Harmonic Functions for Rotational Symmetry Vector Fields

Representing rotational symmetry vector as a set of vectors is not suitable for design due to lacking of a consistent ordering for measurement. In this paper we introduce a spectral method to find rotation invariant harmonic functions for symmetry vector field design. This method is developed for 3D...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 35; číslo 7; s. 507 - 516
Hlavní autoři: Shen, Zhongwei, Fang, Xianzhong, Liu, Xinguo, Bao, Hujun, Huang, Jin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.10.2016
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Representing rotational symmetry vector as a set of vectors is not suitable for design due to lacking of a consistent ordering for measurement. In this paper we introduce a spectral method to find rotation invariant harmonic functions for symmetry vector field design. This method is developed for 3D vector fields, but it is applicable in 2D. Given the finite symmetry group G of a symmetry vector field v(x) on a 3D domain Ω, we formulate the harmonic function h(s) as a stationary point of group G. Using the real spherical harmonic (SH) bases, we showed the coefficients of the harmonic functions are an eigenvector of the SH rotation matrices corresponding to group G. Instead of solving eigen problems to obtain the eigenvector, we developed a forward constructive method based on orthogonal group theory. The harmonic function found by our method is not only invariant under G, but also expressive and can distinguish different rotations with respect to G. At last, we demonstrate some vector field design results with tetrahedron‐symmetry, cube‐symmetry and dodecahedron‐symmetry groups.
AbstractList Representing rotational symmetry vector as a set of vectors is not suitable for design due to lacking of a consistent ordering for measurement. In this paper we introduce a spectral method to find rotation invariant harmonic functions for symmetry vector field design. This method is developed for 3D vector fields, but it is applicable in 2D. Given the finite symmetry group G of a symmetry vector field v(x) on a 3D domain [Omega], we formulate the harmonic function h(s) as a stationary point of group G. Using the real spherical harmonic (SH) bases, we showed the coefficients of the harmonic functions are an eigenvector of the SH rotation matrices corresponding to group G. Instead of solving eigen problems to obtain the eigenvector, we developed a forward constructive method based on orthogonal group theory. The harmonic function found by our method is not only invariant under G, but also expressive and can distinguish different rotations with respect to G. At last, we demonstrate some vector field design results with tetrahedron-symmetry, cube-symmetry and dodecahedron-symmetry groups.
Representing rotational symmetry vector as a set of vectors is not suitable for design due to lacking of a consistent ordering for measurement. In this paper we introduce a spectral method to find rotation invariant harmonic functions for symmetry vector field design. This method is developed for 3D vector fields, but it is applicable in 2D. Given the finite symmetry group G of a symmetry vector field v(x) on a 3D domain Ω, we formulate the harmonic function h(s) as a stationary point of group G. Using the real spherical harmonic (SH) bases, we showed the coefficients of the harmonic functions are an eigenvector of the SH rotation matrices corresponding to group G. Instead of solving eigen problems to obtain the eigenvector, we developed a forward constructive method based on orthogonal group theory. The harmonic function found by our method is not only invariant under G, but also expressive and can distinguish different rotations with respect to G. At last, we demonstrate some vector field design results with tetrahedron‐symmetry, cube‐symmetry and dodecahedron‐symmetry groups.
Representing rotational symmetry vector as a set of vectors is not suitable for design due to lacking of a consistent ordering for measurement. In this paper we introduce a spectral method to find rotation invariant harmonic functions for symmetry vector field design. This method is developed for 3D vector fields, but it is applicable in 2D. Given the finite symmetry group G of a symmetry vector field v (x) on a 3D domain Ω, we formulate the harmonic function h(s) as a stationary point of group G. Using the real spherical harmonic (SH) bases, we showed the coefficients of the harmonic functions are an eigenvector of the SH rotation matrices corresponding to group G. Instead of solving eigen problems to obtain the eigenvector, we developed a forward constructive method based on orthogonal group theory. The harmonic function found by our method is not only invariant under G, but also expressive and can distinguish different rotations with respect to G. At last, we demonstrate some vector field design results with tetrahedron‐symmetry, cube‐symmetry and dodecahedron‐symmetry groups.
Author Bao, Hujun
Fang, Xianzhong
Huang, Jin
Liu, Xinguo
Shen, Zhongwei
Author_xml – sequence: 1
  givenname: Zhongwei
  surname: Shen
  fullname: Shen, Zhongwei
  organization: State Key Lab of CAD&CG, Zhejiang University
– sequence: 2
  givenname: Xianzhong
  surname: Fang
  fullname: Fang, Xianzhong
  organization: State Key Lab of CAD&CG, Zhejiang University
– sequence: 3
  givenname: Xinguo
  surname: Liu
  fullname: Liu, Xinguo
  organization: State Key Lab of CAD&CG, Zhejiang University
– sequence: 4
  givenname: Hujun
  surname: Bao
  fullname: Bao, Hujun
  organization: State Key Lab of CAD&CG, Zhejiang University
– sequence: 5
  givenname: Jin
  surname: Huang
  fullname: Huang, Jin
  email: hj@cad.zju.edu.cn, hj@cad.zju.edu.cn
  organization: State Key Lab of CAD&CG, Zhejiang University
BookMark eNp9kM9LwzAUx4MouE0P_gcFL3roljQ_mh5luE4YKnPqMaRZKpltM5MO7X9v5tTDQN8lebzP58H79sFhYxsNwBmCQxRqpF7KIcKQpAeghwhLY85odgh6EIV_Cik9Bn3vVxAGhNEe4FPpatsYFU02jWqNbXxUWhfNbSu3nayih66udeu66EmrNowmRldLfwKOSll5ffr9DsDj5Hoxnsazu_xmfDWLFWY8jZdUJyhjmmtUFCwjnJRKSyKLTGEOM57QkhOOyJIWqYQooawsdRATWZCEKIUH4GK3d-3s20b7VtTGK11VstF24wXilGLOSAYDer6HruzGhRO2FE44JDjUAFzuKOWs906XYu1MLV0nEBTbDEXIUHxlGNjRHqvMLpfWSVP9Z7ybSnd_rxbjfPJjxDvD-FZ__BrSvQqW4pSK59tcTHOYzPkCinv8CRcQkdk
CitedBy_id crossref_primary_10_1111_cgf_14370
crossref_primary_10_1145_3374209
Cites_doi 10.1145/2070781.2024177
10.1145/1409060.1409100
10.1109/TVCG.2013.250
10.1145/2461912.2462005
10.1016/j.cagd.2005.04.004
10.1109/TVCG.2010.121
10.1145/1356682.1356683
10.1111/cgf.12426
10.1111/j.1467-8659.2011.02014.x
10.1137/S0036141098341770
10.1145/1242073.1242204
10.1145/2766906
10.1145/1183287.1183290
10.1145/1183287.1183297
10.1145/1276377.1276446
10.1145/1531326.1531383
10.1145/566654.566612
10.1107/S0108767395012888
10.1111/1467-8659.1330233
10.1145/2366145.2366196
10.1145/882262.882296
10.1007/978-3-642-04319-2_22
10.1145/1276377.1276447
10.1145/1833351.1778855
10.1145/344779.345074
ContentType Journal Article
Copyright 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2016 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2016 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.13047
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Computer and Information Systems Abstracts

CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 516
ExternalDocumentID 4229340141
10_1111_cgf_13047
CGF13047
ark_67375_WNG_HG02R8T0_P
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
WRC
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c3687-d5e2196e8e1bb69484fcea4ab9c3809825f84814d5b7a01256ffe6872ab424cc3
IEDL.DBID DRFUL
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000388497400051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Thu Oct 02 06:34:32 EDT 2025
Sun Nov 09 08:37:35 EST 2025
Sat Nov 29 03:41:13 EST 2025
Tue Nov 18 21:55:54 EST 2025
Wed Jan 22 16:44:09 EST 2025
Tue Nov 11 03:33:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3687-d5e2196e8e1bb69484fcea4ab9c3809825f84814d5b7a01256ffe6872ab424cc3
Notes istex:73997856868E445D571D2276C1140547C24A0509
ArticleID:CGF13047
ark:/67375/WNG-HG02R8T0-P
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1832804333
PQPubID 30877
PageCount 10
ParticipantIDs proquest_miscellaneous_1855386490
proquest_journals_1832804333
crossref_primary_10_1111_cgf_13047
crossref_citationtrail_10_1111_cgf_13047
wiley_primary_10_1111_cgf_13047_CGF13047
istex_primary_ark_67375_WNG_HG02R8T0_P
PublicationCentury 2000
PublicationDate 2016-10
October 2016
2016-10-00
20161001
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Alliez P., Cohen-Steiner D., Devillers O., Lévy B., Desbrun M.: Anisotropic polygonal remeshing. ACM Transactions on Graphics 22, 3 (2003), 485-493. 2
Moakher M.: The Algebra of Fourth-Order Tensors with Application to Diffusion MRI. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 57-80. 3
Kuznetsov É. D., Kholshevnikov K.V.: Estimation of the number of extrema of a spherical harmonic. Soviet Astronomy 36, 2 (1992), 220-222. 4
Dong S., Kircher S., Garland M.: Harmonic functions for quadrilateral remeshing of arbitrary manifolds. Computer Aided Geometric Design 22, 5 (July 2005), 392-423. 2
Knöppel F., Crane K., Pinkall U., Schröder P.: Globally optimal direction fields. ACM Transactions on Graphics 32, 4 (July 2013), 59:1-59:10. 3
Li Y., LIu Y., Xu W., Wang W., Guo B.: All-hex meshing using singularity-restricted field. ACM Transactions on Graphics 31, 6 (Nov. 2012), 177:1-177:11. 2, 3
J.F. Cornwell: Group Theory in Physics, Volume I. Academic Press, 1984. 3, 4
Palacios J., Zhang E.: Interactive visualization of rotational symmetry fields on surfaces. IEEE Transactions on Visualization and Computer Graphics 17, 7 (2011), 947-955. 6
Bommes D., Zimmer H., Kobbelt L.: Mixed-integer quadrangulation. ACM Transactions on Graphics 28, 3 (2009), 1-10. 2
Huang J., Zhang M., Ma J., Liu X., Kobbelt L., Bao H.: Spectral quadrangulation with orientation and alignment control. ACM Transactions on Graphics 27, 5 (December 2008), 147:1-147:9. 2
Zheng Y., Doerschuk P.C.: Explicit orthonormal fixed bases for spaces of functions that are totally symmetric under the rotational symmetries of a platonic solid. Acta Crystallographica Section A 52, 2 (1996), 221-235. 3, 4
Schlick C.: An inexpensive brdf model for physically-based rendering. Computer Graphics Forum 13, 3 (1994), 233-246. 2
Jiang T., Huang J., Wang Y., Tong Y., Bao H.: Frame field singularity correction for automatic hexahedralization. IEEE Transactions on Visualization and Computer Graphics 20, 8 (2014), 1189-1199. 2
Palacios J., Zhang E.: Rotational symmetry field design on surfaces. ACM Transaction on Graphics 26, 3 (2007), 55. 1, 2, 3, 6, 8
Zheng Y., Doerschuk P.C.: Explicit computation of orthonormal symmetrized harmonics with application to the identity representation of the icosahedral group. SIAM Journal on Mathematical Analysis 32, 3 (2000), 538-554. 3
Diamanti O., Vaxman A., Panozzo D., Sorkine-Hornung O.: Designing N-polyvector fields with complex polynomials. Computer Graphics Forum 33, 5 (2014), 1-11. 3
Huang J., Tong Y., Wei H., Bao H.: Boundary aligned smooth 3d cross-frame field. ACM Transactions on Graphics 30, 6 (Dec 2011), 143:1-143:8. 1, 2, 3, 5, 6, 8
Sloan P.-P., Kautz J., Snyder J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Transactions on Graphics 21, 3 (July 2002), 527-536. 3
Zhang E., Mischaikow K., Turk G.: Vector field design on surfaces. ACM Transactions on Graphics 25, 4 (Oct. 2006), 1294-1326. 2
Diamanti O., Vaxman A., Panozzo D., Sorkine-Hornung O.: Integrable polyvector fields. ACM Transactions on Graphics 34, 4 (2015), 38. 3
Fisher M., Schröder P., Desbrun M., Hoppe H.: Design of tangent vector fields. ACM Transactions on Graphics 26, 3 (Jul 2007). 2
Nieser M., Reitebuch U., Polthier K.: Cubecover - parameterization of 3d volumes. Computer Graphics Forum 30, 5 (2011), 1397-1406. 2
Ray N., Li W.C., Lévy B., Sheffer A., Alliez P.: Periodic global parameterization. ACM Transactions on Graphics 25, 4 (2006), 1460-1485. 2
2015; 34
1984; I
2010
2009
2011; 30
2008
1996; 52
2005
1992; 36
2003
2002
2011; 17
2005; 22
2012; 31
2009; 28
2014; 20
2001
2000
2013; 32
2000; 32
2008; 27
2006; 25
2002; 21
1994; 13
2015
2014; 33
2003; 22
2007; 26
e_1_2_10_22_2
Kuznetsov É. D. (e_1_2_10_18_2) 1992; 36
Desbrun M. (e_1_2_10_5_2) 2005
Mann S. (e_1_2_10_21_2) 2002
e_1_2_10_19_2
Vyas V. (e_1_2_10_34_2) 2009
e_1_2_10_3_2
e_1_2_10_2_2
e_1_2_10_39_2
e_1_2_10_15_2
Turk G. (e_1_2_10_33_2) 2001
e_1_2_10_38_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_37_2
e_1_2_10_7_2
e_1_2_10_36_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_9_2
e_1_2_10_11_2
e_1_2_10_8_2
e_1_2_10_12_2
e_1_2_10_32_2
e_1_2_10_10_2
e_1_2_10_31_2
e_1_2_10_30_2
Polthier K. (e_1_2_10_24_2) 2002
Wei L.‐Y. (e_1_2_10_35_2) 2001
Moakher M. (e_1_2_10_20_2) 2009
Praun E. (e_1_2_10_23_2) 2000
Kazhdan M. (e_1_2_10_17_2) 2003
e_1_2_10_28_2
e_1_2_10_29_2
e_1_2_10_26_2
e_1_2_10_27_2
Cornwell J.F. (e_1_2_10_13_2) 1984
e_1_2_10_25_2
References_xml – reference: Li Y., LIu Y., Xu W., Wang W., Guo B.: All-hex meshing using singularity-restricted field. ACM Transactions on Graphics 31, 6 (Nov. 2012), 177:1-177:11. 2, 3
– reference: Kuznetsov É. D., Kholshevnikov K.V.: Estimation of the number of extrema of a spherical harmonic. Soviet Astronomy 36, 2 (1992), 220-222. 4
– reference: Zhang E., Mischaikow K., Turk G.: Vector field design on surfaces. ACM Transactions on Graphics 25, 4 (Oct. 2006), 1294-1326. 2
– reference: Jiang T., Huang J., Wang Y., Tong Y., Bao H.: Frame field singularity correction for automatic hexahedralization. IEEE Transactions on Visualization and Computer Graphics 20, 8 (2014), 1189-1199. 2
– reference: Schlick C.: An inexpensive brdf model for physically-based rendering. Computer Graphics Forum 13, 3 (1994), 233-246. 2
– reference: Huang J., Tong Y., Wei H., Bao H.: Boundary aligned smooth 3d cross-frame field. ACM Transactions on Graphics 30, 6 (Dec 2011), 143:1-143:8. 1, 2, 3, 5, 6, 8
– reference: Zheng Y., Doerschuk P.C.: Explicit computation of orthonormal symmetrized harmonics with application to the identity representation of the icosahedral group. SIAM Journal on Mathematical Analysis 32, 3 (2000), 538-554. 3
– reference: Diamanti O., Vaxman A., Panozzo D., Sorkine-Hornung O.: Designing N-polyvector fields with complex polynomials. Computer Graphics Forum 33, 5 (2014), 1-11. 3
– reference: Palacios J., Zhang E.: Rotational symmetry field design on surfaces. ACM Transaction on Graphics 26, 3 (2007), 55. 1, 2, 3, 6, 8
– reference: Huang J., Zhang M., Ma J., Liu X., Kobbelt L., Bao H.: Spectral quadrangulation with orientation and alignment control. ACM Transactions on Graphics 27, 5 (December 2008), 147:1-147:9. 2
– reference: J.F. Cornwell: Group Theory in Physics, Volume I. Academic Press, 1984. 3, 4
– reference: Fisher M., Schröder P., Desbrun M., Hoppe H.: Design of tangent vector fields. ACM Transactions on Graphics 26, 3 (Jul 2007). 2
– reference: Knöppel F., Crane K., Pinkall U., Schröder P.: Globally optimal direction fields. ACM Transactions on Graphics 32, 4 (July 2013), 59:1-59:10. 3
– reference: Palacios J., Zhang E.: Interactive visualization of rotational symmetry fields on surfaces. IEEE Transactions on Visualization and Computer Graphics 17, 7 (2011), 947-955. 6
– reference: Moakher M.: The Algebra of Fourth-Order Tensors with Application to Diffusion MRI. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 57-80. 3
– reference: Ray N., Li W.C., Lévy B., Sheffer A., Alliez P.: Periodic global parameterization. ACM Transactions on Graphics 25, 4 (2006), 1460-1485. 2
– reference: Zheng Y., Doerschuk P.C.: Explicit orthonormal fixed bases for spaces of functions that are totally symmetric under the rotational symmetries of a platonic solid. Acta Crystallographica Section A 52, 2 (1996), 221-235. 3, 4
– reference: Sloan P.-P., Kautz J., Snyder J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Transactions on Graphics 21, 3 (July 2002), 527-536. 3
– reference: Alliez P., Cohen-Steiner D., Devillers O., Lévy B., Desbrun M.: Anisotropic polygonal remeshing. ACM Transactions on Graphics 22, 3 (2003), 485-493. 2
– reference: Dong S., Kircher S., Garland M.: Harmonic functions for quadrilateral remeshing of arbitrary manifolds. Computer Aided Geometric Design 22, 5 (July 2005), 392-423. 2
– reference: Diamanti O., Vaxman A., Panozzo D., Sorkine-Hornung O.: Integrable polyvector fields. ACM Transactions on Graphics 34, 4 (2015), 38. 3
– reference: Bommes D., Zimmer H., Kobbelt L.: Mixed-integer quadrangulation. ACM Transactions on Graphics 28, 3 (2009), 1-10. 2
– reference: Nieser M., Reitebuch U., Polthier K.: Cubecover - parameterization of 3d volumes. Computer Graphics Forum 30, 5 (2011), 1397-1406. 2
– start-page: 10:1
  year: 2008
  end-page: 10:13
– start-page: 517
  year: 2000
  end-page: 526
– volume: 17
  start-page: 947
  issue: 7
  year: 2011
  end-page: 955
  article-title: Interactive visualization of rotational symmetry fields on surfaces
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 30
  start-page: 1397
  issue: 5
  year: 2011
  end-page: 1406
  article-title: Cubecover ‐ parameterization of 3d volumes
  publication-title: Computer Graphics Forum
– year: 2005
– volume: 34
  start-page: 38
  issue: 4
  year: 2015
  article-title: Integrable polyvector fields
  publication-title: ACM Transactions on Graphics
– start-page: 347
  year: 2001
  end-page: 354
– start-page: 112
  year: 2002
  end-page: 134
– year: 2003
– start-page: 156
  year: 2003
  end-page: 164
– start-page: 283
  year: 2002
  end-page: 290
– volume: 30
  start-page: 143:1
  issue: 6
  year: 2011
  end-page: 143:8
  article-title: Boundary aligned smooth 3d cross‐frame field
  publication-title: ACM Transactions on Graphics
– volume: 27
  start-page: 147:1
  issue: 5
  year: 2008
  end-page: 147:9
  article-title: Spectral quadrangulation with orientation and alignment control
  publication-title: ACM Transactions on Graphics
– start-page: 465
  year: 2000
  end-page: 470
– volume: 31
  start-page: 177:1
  issue: 6
  year: 2012
  end-page: 177:11
  article-title: All‐hex meshing using singularity‐restricted field
  publication-title: ACM Transactions on Graphics
– start-page: 57
  year: 2009
  end-page: 80
– volume: 26
  issue: 3
  year: 2007
  article-title: Design of tangent vector fields
  publication-title: ACM Transactions on Graphics
– volume: 33
  start-page: 1
  issue: 5
  year: 2014
  end-page: 11
  article-title: Designing N‐polyvector fields with complex polynomials
  publication-title: Computer Graphics Forum
– volume: 52
  start-page: 221
  issue: 2
  year: 1996
  end-page: 235
  article-title: Explicit orthonormal fixed bases for spaces of functions that are totally symmetric under the rotational symmetries of a platonic solid
  publication-title: Acta Crystallographica Section A
– start-page: 191
  year: 2002
  end-page: 191
– volume: 13
  start-page: 233
  issue: 3
  year: 1994
  end-page: 246
  article-title: An inexpensive brdf model for physically‐based rendering
  publication-title: Computer Graphics Forum
– volume: 36
  start-page: 220
  issue: 2
  year: 1992
  end-page: 222
  article-title: Estimation of the number of extrema of a spherical harmonic
  publication-title: Soviet Astronomy
– volume: 25
  start-page: 1460
  issue: 4
  year: 2006
  end-page: 1485
  article-title: Periodic global parameterization
  publication-title: ACM Transactions on Graphics
– volume: 25
  start-page: 1294
  issue: 4
  year: 2006
  end-page: 1326
  article-title: Vector field design on surfaces
  publication-title: ACM Transactions on Graphics
– volume: 20
  start-page: 1189
  issue: 8
  year: 2014
  end-page: 1199
  article-title: Frame field singularity correction for automatic hexahedralization
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 26
  start-page: 55
  issue: 3
  year: 2007
  article-title: Rotational symmetry field design on surfaces
  publication-title: ACM Transaction on Graphics
– volume: 32
  start-page: 59:1
  issue: 4
  year: 2013
  end-page: 59:10
  article-title: Globally optimal direction fields
  publication-title: ACM Transactions on Graphics
– volume: 28
  start-page: 1
  issue: 3
  year: 2009
  end-page: 10
  article-title: Mixed‐integer quadrangulation
  publication-title: ACM Transactions on Graphics
– start-page: 118:1
  year: 2010
  end-page: 118:8
– volume: I
  year: 1984
– start-page: 355
  year: 2001
  end-page: 360
– start-page: 377
  year: 2009
  end-page: 396
– volume: 21
  start-page: 527
  issue: 3
  year: 2002
  end-page: 536
  article-title: Precomputed radiance transfer for real‐time rendering in dynamic, low‐frequency lighting environments
  publication-title: ACM Transactions on Graphics
– volume: 22
  start-page: 485
  issue: 3
  year: 2003
  end-page: 493
  article-title: Anisotropic polygonal remeshing
  publication-title: ACM Transactions on Graphics
– volume: 22
  start-page: 392
  issue: 5
  year: 2005
  end-page: 423
  article-title: Harmonic functions for quadrilateral remeshing of arbitrary manifolds
  publication-title: Computer Aided Geometric Design
– year: 2015
– volume: 32
  start-page: 538
  issue: 3
  year: 2000
  end-page: 554
  article-title: Explicit computation of orthonormal symmetrized harmonics with application to the identity representation of the icosahedral group
  publication-title: SIAM Journal on Mathematical Analysis
– ident: e_1_2_10_10_2
  doi: 10.1145/2070781.2024177
– ident: e_1_2_10_12_2
  doi: 10.1145/1409060.1409100
– ident: e_1_2_10_14_2
  doi: 10.1109/TVCG.2013.250
– ident: e_1_2_10_15_2
  doi: 10.1145/2461912.2462005
– ident: e_1_2_10_9_2
– start-page: 112
  volume-title: Mathematical Visualization III
  year: 2002
  ident: e_1_2_10_24_2
– ident: e_1_2_10_31_2
– ident: e_1_2_10_4_2
  doi: 10.1016/j.cagd.2005.04.004
– ident: e_1_2_10_26_2
  doi: 10.1109/TVCG.2010.121
– start-page: 57
  volume-title: The Algebra of Fourth‐Order Tensors with Application to Diffusion MRI
  year: 2009
  ident: e_1_2_10_20_2
– ident: e_1_2_10_29_2
  doi: 10.1145/1356682.1356683
– ident: e_1_2_10_6_2
  doi: 10.1111/cgf.12426
– volume: 36
  start-page: 220
  issue: 2
  year: 1992
  ident: e_1_2_10_18_2
  article-title: Estimation of the number of extrema of a spherical harmonic
  publication-title: Soviet Astronomy
– ident: e_1_2_10_22_2
  doi: 10.1111/j.1467-8659.2011.02014.x
– ident: e_1_2_10_37_2
  doi: 10.1137/S0036141098341770
– ident: e_1_2_10_16_2
  doi: 10.1145/1242073.1242204
– ident: e_1_2_10_7_2
  doi: 10.1145/2766906
– volume-title: Group Theory in Physics
  year: 1984
  ident: e_1_2_10_13_2
– ident: e_1_2_10_39_2
  doi: 10.1145/1183287.1183290
– ident: e_1_2_10_27_2
  doi: 10.1145/1183287.1183297
– ident: e_1_2_10_25_2
  doi: 10.1145/1276377.1276446
– ident: e_1_2_10_3_2
  doi: 10.1145/1531326.1531383
– ident: e_1_2_10_32_2
  doi: 10.1145/566654.566612
– ident: e_1_2_10_36_2
  doi: 10.1107/S0108767395012888
– ident: e_1_2_10_30_2
  doi: 10.1111/1467-8659.1330233
– volume-title: ACM SIGGRAPH Courses
  year: 2005
  ident: e_1_2_10_5_2
– ident: e_1_2_10_19_2
  doi: 10.1145/2366145.2366196
– ident: e_1_2_10_28_2
– start-page: 347
  volume-title: ACM SIGGRAPH
  year: 2001
  ident: e_1_2_10_33_2
– ident: e_1_2_10_2_2
  doi: 10.1145/882262.882296
– start-page: 377
  volume-title: Proceedings of the 18th International Meshing Roundtable
  year: 2009
  ident: e_1_2_10_34_2
  doi: 10.1007/978-3-642-04319-2_22
– start-page: 156
  volume-title: Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing
  year: 2003
  ident: e_1_2_10_17_2
– start-page: 355
  volume-title: ACM SIGGRAPH
  year: 2001
  ident: e_1_2_10_35_2
– ident: e_1_2_10_8_2
  doi: 10.1145/1276377.1276447
– ident: e_1_2_10_38_2
  doi: 10.1145/1833351.1778855
– start-page: 283
  volume-title: Proc. of Visualization
  year: 2002
  ident: e_1_2_10_21_2
– start-page: 465
  volume-title: ACM SIGGRAPH
  year: 2000
  ident: e_1_2_10_23_2
– ident: e_1_2_10_11_2
  doi: 10.1145/344779.345074
SSID ssj0004765
Score 2.1868732
Snippet Representing rotational symmetry vector as a set of vectors is not suitable for design due to lacking of a consistent ordering for measurement. In this paper...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 507
SubjectTerms Analysis
Categories and Subject Descriptors (according to ACM CCS)
Eigenvalues
Eigenvectors
Fields (mathematics)
Group dynamics
Harmonic functions
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Geometric algorithms
Image processing systems
Invariants
Mathematical analysis
Spherical harmonics
Studies
Symmetry
Topological manifolds
Title Harmonic Functions for Rotational Symmetry Vector Fields
URI https://api.istex.fr/ark:/67375/WNG-HG02R8T0-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.13047
https://www.proquest.com/docview/1832804333
https://www.proquest.com/docview/1855386490
Volume 35
WOSCitedRecordID wos000388497400051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH-ClgMcGAMmCgwFhBCXSEljx7Y4TWxpD6hCHTBulu04aNraTmk7wX-Pn5uEIm0SErdIfpae3red598DOCVCJaLQRZgzIkKSahoqFuc4zb1LTKzdIZr4YRNsMOD39-J6BS7qtzALfIjmwg09w8drdHClp0tObh4KHGVM2Cq0u85uaQvaX4fZ7dXLs0iW0hraG0FjKmAhbORpNr9KR22U7OOrWnO5YvUpJ_vwLma3YLOqNIMvC9P4CCt2vA0bS_iDO8D7qhwhNm6QufTmLTBwRWwwnMyqO8Lg-9NoZGflU3Dnr_eDDDveprtwm327ueyH1SiF0CSpCyM5tS40pZbbWOtUEE4KYxVRWpiER8IdEwvE1Sc51Uy5nEXTorBuY1dp4nRmkk_QGk_Gdg8CbpM4UUYpbgVhOVWM68jEcZFo1DrvwHktUWkqnHEcd_Fb1ucNJwzphdGBk4b0zwJc419EZ14tDYUqf2E3GqPyx6An-72oO-Q3kbzuwGGtN1k54lRixOII0pZ04LhZdi6E_0XU2E7mSENd2E-JiBzvXov_50Ze9jL_sf920gNYd2VWumgBPITWrJzbz7Bm_s5-TsujymqfAZcH7WE
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8xirTxwMcGonxm0zTtJVLSOLEt8YKAtIiuQl3ZeLNsx0HT1halBcF_j89NQpGYhMRbJJ8l6759Of8O4CvhMuK5yv2MEu6TRMW-pGGG09xbRIfKXqKJGzZBez12dcUvFuCwegszw4eoC25oGc5fo4FjQXrOyvV1jrOMCX0HDWLVyOp346SfXnaf3kXSJK6wvRE1pkQWwk6eevOzeNRA1t4_SzbnU1YXc9LVt512DVbKXNM7minHOiyY0UdYnkMg_ASsI4shouN6qQ1wTgc9m8Z6_fG0rBJ6Px-GQzMtHrxfrsDvpdjzNtmAy_R0cNzxy2EKvo4S60iy2FjnlBhmQqUSThjJtZFEKq4jFnB7UcwRWZ9ksaLSRq04yXNjN7akIlZqOtqExdF4ZLbAYyYKI6mlZIYTmsWSMhXoMMwjhXJnTfhesVToEmkcB178E9WNwzJDOGY04UtNejOD13iJ6JuTS00hi7_Yj0Zj8bvXFp120OqzQSAumrBbCU6UpjgR6LMYwrRFTfhcL1sjwj8jcmTGt0gTW8efEB7Yszsx_v804riduo_t15MewPvO4EdXdM965zvwwSZdyawhcBcWp8Wt2YMlfTf9Myn2SxV-BNWr8VE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_aZJTuofvoSrN2mzfG2IvBjmVLgr2Mdk7GQghZs-VNSLI0SpukOOlY__vpFNtLYIPC3gw6gbjTffr0O4C3hMuEW2XDghIekkyloaRxgdPcu0THyiXRxA-boMMhm075aAc-1G9h1vgQTcENNcPba1Rwc1PYDS3XPyzOMiZ0F9oEh8i0oH0-zieDP-8iaZbW2N6IGlMhC2EnT7N5yx-1kbW_toLNzZDV-5z80f-d9jEcVLFm8HF9OZ7Ajpk_hYcbCISHwPqynCE6bpA7B-fvYODC2GC8WFVVwuDr3WxmVuVd8M0X-IMce96Wz2CSf7o464fVMIVQJ5kzJEVqnHHKDDOxUhknjFhtJJGK64RF3CWKFpH1SZEqKp3XSjNrjdvYlYo4qenkCFrzxdwcQ8BMEidSS8kMJ7RIJWUq0nFsE4VyZx14X7NU6AppHAdeXIs643DMEJ4ZHXjTkN6s4TX-RvTOy6WhkOUV9qPRVHwf9kS_F3XH7CISow6c1oITlSouBdoshjBtSQdeN8tOifDPiJybxS3SpM7wZ4RH7uxejP8-jTjr5f7j-f1JX8He6DwXg8_DLyew72KubN0PeAqtVXlrXsAD_XN1uSxfVjf4N3WH8Mw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harmonic+Functions+for+Rotational+Symmetry+Vector+Fields&rft.jtitle=Computer+graphics+forum&rft.au=Shen%2C+Zhongwei&rft.au=Fang%2C+Xianzhong&rft.au=Liu%2C+Xinguo&rft.au=Bao%2C+Hujun&rft.date=2016-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=35&rft.issue=7&rft.spage=507&rft.epage=516&rft_id=info:doi/10.1111%2Fcgf.13047&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_HG02R8T0_P
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon