Volumetric Data Reduction in a Compressed Sensing Framework

In this paper, we investigate compressed sensing principles to devise an in‐situ data reduction framework for visualization of volumetric datasets. We exploit the universality of the compressed sensing framework and show that the proposed method offers a refinable data reduction approach for volumet...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum Vol. 33; no. 3; pp. 111 - 120
Main Authors: Xu, X., Sakhaee, E., Entezari, A.
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.06.2014
Subjects:
ISSN:0167-7055, 1467-8659
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we investigate compressed sensing principles to devise an in‐situ data reduction framework for visualization of volumetric datasets. We exploit the universality of the compressed sensing framework and show that the proposed method offers a refinable data reduction approach for volumetric datasets. The accurate reconstruction is obtained from partial Fourier measurements of the original data that are sensed without any prior knowledge of specific feature domains for the data. Our experiments demonstrate the superiority of surfacelets for efficient representation of volumetric data. Moreover, we establish that the accuracy of reconstruction can further improve once a more effective basis for a sparser representation of the data becomes available.
AbstractList In this paper, we investigate compressed sensing principles to devise an in‐situ data reduction framework for visualization of volumetric datasets. We exploit the universality of the compressed sensing framework and show that the proposed method offers a refinable data reduction approach for volumetric datasets. The accurate reconstruction is obtained from partial Fourier measurements of the original data that are sensed without any prior knowledge of specific feature domains for the data. Our experiments demonstrate the superiority of surfacelets for efficient representation of volumetric data. Moreover, we establish that the accuracy of reconstruction can further improve once a more effective basis for a sparser representation of the data becomes available.
In this paper, we investigate compressed sensing principles to devise an in-situ data reduction framework for visualization of volumetric datasets. We exploit the universality of the compressed sensing framework and show that the proposed method offers a refinable data reduction approach for volumetric datasets. The accurate reconstruction is obtained from partial Fourier measurements of the original data that are sensed without any prior knowledge of specific feature domains for the data. Our experiments demonstrate the superiority of surfacelets for efficient representation of volumetric data. Moreover, we establish that the accuracy of reconstruction can further improve once a more effective basis for a sparser representation of the data becomes available. [PUBLICATION ABSTRACT]
Author Entezari, A.
Xu, X.
Sakhaee, E.
Author_xml – sequence: 1
  givenname: X.
  surname: Xu
  fullname: Xu, X.
  organization: University of Florida, USA
– sequence: 2
  givenname: E.
  surname: Sakhaee
  fullname: Sakhaee, E.
  organization: University of Florida, USA
– sequence: 3
  givenname: A.
  surname: Entezari
  fullname: Entezari, A.
  organization: University of Florida, USA
BookMark eNp1kD1PwzAQhi0EEqUw8A8iscCQ1k7s2BETFFqQECA-KxbLOBdkSOJiJyr8e1wKDAhuuZP8PKfzu4FWG9sAQtsED0iooX4qByRJM76CeoRmPBYZy1dRD5Mwc8zYOtrw_hljTHnGemj_zlZdDa0zOjpSrYquoOh0a2wTmSZS0cjWMwfeQxFdQ-NN8xSNnaphbt3LJlorVeVh66v30e34-GZ0Ep9dTE5HB2exTjPBY80oE3lKhCiIogXBIDQjFENaQpmogpYixSoJU6bLnOH0MWGc0EfCIed5maR9tLvcO3P2tQPfytp4DVWlGrCdl4SxPMspFiSgO7_QZ9u5JlwXKMoWKeAsUMMlpZ313kEptWnV4tOtU6aSBMtFmDKEKT_DDMbeL2PmTK3c-5_s1_a5qeD9f1COJuNvI14axrfw9mMo9yLDK2fy_nwipw_s5vJQTCVNPwArXpJ_
CitedBy_id crossref_primary_10_1007_s00371_016_1253_9
crossref_primary_10_1109_TMM_2017_2757759
crossref_primary_10_1109_TVCG_2014_2346324
crossref_primary_10_1007_s41019_017_0042_4
crossref_primary_10_1109_TVCG_2018_2816059
crossref_primary_10_1111_cgf_12622
Cites_doi 10.1137/090756855
10.1109/SC.2008.5213922
10.1109/JPROC.2010.2044010
10.1007/978-1-4419-7011-4
10.1137/S1064827596304010
10.1109/TIT.2005.862083
10.1109/TIT.2006.885507
10.1088/0266-5611/25/12/123009
10.1137/05064182X
10.1109/MSP.2007.914728
10.1109/TIT.2006.871582
10.1109/MSP.2007.914730
10.1109/MCG.2009.120
10.1109/TIT.2007.909108
10.1016/j.procs.2010.04.122
10.1126/science.1197448
10.1109/TIT.2005.858979
10.1007/978-0-8176-8316-0
10.1109/VISUAL.2003.1250385
10.1109/TVCG.2007.70516
10.1111/j.1467-8659.2012.03124.x
10.1109/IranianCEE.2013.6599843
10.1109/TVCG.2011.214
10.1002/mrm.21391
10.1109/TIP.2007.891785
10.1109/SFCS.2005.5464411
10.1109/5.843002
ContentType Journal Article
Copyright 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2014 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2014 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12367
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 120
ExternalDocumentID 3372545561
10_1111_cgf_12367
CGF12367
ark_67375_WNG_XZ5TPB8X_4
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
WRC
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c3687-c545893188d1a4d10e8c5140e3fef2ad4f830a22ad6cf9503b25714b17e979f23
IEDL.DBID DRFUL
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340597400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sun Nov 09 09:31:02 EST 2025
Sun Nov 30 04:56:30 EST 2025
Sat Nov 29 03:41:10 EST 2025
Tue Nov 18 21:08:37 EST 2025
Wed Jan 22 16:24:44 EST 2025
Tue Nov 11 03:33:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3687-c545893188d1a4d10e8c5140e3fef2ad4f830a22ad6cf9503b25714b17e979f23
Notes istex:943ECE8FA06BDD80D860A2249CFAB700BB8067EF
ArticleID:CGF12367
ark:/67375/WNG-XZ5TPB8X-4
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1545016706
PQPubID 30877
PageCount 10
ParticipantIDs proquest_miscellaneous_1559694081
proquest_journals_1545016706
crossref_citationtrail_10_1111_cgf_12367
crossref_primary_10_1111_cgf_12367
wiley_primary_10_1111_cgf_12367_CGF12367
istex_primary_ark_67375_WNG_XZ5TPB8X_4
PublicationCentury 2000
PublicationDate June 2014
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: June 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Candès E., Tao T.: Near-optimal signal recovery from random projections: Universal encoding strategies. IEEE Transactions on Information Theory 52, 12 (2006), 5406-5425. 3
Candès E., Tao T.: Decoding by linear programming. IEEE Transactions on Information Theory 51, 12 (2005). 3
Lustig M., Donoho D., Pauly J.: Sparse mri: The application of compressed sensing for rapid mr imaging. Magnetic Resonance in Medicine 58, 6 (2007), 1182-1195. 1
Franco J., BernabÃl' G., Fernãandez J., UjaldÃşn M.: Parallel 3d fast wavelet transform on many-core gpus and multicore cpus. Procedia Computer Science 1, 1 (2010), 1101-1110. 9
Pan X., Sidky E., Vannier M.: Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Problems 25, 12 (2009), 123009. 1
Kutyniok G., Labate D.: Shearlets: Multiscale Analysis for Multivariate Data, first ed. Birkhauser Publication, 2012. 1, 4
Chen S., Donoho D., Saunders M.: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20, 1 (1998), 33-61. 3, 4
Hassanieh H., Indyk P., Katabi D., Price E.: Simple and practical algorithm for sparse fourier transform. In Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms (2012), SODA '12, SIAM, pp. 1183-1194. 9
Lustig M., Donoho D., Santos J., Pauly J.: Compressed sensing mri. Signal Processing Magazine, IEEE 25, 2 (march 2008), 72-82. 1
Candès E., Romberg J., Tao T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52, 2 (2006), 489-509. 3
Tropp J., Wright S.: Computational methods for sparse solution of linear inverse problems. Proceedings of the IEEE 98, 6 (2010), 948-958. 3, 4
Baraniuk R.: More is less: Signal processing and the data deluge. Science 331, 6018 (2011), 717-719. 1
Donoho D.: Compressed sensing. IEEE Transactions on Information Theory 52, 4 (2006), 1289-1306. 3, 4
Elad M.: Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing. Springer, 2010. 2
Becker S., Bobin J., Candès E.: NESTA: A fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sciences 4, 1 (2011), 1-39. 5
Candès E., Romberg J., Tao T.: Robust uncertainty principles: exact signal, reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52, 2 (2006), 489-509. 3, 4
Gobbetti E., Guitián J. A. I., Marton F.: COVRA: A compression-domain output-sensitive volume rendering architecture based on a sparse representation of voxel blocks. Comput. Graph. Forum 31, 3 (2012), 1315-1324. 2
Ma K.: In situ visualization at extreme scale: Challenges and opportunities. Computer Graphics and Applications, IEEE 29, 6 (2009), 14-19. 2
Unser M.: Sampling-50 Years after Shannon. Proceedings of the IEEE 88, 4 (April 2000), 569-587. 1
Duarte M., Davenport M., Takhar D., Laska J., Sun T., Kelly K., Baraniuk R.: Single-pixel imaging via compressive sampling. Signal Processing Magazine, IEEE 25, 2 (2008), 83-91. 1
Tropp J., Gilbert A.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory 53, 12 (2007), 4655-4666. 3
Candès E., Demanet L., Donoho D., Ying L.: Fast discrete curvelet transforms. Multiscale Modeling & Simulation 5, 3 (Jan. 2006), 861-899. 1, 4, 5
2009; 25
2010; 98
2006; 52
2012
2011
2010
2000; 88
2008
2006; 5
2007
2005
2003
2006; 2
2011; 4
2007; 53
1998; 20
2007; 78
2011; 331
2012; 31
2007; 58
2009; 29
2010; 1
2005; 51
2008; 25
2013
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
Ma K. (e_1_2_7_31_2) 2007
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
Hassanieh H. (e_1_2_7_23_2) 2012
e_1_2_7_29_2
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
References_xml – reference: Ma K.: In situ visualization at extreme scale: Challenges and opportunities. Computer Graphics and Applications, IEEE 29, 6 (2009), 14-19. 2
– reference: Tropp J., Wright S.: Computational methods for sparse solution of linear inverse problems. Proceedings of the IEEE 98, 6 (2010), 948-958. 3, 4
– reference: Candès E., Romberg J., Tao T.: Robust uncertainty principles: exact signal, reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52, 2 (2006), 489-509. 3, 4
– reference: Duarte M., Davenport M., Takhar D., Laska J., Sun T., Kelly K., Baraniuk R.: Single-pixel imaging via compressive sampling. Signal Processing Magazine, IEEE 25, 2 (2008), 83-91. 1
– reference: Elad M.: Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing. Springer, 2010. 2
– reference: Hassanieh H., Indyk P., Katabi D., Price E.: Simple and practical algorithm for sparse fourier transform. In Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms (2012), SODA '12, SIAM, pp. 1183-1194. 9
– reference: Unser M.: Sampling-50 Years after Shannon. Proceedings of the IEEE 88, 4 (April 2000), 569-587. 1
– reference: Baraniuk R.: More is less: Signal processing and the data deluge. Science 331, 6018 (2011), 717-719. 1
– reference: Candès E., Demanet L., Donoho D., Ying L.: Fast discrete curvelet transforms. Multiscale Modeling & Simulation 5, 3 (Jan. 2006), 861-899. 1, 4, 5
– reference: Pan X., Sidky E., Vannier M.: Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Problems 25, 12 (2009), 123009. 1
– reference: Lustig M., Donoho D., Santos J., Pauly J.: Compressed sensing mri. Signal Processing Magazine, IEEE 25, 2 (march 2008), 72-82. 1
– reference: Lustig M., Donoho D., Pauly J.: Sparse mri: The application of compressed sensing for rapid mr imaging. Magnetic Resonance in Medicine 58, 6 (2007), 1182-1195. 1
– reference: Candès E., Tao T.: Decoding by linear programming. IEEE Transactions on Information Theory 51, 12 (2005). 3
– reference: Kutyniok G., Labate D.: Shearlets: Multiscale Analysis for Multivariate Data, first ed. Birkhauser Publication, 2012. 1, 4
– reference: Tropp J., Gilbert A.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory 53, 12 (2007), 4655-4666. 3
– reference: Candès E., Romberg J., Tao T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52, 2 (2006), 489-509. 3
– reference: Donoho D.: Compressed sensing. IEEE Transactions on Information Theory 52, 4 (2006), 1289-1306. 3, 4
– reference: Candès E., Tao T.: Near-optimal signal recovery from random projections: Universal encoding strategies. IEEE Transactions on Information Theory 52, 12 (2006), 5406-5425. 3
– reference: Becker S., Bobin J., Candès E.: NESTA: A fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sciences 4, 1 (2011), 1-39. 5
– reference: Franco J., BernabÃl' G., Fernãandez J., UjaldÃşn M.: Parallel 3d fast wavelet transform on many-core gpus and multicore cpus. Procedia Computer Science 1, 1 (2010), 1101-1110. 9
– reference: Chen S., Donoho D., Saunders M.: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20, 1 (1998), 33-61. 3, 4
– reference: Gobbetti E., Guitián J. A. I., Marton F.: COVRA: A compression-domain output-sensitive volume rendering architecture based on a sparse representation of voxel blocks. Comput. Graph. Forum 31, 3 (2012), 1315-1324. 2
– year: 2011
– start-page: 293
  year: 2003
  end-page: 300
– volume: 1
  start-page: 1101
  issue: 1
  year: 2010
  end-page: 1110
  article-title: Parallel 3d fast wavelet transform on many‐core gpus and multicore cpus
  publication-title: Procedia Computer Science
– volume: 98
  start-page: 948
  issue: 6
  year: 2010
  end-page: 958
  article-title: Computational methods for sparse solution of linear inverse problems
  publication-title: Proceedings of the IEEE
– start-page: 1
  year: 2008
  end-page: 12
– volume: 78
  start-page: 012
  year: 2007
  end-page: 043
– year: 2005
– start-page: 1600
  year: 2007
  end-page: 1607
– volume: 331
  start-page: 717
  issue: 6018
  year: 2011
  end-page: 719
  article-title: More is less: Signal processing and the data deluge
  publication-title: Science
– volume: 25
  start-page: 123009
  issue: 12
  year: 2009
  article-title: Why do commercial CT scanners still employ traditional, filtered back‐projection for image reconstruction?
  publication-title: Inverse Problems
– volume: 25
  start-page: 83
  issue: 2
  year: 2008
  end-page: 91
  article-title: Single‐pixel imaging via compressive sampling
  publication-title: Signal Processing Magazine, IEEE
– volume: 20
  start-page: 33
  issue: 1
  year: 1998
  end-page: 61
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM Journal on Scientific Computing
– volume: 2
  start-page: 489
  year: 2006
  end-page: 509
  article-title: Robust uncertainty principles: exact signal, reconstruction from highly incomplete frequency information
  publication-title: IEEE Transactions on Information Theory 52
– year: 2007
– volume: 51
  issue: 12
  year: 2005
  article-title: Decoding by linear programming
  publication-title: IEEE Transactions on Information Theory
– volume: 31
  start-page: 1315
  issue: 3
  year: 2012
  end-page: 1324
  article-title: COVRA: A compression‐domain output‐sensitive volume rendering architecture based on a sparse representation of voxel blocks
  publication-title: Comput. Graph. Forum
– volume: 5
  start-page: 861
  issue: 3
  year: 2006
  end-page: 899
  article-title: Fast discrete curvelet transforms
  publication-title: Multiscale Modeling & Simulation
– volume: 25
  start-page: 72
  issue: 2
  year: 2008
  end-page: 82
  article-title: Compressed sensing mri
  publication-title: Signal Processing Magazine, IEEE
– start-page: 1
  year: 2013
  end-page: 6
– year: 2010
– year: 2012
– volume: 52
  start-page: 5406
  issue: 12
  year: 2006
  end-page: 5425
  article-title: Near‐optimal signal recovery from random projections: Universal encoding strategies
  publication-title: IEEE Transactions on Information Theory
– volume: 58
  start-page: 1182
  issue: 6
  year: 2007
  end-page: 1195
  article-title: Sparse mri: The application of compressed sensing for rapid mr imaging
  publication-title: Magnetic Resonance in Medicine
– volume: 52
  start-page: 489
  issue: 2
  year: 2006
  end-page: 509
  article-title: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Transactions on Information Theory
– year: 2008
– volume: 88
  start-page: 569
  issue: 4
  year: 2000
  end-page: 587
  article-title: Sampling—50 Years after Shannon
  publication-title: Proceedings of the IEEE
– start-page: 1183
  year: 2012
  end-page: 1194
– volume: 29
  start-page: 14
  issue: 6
  year: 2009
  end-page: 19
  article-title: In situ visualization at extreme scale: Challenges and opportunities
  publication-title: Computer Graphics and Applications, IEEE
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  end-page: 1306
  article-title: Compressed sensing
  publication-title: IEEE Transactions on Information Theory
– volume: 4
  start-page: 1
  issue: 1
  year: 2011
  end-page: 39
  article-title: NESTA: A fast and accurate first‐order method for sparse recovery
  publication-title: SIAM J. Imaging Sciences
– start-page: 918
  year: 2007
  end-page: 931
– volume: 53
  start-page: 4655
  issue: 12
  year: 2007
  end-page: 4666
  article-title: Signal recovery from random measurements via orthogonal matching pursuit
  publication-title: IEEE Transactions on Information Theory
– start-page: 2135
  year: 2011
  end-page: 2143
– year: 2013
– ident: e_1_2_7_5_2
– ident: e_1_2_7_3_2
  doi: 10.1137/090756855
– ident: e_1_2_7_16_2
– ident: e_1_2_7_22_2
  doi: 10.1109/SC.2008.5213922
– ident: e_1_2_7_36_2
  doi: 10.1109/JPROC.2010.2044010
– ident: e_1_2_7_17_2
  doi: 10.1007/978-1-4419-7011-4
– start-page: 1183
  volume-title: Simple and practical algorithm for sparse fourier transform
  year: 2012
  ident: e_1_2_7_23_2
– ident: e_1_2_7_8_2
  doi: 10.1137/S1064827596304010
– ident: e_1_2_7_10_2
  doi: 10.1109/TIT.2005.862083
– ident: e_1_2_7_13_2
  doi: 10.1109/TIT.2006.885507
– ident: e_1_2_7_32_2
  doi: 10.1088/0266-5611/25/12/123009
– ident: e_1_2_7_19_2
– ident: e_1_2_7_6_2
  doi: 10.1137/05064182X
– ident: e_1_2_7_27_2
  doi: 10.1109/MSP.2007.914728
– ident: e_1_2_7_15_2
  doi: 10.1109/TIT.2006.871582
– ident: e_1_2_7_14_2
  doi: 10.1109/MSP.2007.914730
– ident: e_1_2_7_4_2
  doi: 10.1137/090756855
– ident: e_1_2_7_29_2
  doi: 10.1109/MCG.2009.120
– ident: e_1_2_7_35_2
  doi: 10.1109/TIT.2007.909108
– ident: e_1_2_7_18_2
  doi: 10.1016/j.procs.2010.04.122
– ident: e_1_2_7_2_2
  doi: 10.1126/science.1197448
– ident: e_1_2_7_9_2
  doi: 10.1109/TIT.2005.862083
– ident: e_1_2_7_12_2
  doi: 10.1109/TIT.2005.858979
– start-page: 012
  volume-title: Journal of Physics: Conference Series
  year: 2007
  ident: e_1_2_7_31_2
– ident: e_1_2_7_24_2
  doi: 10.1007/978-0-8176-8316-0
– ident: e_1_2_7_34_2
  doi: 10.1109/VISUAL.2003.1250385
– ident: e_1_2_7_20_2
  doi: 10.1109/TVCG.2007.70516
– ident: e_1_2_7_21_2
  doi: 10.1111/j.1467-8659.2012.03124.x
– ident: e_1_2_7_30_2
  doi: 10.1109/IranianCEE.2013.6599843
– ident: e_1_2_7_33_2
  doi: 10.1109/TVCG.2011.214
– ident: e_1_2_7_26_2
  doi: 10.1002/mrm.21391
– ident: e_1_2_7_25_2
  doi: 10.1109/TIP.2007.891785
– ident: e_1_2_7_11_2
  doi: 10.1109/SFCS.2005.5464411
– ident: e_1_2_7_37_2
  doi: 10.1109/5.843002
– ident: e_1_2_7_7_2
– ident: e_1_2_7_28_2
SSID ssj0004765
Score 2.111251
Snippet In this paper, we investigate compressed sensing principles to devise an in‐situ data reduction framework for visualization of volumetric datasets. We exploit...
In this paper, we investigate compressed sensing principles to devise an in-situ data reduction framework for visualization of volumetric datasets. We exploit...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111
SubjectTerms Analysis
Categories and Subject Descriptors (according to ACM CCS)
Compressed
Computer graphics
Data reduction
Detection
Fourier analysis
I.4.10 [Image Processing and Computer Vision]: Image Representation-Volumetric
I.4.2 [Image Processing and Computer Vision]: Compression-Approximate methods
I.4.5 [Image Processing and Computer Vision]: Reconstruction-Transform methods
Image processing systems
Reconstruction
Representations
Studies
Visualization
Volumetric analysis
Title Volumetric Data Reduction in a Compressed Sensing Framework
URI https://api.istex.fr/ark:/67375/WNG-XZ5TPB8X-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12367
https://www.proquest.com/docview/1545016706
https://www.proquest.com/docview/1559694081
Volume 33
WOSCitedRecordID wos000340597400012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFD64jg_rw3pZF2e9kBVZfKl0ekkafPJW90EG8bIO-xLSNBHZpS4zo_jzPSfT1hEUBF9KoKdwOLd8aU6-AGzHItSZsCJwhUgDXH8lgc6iOHCm4EamDlGqp8w_Ff1-NhjIsxnYa87CTPgh2h9ulBm-XlOC62I0leTmxu16_rFP0KFDVbjy6hyd51enz8ciBU8bam8ijamJhaiRp_34xXTUIcs-vsCa04jVTzn5woeUXYQvNdJk-5PQWIIZWy3D_BT_4FfY--1rE5H0syM91uyciFzJVey2YppRsfDk4iW7oEb36oblTTPXClzlx5eHv4L6NoXAxBwriaEtMokpnJU9nZS90GYG0VJoY2ddpMvEZXGoIxxx42QaxgVmcy8pesJKIV0Uf4PZ6q6yq8AcR1DDk9JElic6kkVaSK4RXBhp8am7sNMYVZmaapxuvPinmiUH2kN5e3RhqxX9P-HXeE3op_dMK6GHf6khTaTqun-iBn_Sy7ODbKCSLqw3rlN1Lo4UgUSKgZB34Uf7GrOItkZ0Ze_uSSaVGKeoPOruHfm2NurwJPeD7-8XXYPPiLSSSY_ZOsyOh_d2A-bMw_h2NNysA_cJKfHtmQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3_S9wwFH_o3UD3w3S64W0645DhLx29Nk0atl_8sqp4O8SdeuyXkKbJIRt1nOfYn7-8XFtPUBD8pQT6Co_3LZ80L58AbMc8VCk3PLA5TwK3_qKBSqM4sDpnWiTWoVRPmd_j_X46HIrTOfhan4WZ8kM0P9wwM3y9xgTHH9IzWa5H9rMnIJuHNmUxT1vQPjjLznt35yI5S2pub2SNqZiFsJOn-fjefNRG0_67BzZnIaufc7Kl52m7DK8qrEl2p8HxGuZMuQIvZxgIV-HLha9OSNNPDtREkTOkckVnkauSKILlwtOLF-QHtrqXI5LV7Vxv4Dz7Ntg_Cqr7FAIdM1dLNG6SCZfEadFVtOiGJtUOL4UmtsZGqqA2jUMVuRHTViRhnLt87tK8y43gwkbxW2iV16VZA2KZgzWMFjoyjKpI5EkumHLwQgvjnqoDO7VVpa7IxvHOi9-yXnQ4e0hvjw58bET_TBk2HhL65F3TSKjxL2xJ44m87B_K4c9kcLqXDiXtwHrtO1ll441EmIhBELIObDWvXR7h5ogqzfUtyiTCRapT3unuPfm4NnL_MPODd08X3YSFo8H3nuwd90_ew6LDXXTacbYOrcn41mzAC_13cnUz_lBF8X9uOPGJ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD50SRnrQ3dnabtVK6PsxcOxdbFoX7qm7sZCCL2GvQhZlkrZcEuajv386ii2l0IHg70YgY_hcG76ZB19AviQilhnworIFYJFfv1FI50laeRMwY1kzqPUQJk_FKNRNpnI8RLsNmdh5vwQ7Q83zIxQrzHB7XXpFrLcXLhPgYDsEXQpk4x2oDs4yk-Hf85FCs4abm9kjamZhbCTp_343nzURdP-vgc2FyFrmHPyp_-n7TNYrbEm2ZsHx3NYstULWFlgIHwJO2ehOiFNPxnomSZHSOWKziKXFdEEy0WgFy_JMba6Vxckb9q5XsFpfnCy_yWq71OITMp9LTG4SSZ9EmdlX9OyH9vMeLwU29RZl-iSuiyNdeJH3DjJ4rTw-dynRV9YKaRL0tfQqa4q-waI4x7WcFqaxHKqE1mwQnLt4YWR1j91Dz42VlWmJhvHOy9-qmbR4e2hgj16sNWKXs8ZNh4S2g6uaSX09Ae2pAmmzkeHavKdnYw_ZxNFe7DR-E7V2XijECZiEMS8B-_b1z6PcHNEV_bqFmWY9JHqlfe6B0_-XRu1f5iHwdq_i27C4_EgV8Ovo2_r8MTDLjpvONuAzmx6a9_Csvk1u7yZvquD-A4NZPEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Volumetric+Data+Reduction+in+a+Compressed+Sensing+Framework&rft.jtitle=Computer+graphics+forum&rft.au=Xu%2C+X.&rft.au=Sakhaee%2C+E.&rft.au=Entezari%2C+A.&rft.date=2014-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=3&rft.spage=111&rft.epage=120&rft_id=info:doi/10.1111%2Fcgf.12367&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_XZ5TPB8X_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon