Performance Comparison of Bounding Volume Hierarchies and Kd-Trees for GPU Ray Tracing
We present a performance comparison of bounding volume hierarchies and kd‐trees for ray tracing on many‐core architectures (GPUs). The comparison is focused on rendering times and traversal characteristics on the GPU using data structures that were optimized for very high performance of tracing rays...
Saved in:
| Published in: | Computer graphics forum Vol. 35; no. 8; pp. 68 - 79 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Blackwell Publishing Ltd
01.12.2016
|
| Subjects: | |
| ISSN: | 0167-7055, 1467-8659 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We present a performance comparison of bounding volume hierarchies and kd‐trees for ray tracing on many‐core architectures (GPUs). The comparison is focused on rendering times and traversal characteristics on the GPU using data structures that were optimized for very high performance of tracing rays. To achieve low rendering times, we extensively examine the constants used in termination criteria for the two data structures. We show that for a contemporary GPU architecture (NVIDIA Kepler) bounding volume hierarchies have higher ray tracing performance than kd‐trees for simple and moderately complex scenes. On the other hand, kd‐trees have higher performance for complex scenes, in particular for those with high depth complexity. Finally, we analyse the causes of the performance discrepancies using the profiling characteristics of the ray tracing kernels.
We present a performance comparison of bounding volume hierarchies and kd‐trees for ray tracing on many‐core architectures (GPUs). The comparison is focused on rendering times and traversal characteristics on the GPU using data structures that were optimized for very high performance of tracing rays. To achieve low rendering times, we extensively examine the constants used in termination criteria for the two data structures. We show that for a contemporary GPU architecture (NVIDIA Kepler) bounding volume hierarchies have higher ray tracing performance than kd‐trees for simple and moderately complex scenes. |
|---|---|
| AbstractList | We present a performance comparison of bounding volume hierarchies and kd-trees for ray tracing on many-core architectures (GPUs). The comparison is focused on rendering times and traversal characteristics on the GPU using data structures that were optimized for very high performance of tracing rays. To achieve low rendering times, we extensively examine the constants used in termination criteria for the two data structures. We show that for a contemporary GPU architecture (NVIDIA Kepler) bounding volume hierarchies have higher ray tracing performance than kd-trees for simple and moderately complex scenes. On the other hand, kd-trees have higher performance for complex scenes, in particular for those with high depth complexity. Finally, we analyse the causes of the performance discrepancies using the profiling characteristics of the ray tracing kernels. We present a performance comparison of bounding volume hierarchies and kd-trees for ray tracing on many-core architectures (GPUs). The comparison is focused on rendering times and traversal characteristics on the GPU using data structures that were optimized for very high performance of tracing rays. To achieve low rendering times, we extensively examine the constants used in termination criteria for the two data structures. We show that for a contemporary GPU architecture (NVIDIA Kepler) bounding volume hierarchies have higher ray tracing performance than kd-trees for simple and moderately complex scenes. We present a performance comparison of bounding volume hierarchies and kd-trees for ray tracing on many-core architectures (GPUs). The comparison is focused on rendering times and traversal characteristics on the GPU using data structures that were optimized for very high performance of tracing rays. To achieve low rendering times, we extensively examine the constants used in termination criteria for the two data structures. We show that for a contemporary GPU architecture (NVIDIA Kepler) bounding volume hierarchies have higher ray tracing performance than kd-trees for simple and moderately complex scenes. On the other hand, kd-trees have higher performance for complex scenes, in particular for those with high depth complexity. Finally, we analyse the causes of the performance discrepancies using the profiling characteristics of the ray tracing kernels. We present a performance comparison of bounding volume hierarchies and kd‐trees for ray tracing on many‐core architectures (GPUs). The comparison is focused on rendering times and traversal characteristics on the GPU using data structures that were optimized for very high performance of tracing rays. To achieve low rendering times, we extensively examine the constants used in termination criteria for the two data structures. We show that for a contemporary GPU architecture (NVIDIA Kepler) bounding volume hierarchies have higher ray tracing performance than kd‐trees for simple and moderately complex scenes. On the other hand, kd‐trees have higher performance for complex scenes, in particular for those with high depth complexity. Finally, we analyse the causes of the performance discrepancies using the profiling characteristics of the ray tracing kernels. We present a performance comparison of bounding volume hierarchies and kd‐trees for ray tracing on many‐core architectures (GPUs). The comparison is focused on rendering times and traversal characteristics on the GPU using data structures that were optimized for very high performance of tracing rays. To achieve low rendering times, we extensively examine the constants used in termination criteria for the two data structures. We show that for a contemporary GPU architecture (NVIDIA Kepler) bounding volume hierarchies have higher ray tracing performance than kd‐trees for simple and moderately complex scenes. |
| Author | Bittner, Jiří Havran, Vlastimil Vinkler, Marek |
| Author_xml | – sequence: 1 givenname: Marek surname: Vinkler fullname: Vinkler, Marek email: xvinkl@fi.muni.cz organization: Faculty of Informatics, Masaryk University, Czech Republic – sequence: 2 givenname: Vlastimil surname: Havran fullname: Havran, Vlastimil email: havran@fel.cvut.cz organization: Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic – sequence: 3 givenname: Jiří surname: Bittner fullname: Bittner, Jiří email: bittner@fel.cvut.cz organization: Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic |
| BookMark | eNp1kM1u1DAURi1UJKaFBW9giQ0s0trxb5YwohlEgQpNy9JynJvikthTOxHM22OYwqICb-x7dc4n6ztGRyEGQOg5Jae0nDN3M5zSWin5CK0ol6rSUjRHaEVoeSsixBN0nPMtIYQrKVbo-hLSENNkgwO8jtPOJp9jwHHAb-ISeh9u8HUclwnwxkOyyX31kLENPX7fV9sEZSg-bi-v8Ge7x9tkXXGeoseDHTM8u79P0NX52-16U118at-tX19Ujkktq15zUnOtOg6qblin-4ZzRnTZ0NpRYJ3SWjeW2oIoQXVHZQ_KNsJ1UjLGTtDLQ-4uxbsF8mwmnx2Mow0Ql2yollwIzSgv6IsH6G1cUii_KxQvbdSC1IU6O1AuxZwTDMb52c4-hjlZPxpKzK-eTenZ_O65GK8eGLvkJ5v2_2Tv07_7Efb_B826Pf9jVAfD5xl-_DVs-makYkqYLx9bIz_QTUs1NYz9BBYXmpQ |
| CitedBy_id | crossref_primary_10_1111_cgf_142662 crossref_primary_10_1109_TVCG_2018_2859924 crossref_primary_10_3390_app11073264 crossref_primary_10_1007_s11042_020_09884_5 crossref_primary_10_1109_TVCG_2020_3042930 crossref_primary_10_1007_s00371_020_01897_3 crossref_primary_10_3390_mi9110550 |
| Cites_doi | 10.1109/RT.2006.280216 10.1145/2159616.2159649 10.1111/j.1467-8659.2010.01844.x 10.1109/RT.2007.4342593 10.1145/1815961.1816021 10.1111/j.1467-8659.2008.01313.x 10.1109/MCG.1987.276983 10.1145/2492045.2492054 10.1109/RT.2007.4342588 10.1109/MCG.1987.277062 10.1111/1467-8659.t01-1-00641 10.1109/RT.2006.280218 10.1145/2492045.2492055 10.1145/1572769.1572772 10.1145/1572769.1572771 10.1145/357332.357335 10.1145/1572769.1572792 10.1111/cgf.12140 10.1109/RT.2007.4342598 10.1145/2018323.2018335 10.1111/cgf.12259 10.1145/1230100.1230129 10.1111/cgf.12000 |
| ContentType | Journal Article |
| Copyright | 2015 The Authors Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. 2016 The Eurographics Association and John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2015 The Authors Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. – notice: 2016 The Eurographics Association and John Wiley & Sons Ltd. |
| DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1111/cgf.12776 |
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Architecture |
| EISSN | 1467-8659 |
| EndPage | 79 |
| ExternalDocumentID | 4265763321 10_1111_cgf_12776 CGF12776 ark_67375_WNG_6M1HG181_3 |
| Genre | article Feature |
| GrantInformation_xml | – fundername: Czech Science Foundation funderid: P202/12/2413 – fundername: Czech Technical University in Prague funderid: SGS13/214/OHK3/3T/13 |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN WRC AAYXX CITATION O8X 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c3686-d8402487b4e7293b8d94430887b12c1e3b78889a1a7b47518b16de7a95cb66333 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000388498500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 |
| IngestDate | Thu Sep 04 17:45:52 EDT 2025 Fri Jul 25 07:18:20 EDT 2025 Tue Nov 18 22:14:14 EST 2025 Sat Nov 29 03:41:12 EST 2025 Wed Jan 22 16:35:09 EST 2025 Tue Nov 11 03:32:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3686-d8402487b4e7293b8d94430887b12c1e3b78889a1a7b47518b16de7a95cb66333 |
| Notes | Czech Science Foundation - No. P202/12/2413 istex:85253D7BFC778759A349878547366788F4849F95 ark:/67375/WNG-6M1HG181-3 ArticleID:CGF12776 Czech Technical University in Prague - No. SGS13/214/OHK3/3T/13 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1844762502 |
| PQPubID | 30877 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1864558314 proquest_journals_1844762502 crossref_citationtrail_10_1111_cgf_12776 crossref_primary_10_1111_cgf_12776 wiley_primary_10_1111_cgf_12776_CGF12776 istex_primary_ark_67375_WNG_6M1HG181_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-12 December 2016 2016-12-00 20161201 |
| PublicationDateYYYYMMDD | 2016-12-01 |
| PublicationDate_xml | – month: 12 year: 2016 text: 2016-12 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationTitleAlternate | Computer Graphics Forum |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | [VBHH13] Vinkler M., Bittner J., Havran V., Hapala M.: Massively parallel hierarchical scene processing with applications in rendering. Computer Graphics Forum 32, 8 (2013), 13-25. [WHG84] Weghorst H., Hooper G., Greenberg D. P.: Improved computational methods for ray tracing. ACM Transactions on Graphics 3, 1 (1984), 52-69. [HZDS09] Havran V., Zajac J., Drahokoupil J., Seidel H.-P.: MPII Building Model as Data for Your Research. Res. rep. MPI-I-2009-4-004, MPI Informatik, Dec. 2009. [ML03] Masso J. P. M., Lopez P. G.: Automatic hybrid hierarchy creation: A cost-model based approach. Computer Graphics Forum 22, 1 (2003), 5-13. [BHH13] Bittner J., Hapala M., Havran V.: Fast insertion-based optimization of bounding volume hierarchies. Computer Graphics Forum 32, 1 (2013), 85-100. [WMG*09] Wald I., Mark W. R., Günther J., Boulos S., Ize T., Hunt W., Parker S. G., Shirley P.: State of the art in ray tracing animated scenes. Computer Graphics Forum 28, 6 (2009), 1691-1722. [GS87] Goldsmith J., Salmon J.: Automatic creation of object hierarchies for ray tracing. IEEE Computer Graphics and Applications 7, 5 (1987), 14-20. [Hai87] Haines E. A.: A proposal for standard graphics environments. IEEE Computer Graphics and Applications 7, 11 (1987), 3-5. [HB02] Havran V., Bittner J.: On improving KD-trees for ray shooting. Journal of WSCG 10, 1 (2002), 209-216. [ASK14] Áfra A. T., Szirmay-Kalos L.: Stackless multi-BVH traversal for CPU, MIC and GPU ray tracing. Computer Graphics Forum 33, 1 (2014), 129-140. [DPS10] Danilewski P., Popov S., Slusallek P.: Binned SAH Kd-Tree Construction on a GPU. Tech. Rep., Computer Graphics Group, Saarland University, June 2010. [HH11] Hapala M., Havran V.: Review: Kd-tree traversal algorithms for ray tracing. Computer Graphics Forum 30, 1 (2011), 199-213. 2012 2013; 32 2000 1984; 3 2011 2010 2002; 10 1987; 7 2009 2011; 30 2007 1985 2006 2005 2004 2014 2003 2013 2002 2014; 33 2003; 22 2009; 28 e_1_2_9_30_1 Kaplan M. (e_1_2_9_23_1) 1985 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 Havran V. (e_1_2_9_16_1) 2002; 10 e_1_2_9_32_1 e_1_2_9_12_1 Havran V. (e_1_2_9_21_1) 2009 Vinkler M. (e_1_2_9_33_1) 2014 Szécsi L. (e_1_2_9_31_1) 2003 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 Guthe M. (e_1_2_9_13_1) 2014 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_7_1 e_1_2_9_6_1 Akenine‐Möller T. (e_1_2_9_4_1) 2005 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_2_1 Roccia J.‐P. (e_1_2_9_29_1) 2012 Danilewski P. (e_1_2_9_8_1) 2010 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 |
| References_xml | – reference: [HB02] Havran V., Bittner J.: On improving KD-trees for ray shooting. Journal of WSCG 10, 1 (2002), 209-216. – reference: [Hai87] Haines E. A.: A proposal for standard graphics environments. IEEE Computer Graphics and Applications 7, 11 (1987), 3-5. – reference: [WMG*09] Wald I., Mark W. R., Günther J., Boulos S., Ize T., Hunt W., Parker S. G., Shirley P.: State of the art in ray tracing animated scenes. Computer Graphics Forum 28, 6 (2009), 1691-1722. – reference: [GS87] Goldsmith J., Salmon J.: Automatic creation of object hierarchies for ray tracing. IEEE Computer Graphics and Applications 7, 5 (1987), 14-20. – reference: [HH11] Hapala M., Havran V.: Review: Kd-tree traversal algorithms for ray tracing. Computer Graphics Forum 30, 1 (2011), 199-213. – reference: [ML03] Masso J. P. M., Lopez P. G.: Automatic hybrid hierarchy creation: A cost-model based approach. Computer Graphics Forum 22, 1 (2003), 5-13. – reference: [DPS10] Danilewski P., Popov S., Slusallek P.: Binned SAH Kd-Tree Construction on a GPU. Tech. Rep., Computer Graphics Group, Saarland University, June 2010. – reference: [WHG84] Weghorst H., Hooper G., Greenberg D. P.: Improved computational methods for ray tracing. ACM Transactions on Graphics 3, 1 (1984), 52-69. – reference: [ASK14] Áfra A. T., Szirmay-Kalos L.: Stackless multi-BVH traversal for CPU, MIC and GPU ray tracing. Computer Graphics Forum 33, 1 (2014), 129-140. – reference: [BHH13] Bittner J., Hapala M., Havran V.: Fast insertion-based optimization of bounding volume hierarchies. Computer Graphics Forum 32, 1 (2013), 85-100. – reference: [HZDS09] Havran V., Zajac J., Drahokoupil J., Seidel H.-P.: MPII Building Model as Data for Your Research. Res. rep. MPI-I-2009-4-004, MPI Informatik, Dec. 2009. – reference: [VBHH13] Vinkler M., Bittner J., Havran V., Hapala M.: Massively parallel hierarchical scene processing with applications in rendering. Computer Graphics Forum 32, 8 (2013), 13-25. – start-page: 113 year: 2007 end-page: 118 – volume: 10 start-page: 209 issue: 1 year: 2002 end-page: 216 article-title: On improving KD‐trees for ray shooting publication-title: Journal of WSCG – year: 2009 – volume: 3 start-page: 52 issue: 1 year: 1984 end-page: 69 article-title: Improved computational methods for ray tracing publication-title: ACM Transactions on Graphics – year: 2005 – volume: 33 start-page: 129 issue: 1 year: 2014 end-page: 140 article-title: Stackless multi‐BVH traversal for CPU, MIC and GPU ray tracing publication-title: Computer Graphics Forum – start-page: 451 year: 2010 end-page: 460 – volume: 22 start-page: 5 issue: 1 year: 2003 end-page: 13 article-title: Automatic hybrid hierarchy creation: A cost‐model based approach publication-title: Computer Graphics Forum – year: 2000 – volume: 32 start-page: 85 issue: 1 year: 2013 end-page: 100 article-title: Fast insertion‐based optimization of bounding volume hierarchies publication-title: Computer Graphics Forum – start-page: 81 year: 2013 end-page: 88 – volume: 30 start-page: 199 issue: 1 year: 2011 end-page: 213 article-title: Review: Kd‐tree traversal algorithms for ray tracing publication-title: Computer Graphics Forum – start-page: 77 year: 2010 end-page: 86 – volume: 7 start-page: 14 issue: 5 year: 1987 end-page: 20 article-title: Automatic creation of object hierarchies for ray tracing publication-title: IEEE Computer Graphics and Applications – start-page: 61 year: 2006 end-page: 69 – volume: 28 start-page: 1691 issue: 6 year: 2009 end-page: 1722 article-title: State of the art in ray tracing animated scenes publication-title: Computer Graphics Forum – volume: 7 start-page: 3 issue: 11 year: 1987 end-page: 5 article-title: A proposal for standard graphics environments publication-title: IEEE Computer Graphics and Applications – start-page: 13 year: 2012 end-page: 16 – start-page: 71 year: 2011 end-page: 78 – start-page: 73 year: 2007 end-page: 78 – year: 2010 – start-page: 101 year: 2013 end-page: 107 – year: 2012 – start-page: 139 year: 2006 end-page: 149 – start-page: 145 year: 2009 end-page: 149 – start-page: 19 year: 2014 end-page: 27 – start-page: 8 year: 2002 – start-page: 33 year: 2007 end-page: 40 – start-page: 89 year: 2013 end-page: 99 – year: 2004 – start-page: 15 year: 2009 end-page: 22 – start-page: 53 year: 2014 end-page: 56 – start-page: 7 year: 2009 end-page: 13 – volume: 32 start-page: 13 issue: 8 year: 2013 end-page: 25 article-title: Massively parallel hierarchical scene processing with applications in rendering publication-title: Computer Graphics Forum – start-page: 167 year: 2007 end-page: 174 – start-page: 81 year: 2006 end-page: 88 – start-page: 197 year: 2012 end-page: 204 – start-page: 69 year: 2010 end-page: 76 – start-page: 149 year: 1985 end-page: 158 – start-page: 315 year: 2003 end-page: 326 – ident: e_1_2_9_35_1 doi: 10.1109/RT.2006.280216 – ident: e_1_2_9_24_1 doi: 10.1145/2159616.2159649 – volume-title: Binned SAH Kd‐Tree Construction on a GPU year: 2010 ident: e_1_2_9_8_1 – ident: e_1_2_9_17_1 doi: 10.1111/j.1467-8659.2010.01844.x – volume: 10 start-page: 209 issue: 1 year: 2002 ident: e_1_2_9_16_1 article-title: On improving KD‐trees for ray shooting publication-title: Journal of WSCG – ident: e_1_2_9_9_1 doi: 10.1109/RT.2007.4342593 – ident: e_1_2_9_25_1 doi: 10.1145/1815961.1816021 – ident: e_1_2_9_7_1 – ident: e_1_2_9_38_1 doi: 10.1111/j.1467-8659.2008.01313.x – ident: e_1_2_9_12_1 doi: 10.1109/MCG.1987.276983 – ident: e_1_2_9_10_1 doi: 10.1145/2492045.2492054 – ident: e_1_2_9_34_1 doi: 10.1109/RT.2007.4342588 – ident: e_1_2_9_39_1 – volume-title: MPII Building Model as Data for Your Research year: 2009 ident: e_1_2_9_21_1 – volume-title: ACM SIGGRAPH 2005 Courses year: 2005 ident: e_1_2_9_4_1 – start-page: 149 volume-title: SIGGRAPH '85 State of the Art in Image Synthesis seminar notes year: 1985 ident: e_1_2_9_23_1 – ident: e_1_2_9_14_1 doi: 10.1109/MCG.1987.277062 – ident: e_1_2_9_26_1 doi: 10.1111/1467-8659.t01-1-00641 – ident: e_1_2_9_2_1 – start-page: 53 volume-title: Proceedings of Eurographics (Short Papers) year: 2014 ident: e_1_2_9_13_1 – ident: e_1_2_9_19_1 doi: 10.1109/RT.2006.280218 – ident: e_1_2_9_22_1 doi: 10.1145/2492045.2492055 – ident: e_1_2_9_27_1 – ident: e_1_2_9_28_1 doi: 10.1145/1572769.1572772 – ident: e_1_2_9_30_1 doi: 10.1145/1572769.1572771 – ident: e_1_2_9_36_1 doi: 10.1145/357332.357335 – ident: e_1_2_9_41_1 – ident: e_1_2_9_3_1 doi: 10.1145/1572769.1572792 – ident: e_1_2_9_15_1 – start-page: 19 volume-title: Proceedings of High‐Performance Graphics year: 2014 ident: e_1_2_9_33_1 – ident: e_1_2_9_32_1 doi: 10.1111/cgf.12140 – ident: e_1_2_9_11_1 doi: 10.1109/RT.2007.4342598 – ident: e_1_2_9_18_1 – start-page: 315 volume-title: Graphics Programming Methods year: 2003 ident: e_1_2_9_31_1 – ident: e_1_2_9_40_1 doi: 10.1145/2018323.2018335 – ident: e_1_2_9_5_1 doi: 10.1111/cgf.12259 – ident: e_1_2_9_20_1 doi: 10.1145/1230100.1230129 – ident: e_1_2_9_37_1 – start-page: 13 volume-title: Eurographics (Short Papers) year: 2012 ident: e_1_2_9_29_1 – ident: e_1_2_9_6_1 doi: 10.1111/cgf.12000 |
| SSID | ssj0004765 |
| Score | 2.230031 |
| Snippet | We present a performance comparison of bounding volume hierarchies and kd‐trees for ray tracing on many‐core architectures (GPUs). The comparison is focused on... We present a performance comparison of bounding volume hierarchies and kd-trees for ray tracing on many-core architectures (GPUs). The comparison is focused on... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 68 |
| SubjectTerms | Analysis Architecture Central processing units Computer architecture CPUs Criteria Data structures GPU Hierarchies I.3.1 [Computer Graphics]: Hardware architecture-Parallel processing I.3.6 [Computer Graphics]: Methodology and Techniques-Graphics data structures and data types I.3.7 [Computational Graphics]: Three-Dimensional Graphics and Realism-Raytracing I.3.7 [Computational Graphics]: Three‐Dimensional Graphics and Realism—Raytracing; I.3.6 [Computer Graphics]: Methodology and Techniques—Graphics data structures and data types; I.3.1 [Computer Graphics]: Hardware architecture—Parallel processing Image processing systems object-partitioning Parallel processing Performance assessment performance comparison Profiling Ray tracing Rendering space-partitioning Studies |
| Title | Performance Comparison of Bounding Volume Hierarchies and Kd-Trees for GPU Ray Tracing |
| URI | https://api.istex.fr/ark:/67375/WNG-6M1HG181-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12776 https://www.proquest.com/docview/1844762502 https://www.proquest.com/docview/1864558314 |
| Volume | 35 |
| WOSCitedRecordID | wos000388498500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5Su4fk0GdK3CRlE0LJRQVpXxI5tU5tQ1Jjgt34tuyuVo1JkIPthPTWn9Df2F_SWVlSbGih0JuERmKYx8582p0ZgCMTG5OIlAW-EQgCFKqDWKM_hpZSBBxaZrQoFD6X_X48HieDDTipamGW_SHqH27eM4r12ju4NvMVJ7ffsg9hJKV4As0I7ZY1oHl60RmdP5ZFSsGr1t6-aUzZWMgf5KlfXgtHTS_Zh7VcczVjLUJO5_l_MfsCnpWZJvm4NI2XsOHyV7C10n_wNYwHj2UDpF1PJCTTjHzy45aQiHwtli_Sm_hKZXuFwJroPCVn6a8fP4czh7f4BdIdjMiF_k4w9Fl8axtGnc_Ddi8oRy0ElopYBCnivAixi2EOs21q4jRhjPoVyISRDR01HionGpVnmN-pMaFIndQJtwZzFkrfQCOf5m4HSBYzblMhTMINi7lDPJVJyVPmMDBmJmrBcSVxZcs-5H4cxo2q8AgKSxXCasFhTXq7bL7xJ6L3hdpqCj279qfVJFeX_a4SX8JeF9MYRVuwV-lVlY46Vwhw0UwwD0S-DurH6GJ-30TnbnrnaQTjPKYhQ94LLf-dG9XudoqLt_9OugubmIaJ5SGZPWgsZnduH57a-8VkPntXWvVvsz33iA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9BiwQ8MBhDKzDwpmnaS5BSfyUSL6yj7USpKtRufbNsx9nQphSVD21v_An8jfwlnNMkFGmTkPaWKOfIug_f_WzfHcB7ExkTi4QFvhAIAhSqg0ijPYaWUgQcWqY0TxTuyX4_Go_jwQIclrkws_oQ1Yabt4x8vfYG7jek56zcfk8PwqaUYhHqDNWI16D--aw96j3mRUrBy9revmpMUVnI3-SpBj_xR3XP2t9Pgs35kDX3Oe0X_zfbdVgrYk1yNFOODVhw2UtYnatAuAnjwWPiAGlVPQnJJCWffMMlJCJf8wWMdM99rrL9gdCa6CwhJ8n97d1w6vAV_0A6gxE5038IOj-Lo17BqH08bHWDotlCYKmIRJAg0msiejHMYbxNTZTEjFG_BpmwaUNHjQfLsUbxGebPakwoEid1zK3BqIXSLahlk8y9BpJGjNtECBNzwyLuEFGlUvKEOXSNqWk24GPJcmWLSuS-IcYvVSISZJbKmdWAdxXpxaz8xt-IPuRyqyj09Ke_rya5-tbvKHEadjsYyCjagN1SsKow1UuFEBf1BCNBnNfb6jMamT850ZmbXHsawTiPaMhw7rmY_z0b1eq084ft55Puw3J3eNpTvS_9kx1YwaBMzK7M7ELtanrt3sCSvbk6v5zuFSr-AIxf-3g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9RAEJ8gZww8gAqGU9TVGONLSXr7r0180YPeGc7LhXB6b5v9VyGQHjnA6Bsfgc_IJ3G215Yj0YTEtzadNpuZnZ35dXd-A_DOJMakwrEoEIEgQKE6SjT6Y2wpRcChZU7LQuGBHA6TySQdLcHHuhZmzg_R_HALnlGu18HB_ZnLF7zc_sh34o6U4gG0GE8FumVr9yAbD27rIqXgNbd3YI2pmIXCSZ7m5TvxqBVU--tOsrmYspYxJ1v_v9E-hrUq1ySf5pPjCSz54imsLjAQbsBkdFs4QLpNT0Iyzcnn0HAJhci3cgEj_eNQq2yPEFoTXTiy726urg9nHm_xC6Q3GpMD_Ztg8LP41iaMs73Dbj-qmi1ElopERA6RXgfRi2Ee821qEpcyRsMaZOKOjT01ASynGs1nWNirMbFwXuqUW4NZC6XPYLmYFn4LSJ4wbp0QJuWGJdwjosql5I55DI256bThQ61yZSsm8tAQ41TViASVpUplteFtI3o2p9_4m9D70m6NhJ6dhPNqkqvvw54SX-N-DxMZRduwXRtWVa56rhDi4jzBTBDH9aZ5jE4Wdk504aeXQUYwzhMaMxx7aeZ_j0Z1e1l58fz-oq_h0Wg3U4Mvw_0XsII5mZifmNmG5YvZpX8JD-3Pi-Pz2atqhv8BHPb68w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+Comparison+of+Bounding+Volume+Hierarchies+and+Kd-Trees+for+GPU+Ray+Tracing&rft.jtitle=Computer+graphics+forum&rft.au=Vinkler%2C+Marek&rft.au=Havran%2C+Vlastimil&rft.au=Bittner%2C+Jir%C3%AD&rft.date=2016-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=35&rft.issue=8&rft.spage=68&rft_id=info:doi/10.1111%2Fcgf.12776&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4265763321 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |