Harmonic Functions for Rotational Symmetry Vector Fields

Representing rotational symmetry vector as a set of vectors is not suitable for design due to lacking of a consistent ordering for measurement. In this paper we introduce a spectral method to find rotation invariant harmonic functions for symmetry vector field design. This method is developed for 3D...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 35; číslo 7; s. 507 - 516
Hlavní autoři: Shen, Zhongwei, Fang, Xianzhong, Liu, Xinguo, Bao, Hujun, Huang, Jin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.10.2016
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Representing rotational symmetry vector as a set of vectors is not suitable for design due to lacking of a consistent ordering for measurement. In this paper we introduce a spectral method to find rotation invariant harmonic functions for symmetry vector field design. This method is developed for 3D vector fields, but it is applicable in 2D. Given the finite symmetry group G of a symmetry vector field v(x) on a 3D domain Ω, we formulate the harmonic function h(s) as a stationary point of group G. Using the real spherical harmonic (SH) bases, we showed the coefficients of the harmonic functions are an eigenvector of the SH rotation matrices corresponding to group G. Instead of solving eigen problems to obtain the eigenvector, we developed a forward constructive method based on orthogonal group theory. The harmonic function found by our method is not only invariant under G, but also expressive and can distinguish different rotations with respect to G. At last, we demonstrate some vector field design results with tetrahedron‐symmetry, cube‐symmetry and dodecahedron‐symmetry groups.
Bibliografie:istex:73997856868E445D571D2276C1140547C24A0509
ArticleID:CGF13047
ark:/67375/WNG-HG02R8T0-P
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.13047