Adaptable Anatomical Models for Realistic Bone Motion Reconstruction
We present a system to reconstruct subject‐specific anatomy models while relying only on exterior measurements represented by point clouds. Our model combines geometry, kinematics, and skin deformations (skinning). This joint model can be adapted to different individuals without breaking its functio...
Uloženo v:
| Vydáno v: | Computer graphics forum Ročník 34; číslo 2; s. 459 - 471 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Blackwell Publishing Ltd
01.05.2015
|
| Témata: | |
| ISSN: | 0167-7055, 1467-8659 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We present a system to reconstruct subject‐specific anatomy models while relying only on exterior measurements represented by point clouds. Our model combines geometry, kinematics, and skin deformations (skinning). This joint model can be adapted to different individuals without breaking its functionality, i.e., the bones and the skin remain well‐articulated after the adaptation. We propose an optimization algorithm which learns the subject‐specific (anthropometric) parameters from input point clouds captured using commodity depth cameras. The resulting personalized models can be used to reconstruct motion of human subjects. We validate our approach for upper and lower limbs, using both synthetic data and recordings of three different human subjects. Our reconstructed bone motion is comparable to results obtained by optical motion capture (Vicon) combined with anatomically‐based inverse kinematics (OpenSIM). We demonstrate that our adapted models better preserve the joint structure than previous methods such as OpenSIM or Anatomy Transfer. |
|---|---|
| AbstractList | We present a system to reconstruct subject‐specific anatomy models while relying only on exterior measurements represented by point clouds. Our model combines geometry, kinematics, and skin deformations (skinning). This joint model can be adapted to different individuals without breaking its functionality, i.e., the bones and the skin remain well‐articulated after the adaptation. We propose an optimization algorithm which learns the subject‐specific (anthropometric) parameters from input point clouds captured using commodity depth cameras. The resulting personalized models can be used to reconstruct motion of human subjects. We validate our approach for upper and lower limbs, using both synthetic data and recordings of three different human subjects. Our reconstructed bone motion is comparable to results obtained by optical motion capture (Vicon) combined with anatomically‐based inverse kinematics (OpenSIM). We demonstrate that our adapted models better preserve the joint structure than previous methods such as OpenSIM or Anatomy Transfer. |
| Author | Kavan, Ladislav Zhu, Lifeng Hu, Xiaoyan |
| Author_xml | – sequence: 1 givenname: Lifeng surname: Zhu fullname: Zhu, Lifeng organization: University of Pennsylvania – sequence: 2 givenname: Xiaoyan surname: Hu fullname: Hu, Xiaoyan organization: University of Pennsylvania – sequence: 3 givenname: Ladislav surname: Kavan fullname: Kavan, Ladislav organization: University of Pennsylvania |
| BookMark | eNp1kMtOAyEUhonRxHpZ-AaTuNHFtDAMl1nW1rYmXhIvcUkoMAalQ4WZqG8vtdWFUTZw4PsO8O-B7cY3BoAjBPsojYF6qvuoIIxsgR4qKcs5JdU26EGU1gwSsgv2YnyGEJaMkh4YD7VctnLuTDZsZOsXVkmXXXltXMxqH7JbI52NrVXZWbopnbTWN2lX-Sa2oVOr8gDs1NJFc7iZ98HD5Px-NMsvb6YXo-FlrjDlJDe6ZLgqtVFzQzA1XNaMyrkmBS4V0lBqSCkq5ozUtKqLQkGpiOSwqDXlmld4H5ys-y6Df-1MbMXCRmWck43xXRSIMQ4xKQuY0ONf6LPvQpNeJxCtIOIEYZyowZpSwccYTC2UbeXqS22Q1gkExSpVkVIVX6km4_SXsQx2IcPHn-ym-5t15uN_UIymk28jXxspcfP-Y8jwIijDiXy8nopHVnA-np2JO_wJwpiWsg |
| CitedBy_id | crossref_primary_10_1111_cgf_12863 crossref_primary_10_1145_3618381 crossref_primary_10_3389_frvir_2021_694244 crossref_primary_10_1145_2980179_2982438 crossref_primary_10_1002_aisy_202200337 crossref_primary_10_1016_j_cag_2017_10_008 crossref_primary_10_1145_3197517_3201330 crossref_primary_10_1145_3072959_3073685 crossref_primary_10_2478_jamsi_2018_0004 crossref_primary_10_1145_3340260 crossref_primary_10_1002_cav_1751 |
| Cites_doi | 10.1109/CICARE.2013.6583070 10.1109/TBME.2007.901024 10.1145/1360612.1360696 10.1111/j.1467-8659.2010.01718.x 10.1111/j.1467-8659.2008.01137.x 10.1145/1409060.1409064 10.1109/TBME.2007.903521 10.1145/1966394.1966405 10.1145/1360612.1360621 10.1145/2366145.2366207 10.1145/344779.344862 10.1007/s10439-006-9122-8 10.1145/2077341.2077343 10.1109/10.102791 10.1007/978-3-642-33718-5_52 10.1145/1360612.1360697 10.1145/2601097.2601215 10.1016/j.jbiomech.2007.03.003 10.1371/journal.pone.0087640 10.1145/1073204.1073207 10.1145/1618452.1618521 10.1016/S0021-9290(01)00222-6 10.1016/j.jbiomech.2004.05.042 10.1109/CVPR.2009.5206755 10.1145/2010324.1964973 10.1007/978-0-85729-997-0 10.1007/s10439-005-3320-7 10.1111/j.1467-8659.2009.01373.x 10.1109/TBME.2008.2002103 10.1145/2010324.1964932 10.1016/S0021-9290(98)00158-4 10.1145/2398356.2398381 10.1007/s11263-009-0284-3 10.1145/2366145.2366215 10.1016/j.jbiomech.2007.05.019 10.1145/2601097.2601161 10.1145/2070781.2024199 |
| ContentType | Journal Article |
| Copyright | 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2015 The Eurographics Association and John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2015 The Eurographics Association and John Wiley & Sons Ltd. |
| DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1111/cgf.12575 |
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Anatomy & Physiology |
| EISSN | 1467-8659 |
| EndPage | 471 |
| ExternalDocumentID | 3721827351 10_1111_cgf_12575 CGF12575 ark_67375_WNG_W7288DHB_S |
| Genre | article Feature |
| GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAYXX CITATION O8X 7SC 8FD ALUQN JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c3685-ed47394decbe536e8af76abd5234c1d0ad06612b75f69f22c0ac5a802fd68d893 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358326600044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-7055 |
| IngestDate | Sun Nov 09 12:32:22 EST 2025 Fri Jul 25 23:45:46 EDT 2025 Sat Nov 29 07:48:17 EST 2025 Tue Nov 18 21:05:27 EST 2025 Tue Oct 28 04:18:46 EDT 2025 Tue Nov 11 03:31:08 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3685-ed47394decbe536e8af76abd5234c1d0ad06612b75f69f22c0ac5a802fd68d893 |
| Notes | Supporting InformationSupporting Information ArticleID:CGF12575 istex:A41E839625654C41670CC24DD3C069FDEC551649 ark:/67375/WNG-W7288DHB-S SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1690185133 |
| PQPubID | 30877 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1778035420 proquest_journals_1690185133 crossref_citationtrail_10_1111_cgf_12575 crossref_primary_10_1111_cgf_12575 wiley_primary_10_1111_cgf_12575_CGF12575 istex_primary_ark_67375_WNG_W7288DHB_S |
| PublicationCentury | 2000 |
| PublicationDate | 2015-05 May 2015 2015-05-00 20150501 |
| PublicationDateYYYYMMDD | 2015-05-01 |
| PublicationDate_xml | – month: 05 year: 2015 text: 2015-05 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computer graphics forum |
| PublicationTitleAlternate | Computer Graphics Forum |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Jacobson A., Baran I., Popović J., Sorkine O.: Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4 (2011), 78. 5, 8, 9 Kraevoy V., Sheffer A., Shamir A., Cohen-Or D.: Non-homogeneous resizing of complex models. ACM Trans. Graph. 27, 5 (2008), 111:1-111:9. 3 Poppe R.: Vision-based human motion analysis: An overview. Computer vision and image understanding 108, 1 (2007). 3 Garling E., Kaptein B., Mertens B., Barendregt W., Veeger H., Nelissen R., Valstar E.: Soft-tissue artefact assessment during step-up using fluoroscopy and skin-mounted markers. Journal of Biomechanics 40 (2007), S18-S24. 3 Fan Y., Litven J., Pai D.K.: Active volumetric musculoskeletal systems. ACM Trans. Graph. 33, 4 (2014). 2, 8 Holzbaur K.R., Murray W.M., Delp S.L.: A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Annals of biomedical engineering 33, 6 (2005), 829-840. 3, 8 Ceseracciu E., Sawacha Z., Cobelli C.: Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: Proof of concept. PloS one 9, 3 (2014), e87640. 3 Delp S.L., Loan J.P., Hoy M.G., Zajac F.E., Topp E.L., Rosen J.M.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering 37, 8 (1990). 3 Kavan L., Sorkine O.: Elasticity-inspired deformers for character articulation. ACM Trans. Graph. 31, 6 (2012). 3 Dicko A.-H., Liu T., Gilles B., Kavan L., Faure F., Palombi O., Cani M.-P.: Anatomy transfer. ACM Trans. Graph. 32, 6 (2013). 2, 3, 11 Wei X., Zhang P., Chai J.: Accurate realtime full-body motion capture using a single depth camera. ACM Trans. Graph. 31, 6 (2012), 188. 3, 8 Wu G., van der Helm F.C., Veeger H.D., Makhsous M., Roy P.V., Anglin C., Nagels J., Karduna A.R., McQuade K., Wang X., Werner F.W., Buchholz B.: Isb recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion part ii: shoulder, elbow, wrist and hand. Journal of Biomechanics 38, 5 (2005), 981-992. 4 Lee S.-H., Terzopoulos D.: Spline joints for multi-body dynamics. In ACM Trans. Graph. (2008), vol. 27. 4 Pekelny Y., Gotsman C.: Articulated object reconstruction and markerless motion capture from depth video. In Computer Graphics Forum (2008), vol. 27, pp. 399-408. 3 Wu G., Siegler S., Allard P., Kirtley C., Leardini A., Rosenbaum D., Whittle M., Dima D.D., Cristofolini L., Witte H., Schmid O., Stokes I.: Isbrecommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion part i: ankle, hip, and spine. Journal of Biomechanics 35, 4 (2002), 543-548. 4 Lu T.-W., O'Connor J.: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. Journal of biomechanics 32, 2 (1999), 129-134. 3 Corazza S., Mündermann L., Gambaretto E., Ferrigno G., Andriacchi T.P.: Markerless motion capture through visual hull, articulated icp and subject specific model generation. IJCV 87, 1-2 (2010), 156-169. 3 Corazza S., Gambaretto E., Mundermann L., Andriacchi T.P.: Automatic generation of a subject-specific model for accurate markerless motion capture and biomechanical applications. IEEE Transactions on Biomedical Engineering 57, 4 (2010), 806-812. 3 Gilles B., Reveret L., Pai D.: Creating and animating subject-specific anatomical models. In Computer Graphics Forum (2010), vol. 29, pp. 2340-2351. 3 McAdams A., Zhu Y., Selle A., Empey M., Tamstorf R., Teran J., Sifakis E.: Efficient elasticity for character skinning with contact and collisions. In ACM Trans. Graph. (2011), vol. 30, p. 37. 8 Nester C., Jones R., Liu A., Howard D., Lundberg A., Arndt A., Lundgren P., Stacoff A., Wolf P.: Foot kinematics during walking measured using bone and surface mounted markers. Journal of biomechanics 40, 15 (2007), 3412-3423. 3 Shotton J., Sharp T., Kipman A., Fitzgibbon A., Finocchio M., Blake A., Cook M., Moore R.: Realtime human pose recognition in parts from single depth images. Communications of the ACM 56, 1 (2013), 116-124. 3 Li H., Adams B., Guibas L.J., Pauly M.: Robust single-view geometry and motion reconstruction. ACM Trans. Graph. 28, 5 (2009), 175. 6, 7 Moeslund T., Hilton A., Kruger V., Sigal L.: Visual analysis of humans: looking at people. Springer, 2011. 3 De Aguiar E., Stoll C., Theobalt C., Ahmed N., Seidel H.-P., Thrun S.: Performance capture from sparse multi-view video. In ACM Trans. Graph. (2008), vol. 27. 3 Le B.H., Deng Z.: Robust and accurate skeletal rigging from mesh sequences. ACM Trans. Graph. 33, 4 (2014). 3 Li H., Luo L., Vlasic D., Peers P., Popović J., Pauly M., Rusinkiewicz S.: Temporally coherent completion of dynamic shapes. ACM Trans. Graph. 31, 1 (2012), 2. 3 Corazza S., Mündermann L., Chaudhari A., Demattio T., Cobelli C., Andriacchi T.: A markerless motion capture system to study musculoskeletal biomechanics: Visual hull and simulated annealing approach. Annals of biomedical engineering 34, 6 (2006), 1019-1029. 3 Delp S.L., Anderson F.C., Arnold A.S., Loan P., Habib A., John C.T., Guendelman E., Thelen D.G.: Opensim: open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering 54, 11 (2007), 1940-1950. 2, 3, 9, 11 Chang W., Zwicker M.: Global registration of dynamic range scans for articulated model reconstruction. ACM Trans. Graph. 30, 3 (2011), 26. 3, 6 Kummer B., Lohscheidt K.: Mathematical model of the longitudinal growth of long bones. Anatomischer Anzeiger 158, 5 (1985), 377. 5 Jacobson A., Sorkine O.: Stretchable and twistable bones for skeletal shape deformation. ACM Trans. Graph. 30, 6 (2011), 165:1-165:8. 8 Vlasic D., Baran I., Matusik W., Popović J.: Articulated mesh animation from multi-view silhouettes. In ACM Trans. Graph. (2008), vol. 27, p. 97. 3 Hasler N., Stoll C., Sunkel M., Rosenhahn B., Seidel H.-P.: A statistical model of human pose and body shape. In Computer Graphics Forum (2009), vol. 28. 3 2007; 108 2010; 57 2012 2006; 34 1990; 37 2011 2010 2002; 35 2009 2011; 30 2007 2005 2007; 54 2012; 31 2009; 28 2010; 87 2013; 32 2000 2010; 29 2013; 56 2008; 27 1985; 158 1999; 32 2007; 40 2013 2014; 9 2005; 38 2005; 33 2014; 33 e_1_2_8_27_2 e_1_2_8_28_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_45_2 e_1_2_8_25_2 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_2_2 e_1_2_8_4_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_7_2 e_1_2_8_42_2 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_22_2 e_1_2_8_43_2 Kummer B. (e_1_2_8_24_2) 1985; 158 e_1_2_8_40_2 e_1_2_8_16_2 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_18_2 e_1_2_8_35_2 e_1_2_8_34_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_15_2 e_1_2_8_36_2 Poppe R. (e_1_2_8_39_2) 2007; 108 Dicko A.‐H. (e_1_2_8_13_2) 2013; 32 Ye G. (e_1_2_8_47_2) 2012 Dicko A. (e_1_2_8_12_2) 2012 Ballan L. (e_1_2_8_3_2) 2012 e_1_2_8_31_2 e_1_2_8_30_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_11_2 e_1_2_8_32_2 Helten T. (e_1_2_8_19_2) 2013 |
| References_xml | – reference: Moeslund T., Hilton A., Kruger V., Sigal L.: Visual analysis of humans: looking at people. Springer, 2011. 3 – reference: Kummer B., Lohscheidt K.: Mathematical model of the longitudinal growth of long bones. Anatomischer Anzeiger 158, 5 (1985), 377. 5 – reference: Li H., Adams B., Guibas L.J., Pauly M.: Robust single-view geometry and motion reconstruction. ACM Trans. Graph. 28, 5 (2009), 175. 6, 7 – reference: Vlasic D., Baran I., Matusik W., Popović J.: Articulated mesh animation from multi-view silhouettes. In ACM Trans. Graph. (2008), vol. 27, p. 97. 3 – reference: Kraevoy V., Sheffer A., Shamir A., Cohen-Or D.: Non-homogeneous resizing of complex models. ACM Trans. Graph. 27, 5 (2008), 111:1-111:9. 3 – reference: Wu G., van der Helm F.C., Veeger H.D., Makhsous M., Roy P.V., Anglin C., Nagels J., Karduna A.R., McQuade K., Wang X., Werner F.W., Buchholz B.: Isb recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion part ii: shoulder, elbow, wrist and hand. Journal of Biomechanics 38, 5 (2005), 981-992. 4 – reference: Pekelny Y., Gotsman C.: Articulated object reconstruction and markerless motion capture from depth video. In Computer Graphics Forum (2008), vol. 27, pp. 399-408. 3 – reference: Wu G., Siegler S., Allard P., Kirtley C., Leardini A., Rosenbaum D., Whittle M., Dima D.D., Cristofolini L., Witte H., Schmid O., Stokes I.: Isbrecommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion part i: ankle, hip, and spine. Journal of Biomechanics 35, 4 (2002), 543-548. 4 – reference: Nester C., Jones R., Liu A., Howard D., Lundberg A., Arndt A., Lundgren P., Stacoff A., Wolf P.: Foot kinematics during walking measured using bone and surface mounted markers. Journal of biomechanics 40, 15 (2007), 3412-3423. 3 – reference: Corazza S., Mündermann L., Chaudhari A., Demattio T., Cobelli C., Andriacchi T.: A markerless motion capture system to study musculoskeletal biomechanics: Visual hull and simulated annealing approach. Annals of biomedical engineering 34, 6 (2006), 1019-1029. 3 – reference: Le B.H., Deng Z.: Robust and accurate skeletal rigging from mesh sequences. ACM Trans. Graph. 33, 4 (2014). 3 – reference: Delp S.L., Loan J.P., Hoy M.G., Zajac F.E., Topp E.L., Rosen J.M.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering 37, 8 (1990). 3 – reference: Jacobson A., Baran I., Popović J., Sorkine O.: Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4 (2011), 78. 5, 8, 9 – reference: Lee S.-H., Terzopoulos D.: Spline joints for multi-body dynamics. In ACM Trans. Graph. (2008), vol. 27. 4 – reference: Shotton J., Sharp T., Kipman A., Fitzgibbon A., Finocchio M., Blake A., Cook M., Moore R.: Realtime human pose recognition in parts from single depth images. Communications of the ACM 56, 1 (2013), 116-124. 3 – reference: Delp S.L., Anderson F.C., Arnold A.S., Loan P., Habib A., John C.T., Guendelman E., Thelen D.G.: Opensim: open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering 54, 11 (2007), 1940-1950. 2, 3, 9, 11 – reference: Poppe R.: Vision-based human motion analysis: An overview. Computer vision and image understanding 108, 1 (2007). 3 – reference: Corazza S., Mündermann L., Gambaretto E., Ferrigno G., Andriacchi T.P.: Markerless motion capture through visual hull, articulated icp and subject specific model generation. IJCV 87, 1-2 (2010), 156-169. 3 – reference: Holzbaur K.R., Murray W.M., Delp S.L.: A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Annals of biomedical engineering 33, 6 (2005), 829-840. 3, 8 – reference: Chang W., Zwicker M.: Global registration of dynamic range scans for articulated model reconstruction. ACM Trans. Graph. 30, 3 (2011), 26. 3, 6 – reference: Corazza S., Gambaretto E., Mundermann L., Andriacchi T.P.: Automatic generation of a subject-specific model for accurate markerless motion capture and biomechanical applications. IEEE Transactions on Biomedical Engineering 57, 4 (2010), 806-812. 3 – reference: Lu T.-W., O'Connor J.: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. Journal of biomechanics 32, 2 (1999), 129-134. 3 – reference: Fan Y., Litven J., Pai D.K.: Active volumetric musculoskeletal systems. ACM Trans. Graph. 33, 4 (2014). 2, 8 – reference: Hasler N., Stoll C., Sunkel M., Rosenhahn B., Seidel H.-P.: A statistical model of human pose and body shape. In Computer Graphics Forum (2009), vol. 28. 3 – reference: McAdams A., Zhu Y., Selle A., Empey M., Tamstorf R., Teran J., Sifakis E.: Efficient elasticity for character skinning with contact and collisions. In ACM Trans. Graph. (2011), vol. 30, p. 37. 8 – reference: Ceseracciu E., Sawacha Z., Cobelli C.: Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: Proof of concept. PloS one 9, 3 (2014), e87640. 3 – reference: Garling E., Kaptein B., Mertens B., Barendregt W., Veeger H., Nelissen R., Valstar E.: Soft-tissue artefact assessment during step-up using fluoroscopy and skin-mounted markers. Journal of Biomechanics 40 (2007), S18-S24. 3 – reference: Kavan L., Sorkine O.: Elasticity-inspired deformers for character articulation. ACM Trans. Graph. 31, 6 (2012). 3 – reference: Gilles B., Reveret L., Pai D.: Creating and animating subject-specific anatomical models. In Computer Graphics Forum (2010), vol. 29, pp. 2340-2351. 3 – reference: Jacobson A., Sorkine O.: Stretchable and twistable bones for skeletal shape deformation. ACM Trans. Graph. 30, 6 (2011), 165:1-165:8. 8 – reference: De Aguiar E., Stoll C., Theobalt C., Ahmed N., Seidel H.-P., Thrun S.: Performance capture from sparse multi-view video. In ACM Trans. Graph. (2008), vol. 27. 3 – reference: Dicko A.-H., Liu T., Gilles B., Kavan L., Faure F., Palombi O., Cani M.-P.: Anatomy transfer. ACM Trans. Graph. 32, 6 (2013). 2, 3, 11 – reference: Li H., Luo L., Vlasic D., Peers P., Popović J., Pauly M., Rusinkiewicz S.: Temporally coherent completion of dynamic shapes. ACM Trans. Graph. 31, 1 (2012), 2. 3 – reference: Wei X., Zhang P., Chai J.: Accurate realtime full-body motion capture using a single depth camera. ACM Trans. Graph. 31, 6 (2012), 188. 3, 8 – year: 2011 – year: 2009 – volume: 31 start-page: 2 issue: 1 year: 2012 article-title: Temporally coherent completion of dynamic shapes publication-title: ACM Trans. Graph – start-page: 165 year: 2000 end-page: 172 – volume: 9 start-page: e87640 issue: 3 year: 2014 article-title: Comparison of markerless and marker‐based motion capture technologies through simultaneous data collection during gait: Proof of concept publication-title: PloS one – volume: 40 start-page: S18 year: 2007 end-page: S24 article-title: Soft‐tissue artefact assessment during step‐up using fluoroscopy and skin‐mounted markers publication-title: Journal of Biomechanics – year: 2005 – volume: 54 start-page: 1940 issue: 11 year: 2007 end-page: 1950 article-title: Opensim: open‐source software to create and analyze dynamic simulations of movement publication-title: IEEE Transactions on Biomedical Engineering – start-page: 227 year: 2012 end-page: 242 – year: 2007 – volume: 158 start-page: 377 issue: 5 year: 1985 article-title: Mathematical model of the longitudinal growth of long bones publication-title: Anatomischer Anzeiger – volume: 57 start-page: 806 issue: 4 year: 2010 end-page: 812 article-title: Automatic generation of a subject‐specific model for accurate markerless motion capture and biomechanical applications publication-title: IEEE Transactions on Biomedical Engineering – volume: 32 start-page: 129 issue: 2 year: 1999 end-page: 134 article-title: Bone position estimation from skin marker co‐ordinates using global optimisation with joint constraints publication-title: Journal of biomechanics – volume: 32 issue: 6 year: 2013 article-title: Anatomy transfer publication-title: ACM Trans. Graph – volume: 29 start-page: 2340 year: 2010 end-page: 2351 article-title: Creating and animating subject‐specific anatomical models publication-title: Computer Graphics Forum – volume: 108 issue: 1 year: 2007 article-title: Vision‐based human motion analysis: An overview publication-title: Computer vision and image understanding – volume: 34 start-page: 1019 issue: 6 year: 2006 end-page: 1029 article-title: A markerless motion capture system to study musculoskeletal biomechanics: Visual hull and simulated annealing approach publication-title: Annals of biomedical engineering – volume: 56 start-page: 116 issue: 1 year: 2013 end-page: 124 article-title: Realtime human pose recognition in parts from single depth images publication-title: Communications of the ACM – year: 2010 – year: 2012 – volume: 27 start-page: 111:1 issue: 5 year: 2008 end-page: 111:9 article-title: Non‐homogeneous resizing of complex models publication-title: ACM Trans. Graph – volume: 31 issue: 6 year: 2012 article-title: Elasticity‐inspired deformers for character articulation publication-title: ACM Trans. Graph – volume: 28 year: 2009 article-title: A statistical model of human pose and body shape publication-title: Computer Graphics Forum – volume: 40 start-page: 3412 issue: 15 year: 2007 end-page: 3423 article-title: Foot kinematics during walking measured using bone and surface mounted markers publication-title: Journal of biomechanics – volume: 30 start-page: 37 year: 2011 article-title: Efficient elasticity for character skinning with contact and collisions publication-title: ACM Trans. Graph – start-page: 828 year: 2012 end-page: 841 – volume: 31 start-page: 188 issue: 6 year: 2012 article-title: Accurate realtime full‐body motion capture using a single depth camera publication-title: ACM Trans. Graph – volume: 27 year: 2008 article-title: Performance capture from sparse multi‐view video publication-title: ACM Trans. Graph – volume: 27 year: 2008 article-title: Spline joints for multi‐body dynamics publication-title: ACM Trans. Graph – volume: 33 issue: 4 year: 2014 article-title: Robust and accurate skeletal rigging from mesh sequences publication-title: ACM Trans. Graph – volume: 35 start-page: 543 issue: 4 year: 2002 end-page: 548 article-title: Isbrecommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion part i: ankle, hip, and spine publication-title: Journal of Biomechanics – volume: 27 start-page: 97 year: 2008 article-title: Articulated mesh animation from multi‐view silhouettes publication-title: ACM Trans. Graph – volume: 87 start-page: 156 issue: 1‐2 year: 2010 end-page: 169 article-title: Markerless motion capture through visual hull, articulated icp and subject specific model generation publication-title: IJCV – volume: 30 start-page: 165:1 issue: 6 year: 2011 end-page: 165:8 article-title: Stretchable and twistable bones for skeletal shape deformation publication-title: ACM Trans. Graph – volume: 38 start-page: 981 issue: 5 year: 2005 end-page: 992 article-title: Isb recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion part ii: shoulder, elbow, wrist and hand publication-title: Journal of Biomechanics – start-page: 279 year: 2013 end-page: 286 – volume: 30 start-page: 78 issue: 4 year: 2011 article-title: Bounded biharmonic weights for real‐time deformation publication-title: ACM Trans. Graph – volume: 28 start-page: 175 issue: 5 year: 2009 article-title: Robust single‐view geometry and motion reconstruction publication-title: ACM Trans. Graph – volume: 37 issue: 8 year: 1990 article-title: An interactive graphics‐based model of the lower extremity to study orthopaedic surgical procedures publication-title: IEEE Transactions on Biomedical Engineering – volume: 30 start-page: 26 issue: 3 year: 2011 article-title: Global registration of dynamic range scans for articulated model reconstruction publication-title: ACM Trans. Graph – volume: 33 issue: 4 year: 2014 article-title: Active volumetric musculoskeletal systems publication-title: ACM Trans. Graph – volume: 27 start-page: 399 year: 2008 end-page: 408 article-title: Articulated object reconstruction and markerless motion capture from depth video publication-title: Computer Graphics Forum – volume: 33 start-page: 829 issue: 6 year: 2005 end-page: 840 article-title: A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control publication-title: Annals of biomedical engineering – year: 2013 – ident: e_1_2_8_30_2 doi: 10.1109/CICARE.2013.6583070 – volume: 108 issue: 1 year: 2007 ident: e_1_2_8_39_2 article-title: Vision‐based human motion analysis: An overview publication-title: Computer vision and image understanding – ident: e_1_2_8_5_2 – volume-title: ECCV year: 2012 ident: e_1_2_8_3_2 – ident: e_1_2_8_10_2 doi: 10.1109/TBME.2007.901024 – ident: e_1_2_8_43_2 doi: 10.1145/1360612.1360696 – ident: e_1_2_8_17_2 doi: 10.1111/j.1467-8659.2010.01718.x – ident: e_1_2_8_38_2 doi: 10.1111/j.1467-8659.2008.01137.x – ident: e_1_2_8_26_2 doi: 10.1145/1409060.1409064 – ident: e_1_2_8_42_2 doi: 10.1109/TBME.2007.903521 – ident: e_1_2_8_9_2 doi: 10.1145/1966394.1966405 – ident: e_1_2_8_34_2 doi: 10.1145/1360612.1360621 – ident: e_1_2_8_46_2 doi: 10.1145/2366145.2366207 – ident: e_1_2_8_28_2 doi: 10.1145/344779.344862 – ident: e_1_2_8_6_2 doi: 10.1007/s10439-006-9122-8 – ident: e_1_2_8_32_2 doi: 10.1145/2077341.2077343 – ident: e_1_2_8_14_2 doi: 10.1109/10.102791 – ident: e_1_2_8_40_2 doi: 10.1007/978-3-642-33718-5_52 – ident: e_1_2_8_11_2 doi: 10.1145/1360612.1360697 – ident: e_1_2_8_15_2 doi: 10.1145/2601097.2601215 – ident: e_1_2_8_16_2 doi: 10.1016/j.jbiomech.2007.03.003 – start-page: 279 volume-title: 3DTV‐Conference year: 2013 ident: e_1_2_8_19_2 – ident: e_1_2_8_8_2 doi: 10.1371/journal.pone.0087640 – ident: e_1_2_8_31_2 – ident: e_1_2_8_2_2 doi: 10.1145/1073204.1073207 – ident: e_1_2_8_27_2 doi: 10.1145/1618452.1618521 – ident: e_1_2_8_44_2 doi: 10.1016/S0021-9290(01)00222-6 – start-page: 828 volume-title: ECCV year: 2012 ident: e_1_2_8_47_2 – volume: 158 start-page: 377 issue: 5 year: 1985 ident: e_1_2_8_24_2 article-title: Mathematical model of the longitudinal growth of long bones publication-title: Anatomischer Anzeiger – ident: e_1_2_8_45_2 doi: 10.1016/j.jbiomech.2004.05.042 – ident: e_1_2_8_18_2 doi: 10.1109/CVPR.2009.5206755 – ident: e_1_2_8_22_2 doi: 10.1145/2010324.1964973 – ident: e_1_2_8_35_2 doi: 10.1007/978-0-85729-997-0 – ident: e_1_2_8_20_2 doi: 10.1007/s10439-005-3320-7 – ident: e_1_2_8_21_2 doi: 10.1111/j.1467-8659.2009.01373.x – ident: e_1_2_8_4_2 doi: 10.1109/TBME.2008.2002103 – ident: e_1_2_8_36_2 doi: 10.1145/2010324.1964932 – ident: e_1_2_8_33_2 doi: 10.1016/S0021-9290(98)00158-4 – ident: e_1_2_8_41_2 doi: 10.1145/2398356.2398381 – ident: e_1_2_8_7_2 doi: 10.1007/s11263-009-0284-3 – ident: e_1_2_8_25_2 doi: 10.1145/2366145.2366215 – ident: e_1_2_8_37_2 doi: 10.1016/j.jbiomech.2007.05.019 – ident: e_1_2_8_29_2 doi: 10.1145/2601097.2601161 – ident: e_1_2_8_23_2 doi: 10.1145/2070781.2024199 – volume: 32 issue: 6 year: 2013 ident: e_1_2_8_13_2 article-title: Anatomy transfer publication-title: ACM Trans. Graph – start-page: 227 volume-title: Intelligent Computer Graphics 2012 year: 2012 ident: e_1_2_8_12_2 |
| SSID | ssj0004765 |
| Score | 2.2152653 |
| Snippet | We present a system to reconstruct subject‐specific anatomy models while relying only on exterior measurements represented by point clouds. Our model combines... We present a system to reconstruct subject-specific anatomy models while relying only on exterior measurements represented by point clouds. Our model combines... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 459 |
| SubjectTerms | Algorithms Analysis Anatomy Anatomy & physiology Bones Categories and Subject Descriptors (according to ACM CCS) Human Human subjects I.3.3 [Computer Graphics]: Three Dimensional Graphics and Realism-Animation Image processing systems Inverse kinematics Kinematics Optimization Preserves Reconstruction Studies Three dimensional models |
| Title | Adaptable Anatomical Models for Realistic Bone Motion Reconstruction |
| URI | https://api.istex.fr/ark:/67375/WNG-W7288DHB-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12575 https://www.proquest.com/docview/1690185133 https://www.proquest.com/docview/1778035420 |
| Volume | 34 |
| WOSCitedRecordID | wos000358326600044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8659 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004765 issn: 0167-7055 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7MzQd98C7OG1VEfKm0XdNk-LSL04cxZDq3t5DmIuLoxKn48z3p2jpBQfCtNKdpOJfmO03OF4ATUSOyFhjP9WKq3TAUwo1V3bh4M1K-xgkrrXq_79Jej41G9ZsSXOS1MDN-iOKHm42M9HttA1zE07kglw_mHGdnShagEqDfkjJU2v3OoPtVFkkjklN7W9KYjFjIbuQpHv42HVWsZj--Yc15xJpOOZ3Vfw12DVYypOk0Zq6xDiWdbMDyHP_gJrQbSjy_2uIpp5Fg9p1SBzj2eLTx1EE06_S15UfEDpzmJNHYYs3o2JT1i3h2Cwady7vWtZsdq4AGiBhxtQpprR4qLWNNapFmwtBIxApT0lD6yhMKYYgfxJSYqG6CQHpCEsG8wKiIKcQ321BO8KU74Fj-NG2oCOOIhcTHnqTvmdj3NfaMuU4VznLtcplxjtujL8Y8zz1QMTxVTBWOC9HnGdHGT0KnqYkKCfHyZHemUcKHvSs-pAFj7esmv63Cfm5DngXllNsVQYQnmJVX4ahoxnCyayQi0ZM3lKGUoS-FgYdjTy36-2h466qTXuz-XXQPlhBykdmWyX0oo630ASzK99fH6cth5sGfwj7yNA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD4COontYWPAtDIGYUKIl6Bc7NiV9lIooYguQqUF3izHl2kaCogytJ-_4zQJrTQkJN6i5MSxziX-ju3zGWBXxlTFkQ38IGfGJ0RKP9cd6-PNRIcGB6yy6v1ywLKMX193zhfge10LM-WHaCbcXGSU_2sX4G5CeibK1U97gMMzo4vQIuhG6N-t3jAdD57qIllCa25vxxpTMQu5nTzNy3PjUcup9u8c2JyFrOWYk354XW9X4H2FNb3u1Dk-woIpVuHdDAPhGvS6Wt49uPIpr1tg_l2SB3jugLSbiYd41hsax5CIDXiHt4XBJ86Qnktan6hn12GcHo-O-n51sAKaIOHUN5qwuEO0UbmhcWK4tCyRucaklKhQB1IjEAmjnFGbdGwUqUAqKnkQWZ1wjQjnEywV-NHP4DkGNWOZJHnCCQ2xJRUGNg9Dgy1jttOG_Vq9QlWs4-7wixtRZx-oGFEqpg3fGtG7KdXG_4T2Shs1EvL-t9ubxqi4yk7EFYs47_UPxUUbNmsjiiosJ8KtCSJAwby8DTvNYwwot0oiC3P7B2UY40FMSRRg30uTPt8bcXSSlhcbLxfdhuX-6MdADE6zsy_wFgEYnW6g3IQltJv5Cm_U48Ovyf1W5c7_AEfz9iQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-VFqHxsPGxiQ4GGUKIl6B82LEr7aWlS4tWVYjvN8vxx4RAoaJs2p_POU1CkZiExFsUXxzrzhf_Lvb9DmBPxlTFkQ38IGPGJ0RKP9Md6-PNRIcGF6wi6_1yxMZjfn3dOWnAjyoXZsYPUf9wc55RfK-dg5uJtnNern7bQ1yeGV2AFnFFZJrQ6p-mF6PnvEiW0Irb27HGlMxC7iRP_fCL9ajlVPvvBdich6zFmpN-et9oV-BjiTW97mxyrELD5GuwPMdAuA79rpaTR5c-5XVzjL8L8gDPFUi7m3qIZ71T4xgSsQOvd58bbHGG9FzQ-kw9-xku0p_nR0O_LKyAJkg49Y0mLO4QbVRmaJwYLi1LZKYxKCUq1IHUCETCKGPUJh0bRSqQikoeRFYnXCPC-QLNHF-6AZ5jUDOWSZIlnNAQe1JhYLMwNNgzRjttOKjUK1TJOu6KX9yJKvpAxYhCMW3YrUUnM6qN14T2CxvVEvLh1p1NY1RcjQfiikWc94c9cdaGrcqIonTLqXB7gghQMC5vw_e6GR3K7ZLI3Nz_QRnGeBBTEgU49sKk_x-NOBqkxcXXt4vuwNJJPxWj4_GvTfiA-IvOzk9uQRPNZr7Bovr7eDN92C5n8xPhBPWf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptable+Anatomical+Models+for+Realistic+Bone+Motion+Reconstruction&rft.jtitle=Computer+graphics+forum&rft.au=Zhu%2C+Lifeng&rft.au=Hu%2C+Xiaoyan&rft.au=Kavan%2C+Ladislav&rft.date=2015-05-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=34&rft.issue=2&rft.spage=459&rft.epage=471&rft_id=info:doi/10.1111%2Fcgf.12575&rft.externalDBID=10.1111%252Fcgf.12575&rft.externalDocID=CGF12575 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |