf-gvMWm36RAmiG-hPWnDSU6-k5PkOwBHOJQhl1Q7xFfMIZ7WDiPSljysDV4QmoSynyq0WmXNJq9l4Hp0FyblhxgH3KxlJPO1NXAbkE4XnMSSZLb0wGkNLOV2np8a6PayMEsM2tg8BpjURvOxAfj09hW1CeULfnO8t8nPfnxiAp2y5vWkz5qATmn5f5q7AktDpxNdpKNkFTI6XoPFb1SE63BbvC59vL5VavVzFCDjayPLcKl07-P1XemkhKLRQS5kPF3UNlNM3Neo2zbuKhofROrEG_BYKjaubpxhngVHej7jToHKwOOK5jXTLOJRgSgfU1rwWegHIY9wEAY-DQJj6jzPWEiMzxgyZfMRegor7G3CTNyJ9RYgN-KhdqWruDJdzgNOJNGKGHhUWkWS58Ad6VfIIQm5zYXRFslmOOHCqEkYNQmrJmHVlIOTcZVuysAxTfjYPhvaYX-a4OGEYLnYEOXGw5eA6KooB17Spb__19St48uSazdRt_9U6wDmbxr3FVEpV-92YAHbZX1yznAXZga9Z70Hc_Jl0Or39pPR_QnpTvzr |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB7yorSHpmlT6rZplxJ6CCiRpZV2t7c2tqhbY4zjBN8WaXcEBqMYW-05P6HQf5hf0lnJdmMCDpTeFmlGWmZ2Hvv6BuA4yEymjECPx1Z6PET0JDeuFQZI8YKLain7qit6PTkaqf4WtJZ3YWp8iNWCm7OMyl87A8epzesJJ3cgmWMsvXHpILeb6pRCd7gNuzwiX-vwnXl_6Y8pwNe3r4QrKB_Fo9Xepjq794m16LRNr9dz1iroJPv_p7vP4Oki6WSf61FyAFtYPIcnd6AIX8C3diu5vfnV7Q8-sZRRrs0cwqXF2e3Nb4tVi-XLg1yMMl02IRdTzJFNJ5SustVBpOviEC6T9vD8q7eos-CZMJbKi4RJQ2VFEyXKXOURt3EgRBTLLE4zlQdplsYiTcnUVVPKjFPOmEnr6hGGNrBB-BJ2iusCXwHzc5Whb3yrLKlcpYobjpZTeLRoc6Ma4C_lq80ChNzVwpjoajOcK01i0iQm7cSknZgacLJimdYIHJuIP7pnCzucbyL8sEbYaQ91Z3jxl0CT9hoQVip9-L_EOwi-JL7bRH39T1zv4VG_lehup_f9DTwO3Ky-Omb4FnbK2Q88gj3zsxzPZ--qwf0Hklf8bw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EDF-LPR%3A+a+new+encoder%E2%80%93decoder+framework+for+license+plate+recognition&rft.jtitle=IET+intelligent+transport+systems&rft.au=Gao%2C+Fei&rft.au=Cai%2C+Yichao&rft.au=Ge%2C+Yisu&rft.au=Lu%2C+Shufang&rft.date=2020-08-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-956X&rft.eissn=1751-9578&rft.volume=14&rft.issue=8&rft.spage=959&rft.epage=969&rft_id=info:doi/10.1049%2Fiet-its.2019.0253&rft.externalDocID=10_1049_iet_its_2019_0253 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-956X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-956X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-956X&client=summon |