Volumetric Data Reduction in a Compressed Sensing Framework
In this paper, we investigate compressed sensing principles to devise an in‐situ data reduction framework for visualization of volumetric datasets. We exploit the universality of the compressed sensing framework and show that the proposed method offers a refinable data reduction approach for volumet...
Saved in:
| Published in: | Computer graphics forum Vol. 33; no. 3; pp. 111 - 120 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Blackwell Publishing Ltd
01.06.2014
|
| Subjects: | |
| ISSN: | 0167-7055, 1467-8659 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we investigate compressed sensing principles to devise an in‐situ data reduction framework for visualization of volumetric datasets. We exploit the universality of the compressed sensing framework and show that the proposed method offers a refinable data reduction approach for volumetric datasets. The accurate reconstruction is obtained from partial Fourier measurements of the original data that are sensed without any prior knowledge of specific feature domains for the data. Our experiments demonstrate the superiority of surfacelets for efficient representation of volumetric data. Moreover, we establish that the accuracy of reconstruction can further improve once a more effective basis for a sparser representation of the data becomes available. |
|---|---|
| AbstractList | In this paper, we investigate compressed sensing principles to devise an in‐situ data reduction framework for visualization of volumetric datasets. We exploit the universality of the compressed sensing framework and show that the proposed method offers a refinable data reduction approach for volumetric datasets. The accurate reconstruction is obtained from partial Fourier measurements of the original data that are sensed without any prior knowledge of specific feature domains for the data. Our experiments demonstrate the superiority of surfacelets for efficient representation of volumetric data. Moreover, we establish that the accuracy of reconstruction can further improve once a more effective basis for a sparser representation of the data becomes available. In this paper, we investigate compressed sensing principles to devise an in-situ data reduction framework for visualization of volumetric datasets. We exploit the universality of the compressed sensing framework and show that the proposed method offers a refinable data reduction approach for volumetric datasets. The accurate reconstruction is obtained from partial Fourier measurements of the original data that are sensed without any prior knowledge of specific feature domains for the data. Our experiments demonstrate the superiority of surfacelets for efficient representation of volumetric data. Moreover, we establish that the accuracy of reconstruction can further improve once a more effective basis for a sparser representation of the data becomes available. [PUBLICATION ABSTRACT] |
| Author | Entezari, A. Xu, X. Sakhaee, E. |
| Author_xml | – sequence: 1 givenname: X. surname: Xu fullname: Xu, X. organization: University of Florida, USA – sequence: 2 givenname: E. surname: Sakhaee fullname: Sakhaee, E. organization: University of Florida, USA – sequence: 3 givenname: A. surname: Entezari fullname: Entezari, A. organization: University of Florida, USA |
| BookMark | eNp1kD1PwzAQhi0EEqUw8A8iscCQ1k7s2BETFFqQECA-KxbLOBdkSOJiJyr8e1wKDAhuuZP8PKfzu4FWG9sAQtsED0iooX4qByRJM76CeoRmPBYZy1dRD5Mwc8zYOtrw_hljTHnGemj_zlZdDa0zOjpSrYquoOh0a2wTmSZS0cjWMwfeQxFdQ-NN8xSNnaphbt3LJlorVeVh66v30e34-GZ0Ep9dTE5HB2exTjPBY80oE3lKhCiIogXBIDQjFENaQpmogpYixSoJU6bLnOH0MWGc0EfCIed5maR9tLvcO3P2tQPfytp4DVWlGrCdl4SxPMspFiSgO7_QZ9u5JlwXKMoWKeAsUMMlpZ313kEptWnV4tOtU6aSBMtFmDKEKT_DDMbeL2PmTK3c-5_s1_a5qeD9f1COJuNvI14axrfw9mMo9yLDK2fy_nwipw_s5vJQTCVNPwArXpJ_ |
| CitedBy_id | crossref_primary_10_1007_s00371_016_1253_9 crossref_primary_10_1109_TMM_2017_2757759 crossref_primary_10_1109_TVCG_2014_2346324 crossref_primary_10_1007_s41019_017_0042_4 crossref_primary_10_1109_TVCG_2018_2816059 crossref_primary_10_1111_cgf_12622 |
| Cites_doi | 10.1137/090756855 10.1109/SC.2008.5213922 10.1109/JPROC.2010.2044010 10.1007/978-1-4419-7011-4 10.1137/S1064827596304010 10.1109/TIT.2005.862083 10.1109/TIT.2006.885507 10.1088/0266-5611/25/12/123009 10.1137/05064182X 10.1109/MSP.2007.914728 10.1109/TIT.2006.871582 10.1109/MSP.2007.914730 10.1109/MCG.2009.120 10.1109/TIT.2007.909108 10.1016/j.procs.2010.04.122 10.1126/science.1197448 10.1109/TIT.2005.858979 10.1007/978-0-8176-8316-0 10.1109/VISUAL.2003.1250385 10.1109/TVCG.2007.70516 10.1111/j.1467-8659.2012.03124.x 10.1109/IranianCEE.2013.6599843 10.1109/TVCG.2011.214 10.1002/mrm.21391 10.1109/TIP.2007.891785 10.1109/SFCS.2005.5464411 10.1109/5.843002 |
| ContentType | Journal Article |
| Copyright | 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2014 The Eurographics Association and John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2014 The Eurographics Association and John Wiley & Sons Ltd. |
| DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1111/cgf.12367 |
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1467-8659 |
| EndPage | 120 |
| ExternalDocumentID | 3372545561 10_1111_cgf_12367 CGF12367 ark_67375_WNG_XZ5TPB8X_4 |
| Genre | article Feature |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN WRC AAYXX CITATION O8X 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c3687-c545893188d1a4d10e8c5140e3fef2ad4f830a22ad6cf9503b25714b17e979f23 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340597400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 |
| IngestDate | Sun Nov 09 09:31:02 EST 2025 Sun Nov 30 04:56:30 EST 2025 Sat Nov 29 03:41:10 EST 2025 Tue Nov 18 21:08:37 EST 2025 Wed Jan 22 16:24:44 EST 2025 Tue Nov 11 03:33:10 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3687-c545893188d1a4d10e8c5140e3fef2ad4f830a22ad6cf9503b25714b17e979f23 |
| Notes | istex:943ECE8FA06BDD80D860A2249CFAB700BB8067EF ArticleID:CGF12367 ark:/67375/WNG-XZ5TPB8X-4 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1545016706 |
| PQPubID | 30877 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1559694081 proquest_journals_1545016706 crossref_citationtrail_10_1111_cgf_12367 crossref_primary_10_1111_cgf_12367 wiley_primary_10_1111_cgf_12367_CGF12367 istex_primary_ark_67375_WNG_XZ5TPB8X_4 |
| PublicationCentury | 2000 |
| PublicationDate | June 2014 |
| PublicationDateYYYYMMDD | 2014-06-01 |
| PublicationDate_xml | – month: 06 year: 2014 text: June 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationTitleAlternate | Computer Graphics Forum |
| PublicationYear | 2014 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Candès E., Tao T.: Near-optimal signal recovery from random projections: Universal encoding strategies. IEEE Transactions on Information Theory 52, 12 (2006), 5406-5425. 3 Candès E., Tao T.: Decoding by linear programming. IEEE Transactions on Information Theory 51, 12 (2005). 3 Lustig M., Donoho D., Pauly J.: Sparse mri: The application of compressed sensing for rapid mr imaging. Magnetic Resonance in Medicine 58, 6 (2007), 1182-1195. 1 Franco J., BernabÃl' G., Fernãandez J., UjaldÃşn M.: Parallel 3d fast wavelet transform on many-core gpus and multicore cpus. Procedia Computer Science 1, 1 (2010), 1101-1110. 9 Pan X., Sidky E., Vannier M.: Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Problems 25, 12 (2009), 123009. 1 Kutyniok G., Labate D.: Shearlets: Multiscale Analysis for Multivariate Data, first ed. Birkhauser Publication, 2012. 1, 4 Chen S., Donoho D., Saunders M.: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20, 1 (1998), 33-61. 3, 4 Hassanieh H., Indyk P., Katabi D., Price E.: Simple and practical algorithm for sparse fourier transform. In Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms (2012), SODA '12, SIAM, pp. 1183-1194. 9 Lustig M., Donoho D., Santos J., Pauly J.: Compressed sensing mri. Signal Processing Magazine, IEEE 25, 2 (march 2008), 72-82. 1 Candès E., Romberg J., Tao T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52, 2 (2006), 489-509. 3 Tropp J., Wright S.: Computational methods for sparse solution of linear inverse problems. Proceedings of the IEEE 98, 6 (2010), 948-958. 3, 4 Baraniuk R.: More is less: Signal processing and the data deluge. Science 331, 6018 (2011), 717-719. 1 Donoho D.: Compressed sensing. IEEE Transactions on Information Theory 52, 4 (2006), 1289-1306. 3, 4 Elad M.: Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing. Springer, 2010. 2 Becker S., Bobin J., Candès E.: NESTA: A fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sciences 4, 1 (2011), 1-39. 5 Candès E., Romberg J., Tao T.: Robust uncertainty principles: exact signal, reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52, 2 (2006), 489-509. 3, 4 Gobbetti E., Guitián J. A. I., Marton F.: COVRA: A compression-domain output-sensitive volume rendering architecture based on a sparse representation of voxel blocks. Comput. Graph. Forum 31, 3 (2012), 1315-1324. 2 Ma K.: In situ visualization at extreme scale: Challenges and opportunities. Computer Graphics and Applications, IEEE 29, 6 (2009), 14-19. 2 Unser M.: Sampling-50 Years after Shannon. Proceedings of the IEEE 88, 4 (April 2000), 569-587. 1 Duarte M., Davenport M., Takhar D., Laska J., Sun T., Kelly K., Baraniuk R.: Single-pixel imaging via compressive sampling. Signal Processing Magazine, IEEE 25, 2 (2008), 83-91. 1 Tropp J., Gilbert A.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory 53, 12 (2007), 4655-4666. 3 Candès E., Demanet L., Donoho D., Ying L.: Fast discrete curvelet transforms. Multiscale Modeling & Simulation 5, 3 (Jan. 2006), 861-899. 1, 4, 5 2009; 25 2010; 98 2006; 52 2012 2011 2010 2000; 88 2008 2006; 5 2007 2005 2003 2006; 2 2011; 4 2007; 53 1998; 20 2007; 78 2011; 331 2012; 31 2007; 58 2009; 29 2010; 1 2005; 51 2008; 25 2013 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 Ma K. (e_1_2_7_31_2) 2007 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_2 Hassanieh H. (e_1_2_7_23_2) 2012 e_1_2_7_29_2 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_36_2 e_1_2_7_37_2 |
| References_xml | – reference: Ma K.: In situ visualization at extreme scale: Challenges and opportunities. Computer Graphics and Applications, IEEE 29, 6 (2009), 14-19. 2 – reference: Tropp J., Wright S.: Computational methods for sparse solution of linear inverse problems. Proceedings of the IEEE 98, 6 (2010), 948-958. 3, 4 – reference: Candès E., Romberg J., Tao T.: Robust uncertainty principles: exact signal, reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52, 2 (2006), 489-509. 3, 4 – reference: Duarte M., Davenport M., Takhar D., Laska J., Sun T., Kelly K., Baraniuk R.: Single-pixel imaging via compressive sampling. Signal Processing Magazine, IEEE 25, 2 (2008), 83-91. 1 – reference: Elad M.: Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing. Springer, 2010. 2 – reference: Hassanieh H., Indyk P., Katabi D., Price E.: Simple and practical algorithm for sparse fourier transform. In Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms (2012), SODA '12, SIAM, pp. 1183-1194. 9 – reference: Unser M.: Sampling-50 Years after Shannon. Proceedings of the IEEE 88, 4 (April 2000), 569-587. 1 – reference: Baraniuk R.: More is less: Signal processing and the data deluge. Science 331, 6018 (2011), 717-719. 1 – reference: Candès E., Demanet L., Donoho D., Ying L.: Fast discrete curvelet transforms. Multiscale Modeling & Simulation 5, 3 (Jan. 2006), 861-899. 1, 4, 5 – reference: Pan X., Sidky E., Vannier M.: Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Problems 25, 12 (2009), 123009. 1 – reference: Lustig M., Donoho D., Santos J., Pauly J.: Compressed sensing mri. Signal Processing Magazine, IEEE 25, 2 (march 2008), 72-82. 1 – reference: Lustig M., Donoho D., Pauly J.: Sparse mri: The application of compressed sensing for rapid mr imaging. Magnetic Resonance in Medicine 58, 6 (2007), 1182-1195. 1 – reference: Candès E., Tao T.: Decoding by linear programming. IEEE Transactions on Information Theory 51, 12 (2005). 3 – reference: Kutyniok G., Labate D.: Shearlets: Multiscale Analysis for Multivariate Data, first ed. Birkhauser Publication, 2012. 1, 4 – reference: Tropp J., Gilbert A.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory 53, 12 (2007), 4655-4666. 3 – reference: Candès E., Romberg J., Tao T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52, 2 (2006), 489-509. 3 – reference: Donoho D.: Compressed sensing. IEEE Transactions on Information Theory 52, 4 (2006), 1289-1306. 3, 4 – reference: Candès E., Tao T.: Near-optimal signal recovery from random projections: Universal encoding strategies. IEEE Transactions on Information Theory 52, 12 (2006), 5406-5425. 3 – reference: Becker S., Bobin J., Candès E.: NESTA: A fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sciences 4, 1 (2011), 1-39. 5 – reference: Franco J., BernabÃl' G., Fernãandez J., UjaldÃşn M.: Parallel 3d fast wavelet transform on many-core gpus and multicore cpus. Procedia Computer Science 1, 1 (2010), 1101-1110. 9 – reference: Chen S., Donoho D., Saunders M.: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20, 1 (1998), 33-61. 3, 4 – reference: Gobbetti E., Guitián J. A. I., Marton F.: COVRA: A compression-domain output-sensitive volume rendering architecture based on a sparse representation of voxel blocks. Comput. Graph. Forum 31, 3 (2012), 1315-1324. 2 – year: 2011 – start-page: 293 year: 2003 end-page: 300 – volume: 1 start-page: 1101 issue: 1 year: 2010 end-page: 1110 article-title: Parallel 3d fast wavelet transform on many‐core gpus and multicore cpus publication-title: Procedia Computer Science – volume: 98 start-page: 948 issue: 6 year: 2010 end-page: 958 article-title: Computational methods for sparse solution of linear inverse problems publication-title: Proceedings of the IEEE – start-page: 1 year: 2008 end-page: 12 – volume: 78 start-page: 012 year: 2007 end-page: 043 – year: 2005 – start-page: 1600 year: 2007 end-page: 1607 – volume: 331 start-page: 717 issue: 6018 year: 2011 end-page: 719 article-title: More is less: Signal processing and the data deluge publication-title: Science – volume: 25 start-page: 123009 issue: 12 year: 2009 article-title: Why do commercial CT scanners still employ traditional, filtered back‐projection for image reconstruction? publication-title: Inverse Problems – volume: 25 start-page: 83 issue: 2 year: 2008 end-page: 91 article-title: Single‐pixel imaging via compressive sampling publication-title: Signal Processing Magazine, IEEE – volume: 20 start-page: 33 issue: 1 year: 1998 end-page: 61 article-title: Atomic decomposition by basis pursuit publication-title: SIAM Journal on Scientific Computing – volume: 2 start-page: 489 year: 2006 end-page: 509 article-title: Robust uncertainty principles: exact signal, reconstruction from highly incomplete frequency information publication-title: IEEE Transactions on Information Theory 52 – year: 2007 – volume: 51 issue: 12 year: 2005 article-title: Decoding by linear programming publication-title: IEEE Transactions on Information Theory – volume: 31 start-page: 1315 issue: 3 year: 2012 end-page: 1324 article-title: COVRA: A compression‐domain output‐sensitive volume rendering architecture based on a sparse representation of voxel blocks publication-title: Comput. Graph. Forum – volume: 5 start-page: 861 issue: 3 year: 2006 end-page: 899 article-title: Fast discrete curvelet transforms publication-title: Multiscale Modeling & Simulation – volume: 25 start-page: 72 issue: 2 year: 2008 end-page: 82 article-title: Compressed sensing mri publication-title: Signal Processing Magazine, IEEE – start-page: 1 year: 2013 end-page: 6 – year: 2010 – year: 2012 – volume: 52 start-page: 5406 issue: 12 year: 2006 end-page: 5425 article-title: Near‐optimal signal recovery from random projections: Universal encoding strategies publication-title: IEEE Transactions on Information Theory – volume: 58 start-page: 1182 issue: 6 year: 2007 end-page: 1195 article-title: Sparse mri: The application of compressed sensing for rapid mr imaging publication-title: Magnetic Resonance in Medicine – volume: 52 start-page: 489 issue: 2 year: 2006 end-page: 509 article-title: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information publication-title: IEEE Transactions on Information Theory – year: 2008 – volume: 88 start-page: 569 issue: 4 year: 2000 end-page: 587 article-title: Sampling—50 Years after Shannon publication-title: Proceedings of the IEEE – start-page: 1183 year: 2012 end-page: 1194 – volume: 29 start-page: 14 issue: 6 year: 2009 end-page: 19 article-title: In situ visualization at extreme scale: Challenges and opportunities publication-title: Computer Graphics and Applications, IEEE – volume: 52 start-page: 1289 issue: 4 year: 2006 end-page: 1306 article-title: Compressed sensing publication-title: IEEE Transactions on Information Theory – volume: 4 start-page: 1 issue: 1 year: 2011 end-page: 39 article-title: NESTA: A fast and accurate first‐order method for sparse recovery publication-title: SIAM J. Imaging Sciences – start-page: 918 year: 2007 end-page: 931 – volume: 53 start-page: 4655 issue: 12 year: 2007 end-page: 4666 article-title: Signal recovery from random measurements via orthogonal matching pursuit publication-title: IEEE Transactions on Information Theory – start-page: 2135 year: 2011 end-page: 2143 – year: 2013 – ident: e_1_2_7_5_2 – ident: e_1_2_7_3_2 doi: 10.1137/090756855 – ident: e_1_2_7_16_2 – ident: e_1_2_7_22_2 doi: 10.1109/SC.2008.5213922 – ident: e_1_2_7_36_2 doi: 10.1109/JPROC.2010.2044010 – ident: e_1_2_7_17_2 doi: 10.1007/978-1-4419-7011-4 – start-page: 1183 volume-title: Simple and practical algorithm for sparse fourier transform year: 2012 ident: e_1_2_7_23_2 – ident: e_1_2_7_8_2 doi: 10.1137/S1064827596304010 – ident: e_1_2_7_10_2 doi: 10.1109/TIT.2005.862083 – ident: e_1_2_7_13_2 doi: 10.1109/TIT.2006.885507 – ident: e_1_2_7_32_2 doi: 10.1088/0266-5611/25/12/123009 – ident: e_1_2_7_19_2 – ident: e_1_2_7_6_2 doi: 10.1137/05064182X – ident: e_1_2_7_27_2 doi: 10.1109/MSP.2007.914728 – ident: e_1_2_7_15_2 doi: 10.1109/TIT.2006.871582 – ident: e_1_2_7_14_2 doi: 10.1109/MSP.2007.914730 – ident: e_1_2_7_4_2 doi: 10.1137/090756855 – ident: e_1_2_7_29_2 doi: 10.1109/MCG.2009.120 – ident: e_1_2_7_35_2 doi: 10.1109/TIT.2007.909108 – ident: e_1_2_7_18_2 doi: 10.1016/j.procs.2010.04.122 – ident: e_1_2_7_2_2 doi: 10.1126/science.1197448 – ident: e_1_2_7_9_2 doi: 10.1109/TIT.2005.862083 – ident: e_1_2_7_12_2 doi: 10.1109/TIT.2005.858979 – start-page: 012 volume-title: Journal of Physics: Conference Series year: 2007 ident: e_1_2_7_31_2 – ident: e_1_2_7_24_2 doi: 10.1007/978-0-8176-8316-0 – ident: e_1_2_7_34_2 doi: 10.1109/VISUAL.2003.1250385 – ident: e_1_2_7_20_2 doi: 10.1109/TVCG.2007.70516 – ident: e_1_2_7_21_2 doi: 10.1111/j.1467-8659.2012.03124.x – ident: e_1_2_7_30_2 doi: 10.1109/IranianCEE.2013.6599843 – ident: e_1_2_7_33_2 doi: 10.1109/TVCG.2011.214 – ident: e_1_2_7_26_2 doi: 10.1002/mrm.21391 – ident: e_1_2_7_25_2 doi: 10.1109/TIP.2007.891785 – ident: e_1_2_7_11_2 doi: 10.1109/SFCS.2005.5464411 – ident: e_1_2_7_37_2 doi: 10.1109/5.843002 – ident: e_1_2_7_7_2 – ident: e_1_2_7_28_2 |
| SSID | ssj0004765 |
| Score | 2.111251 |
| Snippet | In this paper, we investigate compressed sensing principles to devise an in‐situ data reduction framework for visualization of volumetric datasets. We exploit... In this paper, we investigate compressed sensing principles to devise an in-situ data reduction framework for visualization of volumetric datasets. We exploit... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 111 |
| SubjectTerms | Analysis Categories and Subject Descriptors (according to ACM CCS) Compressed Computer graphics Data reduction Detection Fourier analysis I.4.10 [Image Processing and Computer Vision]: Image Representation-Volumetric I.4.2 [Image Processing and Computer Vision]: Compression-Approximate methods I.4.5 [Image Processing and Computer Vision]: Reconstruction-Transform methods Image processing systems Reconstruction Representations Studies Visualization Volumetric analysis |
| Title | Volumetric Data Reduction in a Compressed Sensing Framework |
| URI | https://api.istex.fr/ark:/67375/WNG-XZ5TPB8X-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12367 https://www.proquest.com/docview/1545016706 https://www.proquest.com/docview/1559694081 |
| Volume | 33 |
| WOSCitedRecordID | wos000340597400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFD64jg_rw3pZF2e9kBVZfKl0ekkafPJW90EG8bIO-xLSNBHZpS4zo_jzPSfT1hEUBF9KoKdwOLd8aU6-AGzHItSZsCJwhUgDXH8lgc6iOHCm4EamDlGqp8w_Ff1-NhjIsxnYa87CTPgh2h9ulBm-XlOC62I0leTmxu16_rFP0KFDVbjy6hyd51enz8ciBU8bam8ijamJhaiRp_34xXTUIcs-vsCa04jVTzn5woeUXYQvNdJk-5PQWIIZWy3D_BT_4FfY--1rE5H0syM91uyciFzJVey2YppRsfDk4iW7oEb36oblTTPXClzlx5eHv4L6NoXAxBwriaEtMokpnJU9nZS90GYG0VJoY2ddpMvEZXGoIxxx42QaxgVmcy8pesJKIV0Uf4PZ6q6yq8AcR1DDk9JElic6kkVaSK4RXBhp8am7sNMYVZmaapxuvPinmiUH2kN5e3RhqxX9P-HXeE3op_dMK6GHf6khTaTqun-iBn_Sy7ODbKCSLqw3rlN1Lo4UgUSKgZB34Uf7GrOItkZ0Ze_uSSaVGKeoPOruHfm2NurwJPeD7-8XXYPPiLSSSY_ZOsyOh_d2A-bMw_h2NNysA_cJKfHtmQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3_S9wwFH_o3UD3w3S64W0645DhLx29Nk0atl_8sqp4O8SdeuyXkKbJIRt1nOfYn7-8XFtPUBD8pQT6Co_3LZ80L58AbMc8VCk3PLA5TwK3_qKBSqM4sDpnWiTWoVRPmd_j_X46HIrTOfhan4WZ8kM0P9wwM3y9xgTHH9IzWa5H9rMnIJuHNmUxT1vQPjjLznt35yI5S2pub2SNqZiFsJOn-fjefNRG0_67BzZnIaufc7Kl52m7DK8qrEl2p8HxGuZMuQIvZxgIV-HLha9OSNNPDtREkTOkckVnkauSKILlwtOLF-QHtrqXI5LV7Vxv4Dz7Ntg_Cqr7FAIdM1dLNG6SCZfEadFVtOiGJtUOL4UmtsZGqqA2jUMVuRHTViRhnLt87tK8y43gwkbxW2iV16VZA2KZgzWMFjoyjKpI5EkumHLwQgvjnqoDO7VVpa7IxvHOi9-yXnQ4e0hvjw58bET_TBk2HhL65F3TSKjxL2xJ44m87B_K4c9kcLqXDiXtwHrtO1ll441EmIhBELIObDWvXR7h5ogqzfUtyiTCRapT3unuPfm4NnL_MPODd08X3YSFo8H3nuwd90_ew6LDXXTacbYOrcn41mzAC_13cnUz_lBF8X9uOPGJ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD50SRnrQ3dnabtVK6PsxcOxdbFoX7qm7sZCCL2GvQhZlkrZcEuajv386ii2l0IHg70YgY_hcG76ZB19AviQilhnworIFYJFfv1FI50laeRMwY1kzqPUQJk_FKNRNpnI8RLsNmdh5vwQ7Q83zIxQrzHB7XXpFrLcXLhPgYDsEXQpk4x2oDs4yk-Hf85FCs4abm9kjamZhbCTp_343nzURdP-vgc2FyFrmHPyp_-n7TNYrbEm2ZsHx3NYstULWFlgIHwJO2ehOiFNPxnomSZHSOWKziKXFdEEy0WgFy_JMba6Vxckb9q5XsFpfnCy_yWq71OITMp9LTG4SSZ9EmdlX9OyH9vMeLwU29RZl-iSuiyNdeJH3DjJ4rTw-dynRV9YKaRL0tfQqa4q-waI4x7WcFqaxHKqE1mwQnLt4YWR1j91Dz42VlWmJhvHOy9-qmbR4e2hgj16sNWKXs8ZNh4S2g6uaSX09Ae2pAmmzkeHavKdnYw_ZxNFe7DR-E7V2XijECZiEMS8B-_b1z6PcHNEV_bqFmWY9JHqlfe6B0_-XRu1f5iHwdq_i27C4_EgV8Ovo2_r8MTDLjpvONuAzmx6a9_Csvk1u7yZvquD-A4NZPEE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Volumetric+Data+Reduction+in+a+Compressed+Sensing+Framework&rft.jtitle=Computer+graphics+forum&rft.au=Xu%2C+X.&rft.au=Sakhaee%2C+E.&rft.au=Entezari%2C+A.&rft.date=2014-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=3&rft.spage=111&rft.epage=120&rft_id=info:doi/10.1111%2Fcgf.12367&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_XZ5TPB8X_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |