Harmonic Functions for Rotational Symmetry Vector Fields
Representing rotational symmetry vector as a set of vectors is not suitable for design due to lacking of a consistent ordering for measurement. In this paper we introduce a spectral method to find rotation invariant harmonic functions for symmetry vector field design. This method is developed for 3D...
Saved in:
| Published in: | Computer graphics forum Vol. 35; no. 7; pp. 507 - 516 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Blackwell Publishing Ltd
01.10.2016
|
| Subjects: | |
| ISSN: | 0167-7055, 1467-8659 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Representing rotational symmetry vector as a set of vectors is not suitable for design due to lacking of a consistent ordering for measurement. In this paper we introduce a spectral method to find rotation invariant harmonic functions for symmetry vector field design. This method is developed for 3D vector fields, but it is applicable in 2D. Given the finite symmetry group G of a symmetry vector field v(x) on a 3D domain Ω, we formulate the harmonic function h(s) as a stationary point of group G. Using the real spherical harmonic (SH) bases, we showed the coefficients of the harmonic functions are an eigenvector of the SH rotation matrices corresponding to group G. Instead of solving eigen problems to obtain the eigenvector, we developed a forward constructive method based on orthogonal group theory. The harmonic function found by our method is not only invariant under G, but also expressive and can distinguish different rotations with respect to G. At last, we demonstrate some vector field design results with tetrahedron‐symmetry, cube‐symmetry and dodecahedron‐symmetry groups. |
|---|---|
| AbstractList | Representing rotational symmetry vector as a set of vectors is not suitable for design due to lacking of a consistent ordering for measurement. In this paper we introduce a spectral method to find rotation invariant harmonic functions for symmetry vector field design. This method is developed for 3D vector fields, but it is applicable in 2D. Given the finite symmetry group G of a symmetry vector field v(x) on a 3D domain [Omega], we formulate the harmonic function h(s) as a stationary point of group G. Using the real spherical harmonic (SH) bases, we showed the coefficients of the harmonic functions are an eigenvector of the SH rotation matrices corresponding to group G. Instead of solving eigen problems to obtain the eigenvector, we developed a forward constructive method based on orthogonal group theory. The harmonic function found by our method is not only invariant under G, but also expressive and can distinguish different rotations with respect to G. At last, we demonstrate some vector field design results with tetrahedron-symmetry, cube-symmetry and dodecahedron-symmetry groups. Representing rotational symmetry vector as a set of vectors is not suitable for design due to lacking of a consistent ordering for measurement. In this paper we introduce a spectral method to find rotation invariant harmonic functions for symmetry vector field design. This method is developed for 3D vector fields, but it is applicable in 2D. Given the finite symmetry group G of a symmetry vector field v(x) on a 3D domain Ω, we formulate the harmonic function h(s) as a stationary point of group G. Using the real spherical harmonic (SH) bases, we showed the coefficients of the harmonic functions are an eigenvector of the SH rotation matrices corresponding to group G. Instead of solving eigen problems to obtain the eigenvector, we developed a forward constructive method based on orthogonal group theory. The harmonic function found by our method is not only invariant under G, but also expressive and can distinguish different rotations with respect to G. At last, we demonstrate some vector field design results with tetrahedron‐symmetry, cube‐symmetry and dodecahedron‐symmetry groups. Representing rotational symmetry vector as a set of vectors is not suitable for design due to lacking of a consistent ordering for measurement. In this paper we introduce a spectral method to find rotation invariant harmonic functions for symmetry vector field design. This method is developed for 3D vector fields, but it is applicable in 2D. Given the finite symmetry group G of a symmetry vector field v (x) on a 3D domain Ω, we formulate the harmonic function h(s) as a stationary point of group G. Using the real spherical harmonic (SH) bases, we showed the coefficients of the harmonic functions are an eigenvector of the SH rotation matrices corresponding to group G. Instead of solving eigen problems to obtain the eigenvector, we developed a forward constructive method based on orthogonal group theory. The harmonic function found by our method is not only invariant under G, but also expressive and can distinguish different rotations with respect to G. At last, we demonstrate some vector field design results with tetrahedron‐symmetry, cube‐symmetry and dodecahedron‐symmetry groups. |
| Author | Bao, Hujun Fang, Xianzhong Huang, Jin Liu, Xinguo Shen, Zhongwei |
| Author_xml | – sequence: 1 givenname: Zhongwei surname: Shen fullname: Shen, Zhongwei organization: State Key Lab of CAD&CG, Zhejiang University – sequence: 2 givenname: Xianzhong surname: Fang fullname: Fang, Xianzhong organization: State Key Lab of CAD&CG, Zhejiang University – sequence: 3 givenname: Xinguo surname: Liu fullname: Liu, Xinguo organization: State Key Lab of CAD&CG, Zhejiang University – sequence: 4 givenname: Hujun surname: Bao fullname: Bao, Hujun organization: State Key Lab of CAD&CG, Zhejiang University – sequence: 5 givenname: Jin surname: Huang fullname: Huang, Jin email: hj@cad.zju.edu.cn, hj@cad.zju.edu.cn organization: State Key Lab of CAD&CG, Zhejiang University |
| BookMark | eNp9kM9LwzAUx4MouE0P_gcFL3roljQ_mh5luE4YKnPqMaRZKpltM5MO7X9v5tTDQN8lebzP58H79sFhYxsNwBmCQxRqpF7KIcKQpAeghwhLY85odgh6EIV_Cik9Bn3vVxAGhNEe4FPpatsYFU02jWqNbXxUWhfNbSu3nayih66udeu66EmrNowmRldLfwKOSll5ffr9DsDj5Hoxnsazu_xmfDWLFWY8jZdUJyhjmmtUFCwjnJRKSyKLTGEOM57QkhOOyJIWqYQooawsdRATWZCEKIUH4GK3d-3s20b7VtTGK11VstF24wXilGLOSAYDer6HruzGhRO2FE44JDjUAFzuKOWs906XYu1MLV0nEBTbDEXIUHxlGNjRHqvMLpfWSVP9Z7ybSnd_rxbjfPJjxDvD-FZ__BrSvQqW4pSK59tcTHOYzPkCinv8CRcQkdk |
| CitedBy_id | crossref_primary_10_1111_cgf_14370 crossref_primary_10_1145_3374209 |
| Cites_doi | 10.1145/2070781.2024177 10.1145/1409060.1409100 10.1109/TVCG.2013.250 10.1145/2461912.2462005 10.1016/j.cagd.2005.04.004 10.1109/TVCG.2010.121 10.1145/1356682.1356683 10.1111/cgf.12426 10.1111/j.1467-8659.2011.02014.x 10.1137/S0036141098341770 10.1145/1242073.1242204 10.1145/2766906 10.1145/1183287.1183290 10.1145/1183287.1183297 10.1145/1276377.1276446 10.1145/1531326.1531383 10.1145/566654.566612 10.1107/S0108767395012888 10.1111/1467-8659.1330233 10.1145/2366145.2366196 10.1145/882262.882296 10.1007/978-3-642-04319-2_22 10.1145/1276377.1276447 10.1145/1833351.1778855 10.1145/344779.345074 |
| ContentType | Journal Article |
| Copyright | 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2016 The Eurographics Association and John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2016 The Eurographics Association and John Wiley & Sons Ltd. |
| DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1111/cgf.13047 |
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | 516 |
| ExternalDocumentID | 4229340141 10_1111_cgf_13047 CGF13047 ark_67375_WNG_HG02R8T0_P |
| Genre | article Feature |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN WRC AAYXX CITATION O8X 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c3687-d5e2196e8e1bb69484fcea4ab9c3809825f84814d5b7a01256ffe6872ab424cc3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000388497400051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 |
| IngestDate | Thu Oct 02 06:34:32 EDT 2025 Sun Nov 09 08:37:35 EST 2025 Sat Nov 29 03:41:13 EST 2025 Tue Nov 18 21:55:54 EST 2025 Wed Jan 22 16:44:09 EST 2025 Tue Nov 11 03:33:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3687-d5e2196e8e1bb69484fcea4ab9c3809825f84814d5b7a01256ffe6872ab424cc3 |
| Notes | istex:73997856868E445D571D2276C1140547C24A0509 ArticleID:CGF13047 ark:/67375/WNG-HG02R8T0-P SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1832804333 |
| PQPubID | 30877 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1855386490 proquest_journals_1832804333 crossref_primary_10_1111_cgf_13047 crossref_citationtrail_10_1111_cgf_13047 wiley_primary_10_1111_cgf_13047_CGF13047 istex_primary_ark_67375_WNG_HG02R8T0_P |
| PublicationCentury | 2000 |
| PublicationDate | 2016-10 October 2016 2016-10-00 20161001 |
| PublicationDateYYYYMMDD | 2016-10-01 |
| PublicationDate_xml | – month: 10 year: 2016 text: 2016-10 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationTitleAlternate | Computer Graphics Forum |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Alliez P., Cohen-Steiner D., Devillers O., Lévy B., Desbrun M.: Anisotropic polygonal remeshing. ACM Transactions on Graphics 22, 3 (2003), 485-493. 2 Moakher M.: The Algebra of Fourth-Order Tensors with Application to Diffusion MRI. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 57-80. 3 Kuznetsov É. D., Kholshevnikov K.V.: Estimation of the number of extrema of a spherical harmonic. Soviet Astronomy 36, 2 (1992), 220-222. 4 Dong S., Kircher S., Garland M.: Harmonic functions for quadrilateral remeshing of arbitrary manifolds. Computer Aided Geometric Design 22, 5 (July 2005), 392-423. 2 Knöppel F., Crane K., Pinkall U., Schröder P.: Globally optimal direction fields. ACM Transactions on Graphics 32, 4 (July 2013), 59:1-59:10. 3 Li Y., LIu Y., Xu W., Wang W., Guo B.: All-hex meshing using singularity-restricted field. ACM Transactions on Graphics 31, 6 (Nov. 2012), 177:1-177:11. 2, 3 J.F. Cornwell: Group Theory in Physics, Volume I. Academic Press, 1984. 3, 4 Palacios J., Zhang E.: Interactive visualization of rotational symmetry fields on surfaces. IEEE Transactions on Visualization and Computer Graphics 17, 7 (2011), 947-955. 6 Bommes D., Zimmer H., Kobbelt L.: Mixed-integer quadrangulation. ACM Transactions on Graphics 28, 3 (2009), 1-10. 2 Huang J., Zhang M., Ma J., Liu X., Kobbelt L., Bao H.: Spectral quadrangulation with orientation and alignment control. ACM Transactions on Graphics 27, 5 (December 2008), 147:1-147:9. 2 Zheng Y., Doerschuk P.C.: Explicit orthonormal fixed bases for spaces of functions that are totally symmetric under the rotational symmetries of a platonic solid. Acta Crystallographica Section A 52, 2 (1996), 221-235. 3, 4 Schlick C.: An inexpensive brdf model for physically-based rendering. Computer Graphics Forum 13, 3 (1994), 233-246. 2 Jiang T., Huang J., Wang Y., Tong Y., Bao H.: Frame field singularity correction for automatic hexahedralization. IEEE Transactions on Visualization and Computer Graphics 20, 8 (2014), 1189-1199. 2 Palacios J., Zhang E.: Rotational symmetry field design on surfaces. ACM Transaction on Graphics 26, 3 (2007), 55. 1, 2, 3, 6, 8 Zheng Y., Doerschuk P.C.: Explicit computation of orthonormal symmetrized harmonics with application to the identity representation of the icosahedral group. SIAM Journal on Mathematical Analysis 32, 3 (2000), 538-554. 3 Diamanti O., Vaxman A., Panozzo D., Sorkine-Hornung O.: Designing N-polyvector fields with complex polynomials. Computer Graphics Forum 33, 5 (2014), 1-11. 3 Huang J., Tong Y., Wei H., Bao H.: Boundary aligned smooth 3d cross-frame field. ACM Transactions on Graphics 30, 6 (Dec 2011), 143:1-143:8. 1, 2, 3, 5, 6, 8 Sloan P.-P., Kautz J., Snyder J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Transactions on Graphics 21, 3 (July 2002), 527-536. 3 Zhang E., Mischaikow K., Turk G.: Vector field design on surfaces. ACM Transactions on Graphics 25, 4 (Oct. 2006), 1294-1326. 2 Diamanti O., Vaxman A., Panozzo D., Sorkine-Hornung O.: Integrable polyvector fields. ACM Transactions on Graphics 34, 4 (2015), 38. 3 Fisher M., Schröder P., Desbrun M., Hoppe H.: Design of tangent vector fields. ACM Transactions on Graphics 26, 3 (Jul 2007). 2 Nieser M., Reitebuch U., Polthier K.: Cubecover - parameterization of 3d volumes. Computer Graphics Forum 30, 5 (2011), 1397-1406. 2 Ray N., Li W.C., Lévy B., Sheffer A., Alliez P.: Periodic global parameterization. ACM Transactions on Graphics 25, 4 (2006), 1460-1485. 2 2015; 34 1984; I 2010 2009 2011; 30 2008 1996; 52 2005 1992; 36 2003 2002 2011; 17 2005; 22 2012; 31 2009; 28 2014; 20 2001 2000 2013; 32 2000; 32 2008; 27 2006; 25 2002; 21 1994; 13 2015 2014; 33 2003; 22 2007; 26 e_1_2_10_22_2 Kuznetsov É. D. (e_1_2_10_18_2) 1992; 36 Desbrun M. (e_1_2_10_5_2) 2005 Mann S. (e_1_2_10_21_2) 2002 e_1_2_10_19_2 Vyas V. (e_1_2_10_34_2) 2009 e_1_2_10_3_2 e_1_2_10_2_2 e_1_2_10_39_2 e_1_2_10_15_2 Turk G. (e_1_2_10_33_2) 2001 e_1_2_10_38_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_37_2 e_1_2_10_7_2 e_1_2_10_36_2 e_1_2_10_6_2 e_1_2_10_14_2 e_1_2_10_9_2 e_1_2_10_11_2 e_1_2_10_8_2 e_1_2_10_12_2 e_1_2_10_32_2 e_1_2_10_10_2 e_1_2_10_31_2 e_1_2_10_30_2 Polthier K. (e_1_2_10_24_2) 2002 Wei L.‐Y. (e_1_2_10_35_2) 2001 Moakher M. (e_1_2_10_20_2) 2009 Praun E. (e_1_2_10_23_2) 2000 Kazhdan M. (e_1_2_10_17_2) 2003 e_1_2_10_28_2 e_1_2_10_29_2 e_1_2_10_26_2 e_1_2_10_27_2 Cornwell J.F. (e_1_2_10_13_2) 1984 e_1_2_10_25_2 |
| References_xml | – reference: Li Y., LIu Y., Xu W., Wang W., Guo B.: All-hex meshing using singularity-restricted field. ACM Transactions on Graphics 31, 6 (Nov. 2012), 177:1-177:11. 2, 3 – reference: Kuznetsov É. D., Kholshevnikov K.V.: Estimation of the number of extrema of a spherical harmonic. Soviet Astronomy 36, 2 (1992), 220-222. 4 – reference: Zhang E., Mischaikow K., Turk G.: Vector field design on surfaces. ACM Transactions on Graphics 25, 4 (Oct. 2006), 1294-1326. 2 – reference: Jiang T., Huang J., Wang Y., Tong Y., Bao H.: Frame field singularity correction for automatic hexahedralization. IEEE Transactions on Visualization and Computer Graphics 20, 8 (2014), 1189-1199. 2 – reference: Schlick C.: An inexpensive brdf model for physically-based rendering. Computer Graphics Forum 13, 3 (1994), 233-246. 2 – reference: Huang J., Tong Y., Wei H., Bao H.: Boundary aligned smooth 3d cross-frame field. ACM Transactions on Graphics 30, 6 (Dec 2011), 143:1-143:8. 1, 2, 3, 5, 6, 8 – reference: Zheng Y., Doerschuk P.C.: Explicit computation of orthonormal symmetrized harmonics with application to the identity representation of the icosahedral group. SIAM Journal on Mathematical Analysis 32, 3 (2000), 538-554. 3 – reference: Diamanti O., Vaxman A., Panozzo D., Sorkine-Hornung O.: Designing N-polyvector fields with complex polynomials. Computer Graphics Forum 33, 5 (2014), 1-11. 3 – reference: Palacios J., Zhang E.: Rotational symmetry field design on surfaces. ACM Transaction on Graphics 26, 3 (2007), 55. 1, 2, 3, 6, 8 – reference: Huang J., Zhang M., Ma J., Liu X., Kobbelt L., Bao H.: Spectral quadrangulation with orientation and alignment control. ACM Transactions on Graphics 27, 5 (December 2008), 147:1-147:9. 2 – reference: J.F. Cornwell: Group Theory in Physics, Volume I. Academic Press, 1984. 3, 4 – reference: Fisher M., Schröder P., Desbrun M., Hoppe H.: Design of tangent vector fields. ACM Transactions on Graphics 26, 3 (Jul 2007). 2 – reference: Knöppel F., Crane K., Pinkall U., Schröder P.: Globally optimal direction fields. ACM Transactions on Graphics 32, 4 (July 2013), 59:1-59:10. 3 – reference: Palacios J., Zhang E.: Interactive visualization of rotational symmetry fields on surfaces. IEEE Transactions on Visualization and Computer Graphics 17, 7 (2011), 947-955. 6 – reference: Moakher M.: The Algebra of Fourth-Order Tensors with Application to Diffusion MRI. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 57-80. 3 – reference: Ray N., Li W.C., Lévy B., Sheffer A., Alliez P.: Periodic global parameterization. ACM Transactions on Graphics 25, 4 (2006), 1460-1485. 2 – reference: Zheng Y., Doerschuk P.C.: Explicit orthonormal fixed bases for spaces of functions that are totally symmetric under the rotational symmetries of a platonic solid. Acta Crystallographica Section A 52, 2 (1996), 221-235. 3, 4 – reference: Sloan P.-P., Kautz J., Snyder J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Transactions on Graphics 21, 3 (July 2002), 527-536. 3 – reference: Alliez P., Cohen-Steiner D., Devillers O., Lévy B., Desbrun M.: Anisotropic polygonal remeshing. ACM Transactions on Graphics 22, 3 (2003), 485-493. 2 – reference: Dong S., Kircher S., Garland M.: Harmonic functions for quadrilateral remeshing of arbitrary manifolds. Computer Aided Geometric Design 22, 5 (July 2005), 392-423. 2 – reference: Diamanti O., Vaxman A., Panozzo D., Sorkine-Hornung O.: Integrable polyvector fields. ACM Transactions on Graphics 34, 4 (2015), 38. 3 – reference: Bommes D., Zimmer H., Kobbelt L.: Mixed-integer quadrangulation. ACM Transactions on Graphics 28, 3 (2009), 1-10. 2 – reference: Nieser M., Reitebuch U., Polthier K.: Cubecover - parameterization of 3d volumes. Computer Graphics Forum 30, 5 (2011), 1397-1406. 2 – start-page: 10:1 year: 2008 end-page: 10:13 – start-page: 517 year: 2000 end-page: 526 – volume: 17 start-page: 947 issue: 7 year: 2011 end-page: 955 article-title: Interactive visualization of rotational symmetry fields on surfaces publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 30 start-page: 1397 issue: 5 year: 2011 end-page: 1406 article-title: Cubecover ‐ parameterization of 3d volumes publication-title: Computer Graphics Forum – year: 2005 – volume: 34 start-page: 38 issue: 4 year: 2015 article-title: Integrable polyvector fields publication-title: ACM Transactions on Graphics – start-page: 347 year: 2001 end-page: 354 – start-page: 112 year: 2002 end-page: 134 – year: 2003 – start-page: 156 year: 2003 end-page: 164 – start-page: 283 year: 2002 end-page: 290 – volume: 30 start-page: 143:1 issue: 6 year: 2011 end-page: 143:8 article-title: Boundary aligned smooth 3d cross‐frame field publication-title: ACM Transactions on Graphics – volume: 27 start-page: 147:1 issue: 5 year: 2008 end-page: 147:9 article-title: Spectral quadrangulation with orientation and alignment control publication-title: ACM Transactions on Graphics – start-page: 465 year: 2000 end-page: 470 – volume: 31 start-page: 177:1 issue: 6 year: 2012 end-page: 177:11 article-title: All‐hex meshing using singularity‐restricted field publication-title: ACM Transactions on Graphics – start-page: 57 year: 2009 end-page: 80 – volume: 26 issue: 3 year: 2007 article-title: Design of tangent vector fields publication-title: ACM Transactions on Graphics – volume: 33 start-page: 1 issue: 5 year: 2014 end-page: 11 article-title: Designing N‐polyvector fields with complex polynomials publication-title: Computer Graphics Forum – volume: 52 start-page: 221 issue: 2 year: 1996 end-page: 235 article-title: Explicit orthonormal fixed bases for spaces of functions that are totally symmetric under the rotational symmetries of a platonic solid publication-title: Acta Crystallographica Section A – start-page: 191 year: 2002 end-page: 191 – volume: 13 start-page: 233 issue: 3 year: 1994 end-page: 246 article-title: An inexpensive brdf model for physically‐based rendering publication-title: Computer Graphics Forum – volume: 36 start-page: 220 issue: 2 year: 1992 end-page: 222 article-title: Estimation of the number of extrema of a spherical harmonic publication-title: Soviet Astronomy – volume: 25 start-page: 1460 issue: 4 year: 2006 end-page: 1485 article-title: Periodic global parameterization publication-title: ACM Transactions on Graphics – volume: 25 start-page: 1294 issue: 4 year: 2006 end-page: 1326 article-title: Vector field design on surfaces publication-title: ACM Transactions on Graphics – volume: 20 start-page: 1189 issue: 8 year: 2014 end-page: 1199 article-title: Frame field singularity correction for automatic hexahedralization publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 26 start-page: 55 issue: 3 year: 2007 article-title: Rotational symmetry field design on surfaces publication-title: ACM Transaction on Graphics – volume: 32 start-page: 59:1 issue: 4 year: 2013 end-page: 59:10 article-title: Globally optimal direction fields publication-title: ACM Transactions on Graphics – volume: 28 start-page: 1 issue: 3 year: 2009 end-page: 10 article-title: Mixed‐integer quadrangulation publication-title: ACM Transactions on Graphics – start-page: 118:1 year: 2010 end-page: 118:8 – volume: I year: 1984 – start-page: 355 year: 2001 end-page: 360 – start-page: 377 year: 2009 end-page: 396 – volume: 21 start-page: 527 issue: 3 year: 2002 end-page: 536 article-title: Precomputed radiance transfer for real‐time rendering in dynamic, low‐frequency lighting environments publication-title: ACM Transactions on Graphics – volume: 22 start-page: 485 issue: 3 year: 2003 end-page: 493 article-title: Anisotropic polygonal remeshing publication-title: ACM Transactions on Graphics – volume: 22 start-page: 392 issue: 5 year: 2005 end-page: 423 article-title: Harmonic functions for quadrilateral remeshing of arbitrary manifolds publication-title: Computer Aided Geometric Design – year: 2015 – volume: 32 start-page: 538 issue: 3 year: 2000 end-page: 554 article-title: Explicit computation of orthonormal symmetrized harmonics with application to the identity representation of the icosahedral group publication-title: SIAM Journal on Mathematical Analysis – ident: e_1_2_10_10_2 doi: 10.1145/2070781.2024177 – ident: e_1_2_10_12_2 doi: 10.1145/1409060.1409100 – ident: e_1_2_10_14_2 doi: 10.1109/TVCG.2013.250 – ident: e_1_2_10_15_2 doi: 10.1145/2461912.2462005 – ident: e_1_2_10_9_2 – start-page: 112 volume-title: Mathematical Visualization III year: 2002 ident: e_1_2_10_24_2 – ident: e_1_2_10_31_2 – ident: e_1_2_10_4_2 doi: 10.1016/j.cagd.2005.04.004 – ident: e_1_2_10_26_2 doi: 10.1109/TVCG.2010.121 – start-page: 57 volume-title: The Algebra of Fourth‐Order Tensors with Application to Diffusion MRI year: 2009 ident: e_1_2_10_20_2 – ident: e_1_2_10_29_2 doi: 10.1145/1356682.1356683 – ident: e_1_2_10_6_2 doi: 10.1111/cgf.12426 – volume: 36 start-page: 220 issue: 2 year: 1992 ident: e_1_2_10_18_2 article-title: Estimation of the number of extrema of a spherical harmonic publication-title: Soviet Astronomy – ident: e_1_2_10_22_2 doi: 10.1111/j.1467-8659.2011.02014.x – ident: e_1_2_10_37_2 doi: 10.1137/S0036141098341770 – ident: e_1_2_10_16_2 doi: 10.1145/1242073.1242204 – ident: e_1_2_10_7_2 doi: 10.1145/2766906 – volume-title: Group Theory in Physics year: 1984 ident: e_1_2_10_13_2 – ident: e_1_2_10_39_2 doi: 10.1145/1183287.1183290 – ident: e_1_2_10_27_2 doi: 10.1145/1183287.1183297 – ident: e_1_2_10_25_2 doi: 10.1145/1276377.1276446 – ident: e_1_2_10_3_2 doi: 10.1145/1531326.1531383 – ident: e_1_2_10_32_2 doi: 10.1145/566654.566612 – ident: e_1_2_10_36_2 doi: 10.1107/S0108767395012888 – ident: e_1_2_10_30_2 doi: 10.1111/1467-8659.1330233 – volume-title: ACM SIGGRAPH Courses year: 2005 ident: e_1_2_10_5_2 – ident: e_1_2_10_19_2 doi: 10.1145/2366145.2366196 – ident: e_1_2_10_28_2 – start-page: 347 volume-title: ACM SIGGRAPH year: 2001 ident: e_1_2_10_33_2 – ident: e_1_2_10_2_2 doi: 10.1145/882262.882296 – start-page: 377 volume-title: Proceedings of the 18th International Meshing Roundtable year: 2009 ident: e_1_2_10_34_2 doi: 10.1007/978-3-642-04319-2_22 – start-page: 156 volume-title: Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing year: 2003 ident: e_1_2_10_17_2 – start-page: 355 volume-title: ACM SIGGRAPH year: 2001 ident: e_1_2_10_35_2 – ident: e_1_2_10_8_2 doi: 10.1145/1276377.1276447 – ident: e_1_2_10_38_2 doi: 10.1145/1833351.1778855 – start-page: 283 volume-title: Proc. of Visualization year: 2002 ident: e_1_2_10_21_2 – start-page: 465 volume-title: ACM SIGGRAPH year: 2000 ident: e_1_2_10_23_2 – ident: e_1_2_10_11_2 doi: 10.1145/344779.345074 |
| SSID | ssj0004765 |
| Score | 2.1868732 |
| Snippet | Representing rotational symmetry vector as a set of vectors is not suitable for design due to lacking of a consistent ordering for measurement. In this paper... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 507 |
| SubjectTerms | Analysis Categories and Subject Descriptors (according to ACM CCS) Eigenvalues Eigenvectors Fields (mathematics) Group dynamics Harmonic functions I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Geometric algorithms Image processing systems Invariants Mathematical analysis Spherical harmonics Studies Symmetry Topological manifolds |
| Title | Harmonic Functions for Rotational Symmetry Vector Fields |
| URI | https://api.istex.fr/ark:/67375/WNG-HG02R8T0-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13047 https://www.proquest.com/docview/1832804333 https://www.proquest.com/docview/1855386490 |
| Volume | 35 |
| WOSCitedRecordID | wos000388497400051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFH90yQ7boe2-mNesuGWMXQyOLckSPZW2Tg4lhKzdehOSLZfRJilOWpb_vk_yRxPYoNCbwU8gv-8nP_0ewLc-yQXJkzCgiaEByTIacMp1oCLR50VhiIiVGzaRjEb86kqMt-CouQtT4UO0B27WMpy_tgau9GLNyLPrwo4yJskr6Eaot7QD3dNJenn-dC0yYbSB9ragMTWwkG3kaRdvhKOu5ezfjVxzPWN1ISfdedFmd2G7zjT940o13sGWmb2Ht2v4gx-AD1U5tdi4forhzWmgj0msP5kv6zNC_-dqOjXLcuX_csf7fmo73hYf4TI9uzgZBvUohSCLGbqRnBp0Tcxw09eaCcJJkRlFlBZZzEOBZWJhcfVJTnWiMGZRhnLChZHSJEIJxp-gM5vPzGfwYya0iXieJ0TbYkxpTQtGRL_A6jImzIMfDUdlVuOM23EXt7KpN5AZ0jHDg8OW9K4C1_gX0XcnlpZClTe2Gy2h8vdoIIeDMJrwi1COPeg1cpO1IS6k9VjcgrTFHhy0r9GE7H8RNTPze0tD0e3jJ4S4dyfF_-9GngxS9_Dl-aR78AbTLFa1APagsyzvzVd4nT0s_yzK_VprHwFKJ-za |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NFQn2ML6G1m1AQAjxEilNbMeWeJm2pUWUaiod7M2yEwchaDul3bT999y5SdZJICHxFilnyfF9X86_A3jbY4ViRRqFPHU8ZHnOQ8mlDU2serIsHVOJ8cMm0tFInp-r0w340NyFWeFDtAU30gxvr0nBqSC9puX595JmGbP0HnQYihHKd-d4nJ0Nb-9FpoI32N6EGlMjC1EnT7v4jj_q0NFe3wk210NW73OyR_-328ewXceaweFKOJ7Ahps9ha01BMJnIAemmhI6bpChg_MyGGAYG4zny7pKGHy5mU7dsroJvvoCf5BRz9tiB86yk8nRIKyHKYR5ItCQFNyhcRJOup61QjHJytwZZqzKExkpTBRLQtZnBbepQa_FBXIKF8bGshh5mDyHzdl85nYhSISyLpZFkTJL6ZixlpeCqV6J-WXCRBfeN0eq8xppnAZe_NJNxoGHof1hdOFNS3qxgtf4E9E7z5eWwlQ_qR8t5frbqK8H_Sgey0mkT7tw0DBO16q40GSzJMG0JV143b5GJaI_I2bm5pdEw9Hw4ydEuHfPxr_vRh_1M_-w9--kr-DBYPJ5qIcfR5_24SEGXWLVEHgAm8vq0r2A-_nV8seielmL8G-C5fDK |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9BixB7YBsfooNBhhDiJVKa2I4t7WWCpUVDVVU-3yw7cRCCtigt0_jv53OTrEhMQuItUs6Sc9_nnH8HcNAmmSBZHPg0NtQnaUp9Trn2VSjaPM8NEZFywybiXo_f3Ij-Anyv7sLM8CHqAze0DOev0cDNY5bPWXl6m-MsYxIvQpPgEJkGNE8GyeXZv3uRMaMVtjeixpTIQtjJUy9-EY-ayNo_L5LN-ZTVxZzk4_t2-wlWy1zT-zFTjs-wYEZr8GEOgXAdeFcVQ0TH9RIb4JwOejaN9QbjaXlK6J0_D4dmWjx7V-6A30uw522yAZfJz4vjrl8OU_DTiFlHklFjnRMz3LS1ZoJwkqdGEaVFGvFA2EIxR2R9klEdKxu1KLOSsgtDpUloZRhtQmM0Hpkt8CImtAl5lsVEYzmmtKY5I6Kd2_oyIqwFRxVLZVoijePAiwdZVRyWGdIxowX7NenjDF7jNaJDJ5eaQhX32I8WU3nd68huJwgH_CKQ_RbsVIKTpSlOJPosjjBtUQu-1a-tEeGfETUy4yekodbx208I7N6dGP-_G3ncSdzDl7eT7sFy_ySRZ6e9X9uwYnMuNusH3IHGtHgyX2Ep_T29mxS7pQb_BSNI8EU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harmonic+Functions+for+Rotational+Symmetry+Vector+Fields&rft.jtitle=Computer+graphics+forum&rft.au=Shen%2C+Zhongwei&rft.au=Fang%2C+Xianzhong&rft.au=Liu%2C+Xinguo&rft.au=Bao%2C+Hujun&rft.date=2016-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=35&rft.issue=7&rft.spage=507&rft.epage=516&rft_id=info:doi/10.1111%2Fcgf.13047&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_HG02R8T0_P |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |