Adaptable Anatomical Models for Realistic Bone Motion Reconstruction

We present a system to reconstruct subject‐specific anatomy models while relying only on exterior measurements represented by point clouds. Our model combines geometry, kinematics, and skin deformations (skinning). This joint model can be adapted to different individuals without breaking its functio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer graphics forum Ročník 34; číslo 2; s. 459 - 471
Hlavní autori: Zhu, Lifeng, Hu, Xiaoyan, Kavan, Ladislav
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Blackwell Publishing Ltd 01.05.2015
Predmet:
ISSN:0167-7055, 1467-8659
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We present a system to reconstruct subject‐specific anatomy models while relying only on exterior measurements represented by point clouds. Our model combines geometry, kinematics, and skin deformations (skinning). This joint model can be adapted to different individuals without breaking its functionality, i.e., the bones and the skin remain well‐articulated after the adaptation. We propose an optimization algorithm which learns the subject‐specific (anthropometric) parameters from input point clouds captured using commodity depth cameras. The resulting personalized models can be used to reconstruct motion of human subjects. We validate our approach for upper and lower limbs, using both synthetic data and recordings of three different human subjects. Our reconstructed bone motion is comparable to results obtained by optical motion capture (Vicon) combined with anatomically‐based inverse kinematics (OpenSIM). We demonstrate that our adapted models better preserve the joint structure than previous methods such as OpenSIM or Anatomy Transfer.
AbstractList We present a system to reconstruct subject‐specific anatomy models while relying only on exterior measurements represented by point clouds. Our model combines geometry, kinematics, and skin deformations (skinning). This joint model can be adapted to different individuals without breaking its functionality, i.e., the bones and the skin remain well‐articulated after the adaptation. We propose an optimization algorithm which learns the subject‐specific (anthropometric) parameters from input point clouds captured using commodity depth cameras. The resulting personalized models can be used to reconstruct motion of human subjects. We validate our approach for upper and lower limbs, using both synthetic data and recordings of three different human subjects. Our reconstructed bone motion is comparable to results obtained by optical motion capture (Vicon) combined with anatomically‐based inverse kinematics (OpenSIM). We demonstrate that our adapted models better preserve the joint structure than previous methods such as OpenSIM or Anatomy Transfer.
Author Kavan, Ladislav
Zhu, Lifeng
Hu, Xiaoyan
Author_xml – sequence: 1
  givenname: Lifeng
  surname: Zhu
  fullname: Zhu, Lifeng
  organization: University of Pennsylvania
– sequence: 2
  givenname: Xiaoyan
  surname: Hu
  fullname: Hu, Xiaoyan
  organization: University of Pennsylvania
– sequence: 3
  givenname: Ladislav
  surname: Kavan
  fullname: Kavan, Ladislav
  organization: University of Pennsylvania
BookMark eNp1kMtOAyEUhonRxHpZ-AaTuNHFtDAMl1nW1rYmXhIvcUkoMAalQ4WZqG8vtdWFUTZw4PsO8O-B7cY3BoAjBPsojYF6qvuoIIxsgR4qKcs5JdU26EGU1gwSsgv2YnyGEJaMkh4YD7VctnLuTDZsZOsXVkmXXXltXMxqH7JbI52NrVXZWbopnbTWN2lX-Sa2oVOr8gDs1NJFc7iZ98HD5Px-NMsvb6YXo-FlrjDlJDe6ZLgqtVFzQzA1XNaMyrkmBS4V0lBqSCkq5ozUtKqLQkGpiOSwqDXlmld4H5ys-y6Df-1MbMXCRmWck43xXRSIMQ4xKQuY0ONf6LPvQpNeJxCtIOIEYZyowZpSwccYTC2UbeXqS22Q1gkExSpVkVIVX6km4_SXsQx2IcPHn-ym-5t15uN_UIymk28jXxspcfP-Y8jwIijDiXy8nopHVnA-np2JO_wJwpiWsg
CitedBy_id crossref_primary_10_1111_cgf_12863
crossref_primary_10_1145_3618381
crossref_primary_10_3389_frvir_2021_694244
crossref_primary_10_1145_2980179_2982438
crossref_primary_10_1002_aisy_202200337
crossref_primary_10_1016_j_cag_2017_10_008
crossref_primary_10_1145_3197517_3201330
crossref_primary_10_1145_3072959_3073685
crossref_primary_10_2478_jamsi_2018_0004
crossref_primary_10_1145_3340260
crossref_primary_10_1002_cav_1751
Cites_doi 10.1109/CICARE.2013.6583070
10.1109/TBME.2007.901024
10.1145/1360612.1360696
10.1111/j.1467-8659.2010.01718.x
10.1111/j.1467-8659.2008.01137.x
10.1145/1409060.1409064
10.1109/TBME.2007.903521
10.1145/1966394.1966405
10.1145/1360612.1360621
10.1145/2366145.2366207
10.1145/344779.344862
10.1007/s10439-006-9122-8
10.1145/2077341.2077343
10.1109/10.102791
10.1007/978-3-642-33718-5_52
10.1145/1360612.1360697
10.1145/2601097.2601215
10.1016/j.jbiomech.2007.03.003
10.1371/journal.pone.0087640
10.1145/1073204.1073207
10.1145/1618452.1618521
10.1016/S0021-9290(01)00222-6
10.1016/j.jbiomech.2004.05.042
10.1109/CVPR.2009.5206755
10.1145/2010324.1964973
10.1007/978-0-85729-997-0
10.1007/s10439-005-3320-7
10.1111/j.1467-8659.2009.01373.x
10.1109/TBME.2008.2002103
10.1145/2010324.1964932
10.1016/S0021-9290(98)00158-4
10.1145/2398356.2398381
10.1007/s11263-009-0284-3
10.1145/2366145.2366215
10.1016/j.jbiomech.2007.05.019
10.1145/2601097.2601161
10.1145/2070781.2024199
ContentType Journal Article
Copyright 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2015 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2015 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12575
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
EISSN 1467-8659
EndPage 471
ExternalDocumentID 3721827351
10_1111_cgf_12575
CGF12575
ark_67375_WNG_W7288DHB_S
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
CITATION
O8X
7SC
8FD
ALUQN
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c3685-ed47394decbe536e8af76abd5234c1d0ad06612b75f69f22c0ac5a802fd68d893
IEDL.DBID DRFUL
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358326600044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sun Nov 09 12:32:22 EST 2025
Fri Jul 25 23:45:46 EDT 2025
Sat Nov 29 07:48:17 EST 2025
Tue Nov 18 21:05:27 EST 2025
Tue Oct 28 04:18:46 EDT 2025
Tue Nov 11 03:31:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3685-ed47394decbe536e8af76abd5234c1d0ad06612b75f69f22c0ac5a802fd68d893
Notes Supporting InformationSupporting Information
ArticleID:CGF12575
istex:A41E839625654C41670CC24DD3C069FDEC551649
ark:/67375/WNG-W7288DHB-S
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1690185133
PQPubID 30877
PageCount 13
ParticipantIDs proquest_miscellaneous_1778035420
proquest_journals_1690185133
crossref_citationtrail_10_1111_cgf_12575
crossref_primary_10_1111_cgf_12575
wiley_primary_10_1111_cgf_12575_CGF12575
istex_primary_ark_67375_WNG_W7288DHB_S
PublicationCentury 2000
PublicationDate 2015-05
May 2015
2015-05-00
20150501
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Jacobson A., Baran I., Popović J., Sorkine O.: Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4 (2011), 78. 5, 8, 9
Kraevoy V., Sheffer A., Shamir A., Cohen-Or D.: Non-homogeneous resizing of complex models. ACM Trans. Graph. 27, 5 (2008), 111:1-111:9. 3
Poppe R.: Vision-based human motion analysis: An overview. Computer vision and image understanding 108, 1 (2007). 3
Garling E., Kaptein B., Mertens B., Barendregt W., Veeger H., Nelissen R., Valstar E.: Soft-tissue artefact assessment during step-up using fluoroscopy and skin-mounted markers. Journal of Biomechanics 40 (2007), S18-S24. 3
Fan Y., Litven J., Pai D.K.: Active volumetric musculoskeletal systems. ACM Trans. Graph. 33, 4 (2014). 2, 8
Holzbaur K.R., Murray W.M., Delp S.L.: A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Annals of biomedical engineering 33, 6 (2005), 829-840. 3, 8
Ceseracciu E., Sawacha Z., Cobelli C.: Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: Proof of concept. PloS one 9, 3 (2014), e87640. 3
Delp S.L., Loan J.P., Hoy M.G., Zajac F.E., Topp E.L., Rosen J.M.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering 37, 8 (1990). 3
Kavan L., Sorkine O.: Elasticity-inspired deformers for character articulation. ACM Trans. Graph. 31, 6 (2012). 3
Dicko A.-H., Liu T., Gilles B., Kavan L., Faure F., Palombi O., Cani M.-P.: Anatomy transfer. ACM Trans. Graph. 32, 6 (2013). 2, 3, 11
Wei X., Zhang P., Chai J.: Accurate realtime full-body motion capture using a single depth camera. ACM Trans. Graph. 31, 6 (2012), 188. 3, 8
Wu G., van der Helm F.C., Veeger H.D., Makhsous M., Roy P.V., Anglin C., Nagels J., Karduna A.R., McQuade K., Wang X., Werner F.W., Buchholz B.: Isb recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion part ii: shoulder, elbow, wrist and hand. Journal of Biomechanics 38, 5 (2005), 981-992. 4
Lee S.-H., Terzopoulos D.: Spline joints for multi-body dynamics. In ACM Trans. Graph. (2008), vol. 27. 4
Pekelny Y., Gotsman C.: Articulated object reconstruction and markerless motion capture from depth video. In Computer Graphics Forum (2008), vol. 27, pp. 399-408. 3
Wu G., Siegler S., Allard P., Kirtley C., Leardini A., Rosenbaum D., Whittle M., Dima D.D., Cristofolini L., Witte H., Schmid O., Stokes I.: Isbrecommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion part i: ankle, hip, and spine. Journal of Biomechanics 35, 4 (2002), 543-548. 4
Lu T.-W., O'Connor J.: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. Journal of biomechanics 32, 2 (1999), 129-134. 3
Corazza S., Mündermann L., Gambaretto E., Ferrigno G., Andriacchi T.P.: Markerless motion capture through visual hull, articulated icp and subject specific model generation. IJCV 87, 1-2 (2010), 156-169. 3
Corazza S., Gambaretto E., Mundermann L., Andriacchi T.P.: Automatic generation of a subject-specific model for accurate markerless motion capture and biomechanical applications. IEEE Transactions on Biomedical Engineering 57, 4 (2010), 806-812. 3
Gilles B., Reveret L., Pai D.: Creating and animating subject-specific anatomical models. In Computer Graphics Forum (2010), vol. 29, pp. 2340-2351. 3
McAdams A., Zhu Y., Selle A., Empey M., Tamstorf R., Teran J., Sifakis E.: Efficient elasticity for character skinning with contact and collisions. In ACM Trans. Graph. (2011), vol. 30, p. 37. 8
Nester C., Jones R., Liu A., Howard D., Lundberg A., Arndt A., Lundgren P., Stacoff A., Wolf P.: Foot kinematics during walking measured using bone and surface mounted markers. Journal of biomechanics 40, 15 (2007), 3412-3423. 3
Shotton J., Sharp T., Kipman A., Fitzgibbon A., Finocchio M., Blake A., Cook M., Moore R.: Realtime human pose recognition in parts from single depth images. Communications of the ACM 56, 1 (2013), 116-124. 3
Li H., Adams B., Guibas L.J., Pauly M.: Robust single-view geometry and motion reconstruction. ACM Trans. Graph. 28, 5 (2009), 175. 6, 7
Moeslund T., Hilton A., Kruger V., Sigal L.: Visual analysis of humans: looking at people. Springer, 2011. 3
De Aguiar E., Stoll C., Theobalt C., Ahmed N., Seidel H.-P., Thrun S.: Performance capture from sparse multi-view video. In ACM Trans. Graph. (2008), vol. 27. 3
Le B.H., Deng Z.: Robust and accurate skeletal rigging from mesh sequences. ACM Trans. Graph. 33, 4 (2014). 3
Li H., Luo L., Vlasic D., Peers P., Popović J., Pauly M., Rusinkiewicz S.: Temporally coherent completion of dynamic shapes. ACM Trans. Graph. 31, 1 (2012), 2. 3
Corazza S., Mündermann L., Chaudhari A., Demattio T., Cobelli C., Andriacchi T.: A markerless motion capture system to study musculoskeletal biomechanics: Visual hull and simulated annealing approach. Annals of biomedical engineering 34, 6 (2006), 1019-1029. 3
Delp S.L., Anderson F.C., Arnold A.S., Loan P., Habib A., John C.T., Guendelman E., Thelen D.G.: Opensim: open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering 54, 11 (2007), 1940-1950. 2, 3, 9, 11
Chang W., Zwicker M.: Global registration of dynamic range scans for articulated model reconstruction. ACM Trans. Graph. 30, 3 (2011), 26. 3, 6
Kummer B., Lohscheidt K.: Mathematical model of the longitudinal growth of long bones. Anatomischer Anzeiger 158, 5 (1985), 377. 5
Jacobson A., Sorkine O.: Stretchable and twistable bones for skeletal shape deformation. ACM Trans. Graph. 30, 6 (2011), 165:1-165:8. 8
Vlasic D., Baran I., Matusik W., Popović J.: Articulated mesh animation from multi-view silhouettes. In ACM Trans. Graph. (2008), vol. 27, p. 97. 3
Hasler N., Stoll C., Sunkel M., Rosenhahn B., Seidel H.-P.: A statistical model of human pose and body shape. In Computer Graphics Forum (2009), vol. 28. 3
2007; 108
2010; 57
2012
2006; 34
1990; 37
2011
2010
2002; 35
2009
2011; 30
2007
2005
2007; 54
2012; 31
2009; 28
2010; 87
2013; 32
2000
2010; 29
2013; 56
2008; 27
1985; 158
1999; 32
2007; 40
2013
2014; 9
2005; 38
2005; 33
2014; 33
e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_45_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_42_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_22_2
e_1_2_8_43_2
Kummer B. (e_1_2_8_24_2) 1985; 158
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_18_2
e_1_2_8_35_2
e_1_2_8_34_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_15_2
e_1_2_8_36_2
Poppe R. (e_1_2_8_39_2) 2007; 108
Dicko A.‐H. (e_1_2_8_13_2) 2013; 32
Ye G. (e_1_2_8_47_2) 2012
Dicko A. (e_1_2_8_12_2) 2012
Ballan L. (e_1_2_8_3_2) 2012
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_11_2
e_1_2_8_32_2
Helten T. (e_1_2_8_19_2) 2013
References_xml – reference: Moeslund T., Hilton A., Kruger V., Sigal L.: Visual analysis of humans: looking at people. Springer, 2011. 3
– reference: Kummer B., Lohscheidt K.: Mathematical model of the longitudinal growth of long bones. Anatomischer Anzeiger 158, 5 (1985), 377. 5
– reference: Li H., Adams B., Guibas L.J., Pauly M.: Robust single-view geometry and motion reconstruction. ACM Trans. Graph. 28, 5 (2009), 175. 6, 7
– reference: Vlasic D., Baran I., Matusik W., Popović J.: Articulated mesh animation from multi-view silhouettes. In ACM Trans. Graph. (2008), vol. 27, p. 97. 3
– reference: Kraevoy V., Sheffer A., Shamir A., Cohen-Or D.: Non-homogeneous resizing of complex models. ACM Trans. Graph. 27, 5 (2008), 111:1-111:9. 3
– reference: Wu G., van der Helm F.C., Veeger H.D., Makhsous M., Roy P.V., Anglin C., Nagels J., Karduna A.R., McQuade K., Wang X., Werner F.W., Buchholz B.: Isb recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion part ii: shoulder, elbow, wrist and hand. Journal of Biomechanics 38, 5 (2005), 981-992. 4
– reference: Pekelny Y., Gotsman C.: Articulated object reconstruction and markerless motion capture from depth video. In Computer Graphics Forum (2008), vol. 27, pp. 399-408. 3
– reference: Wu G., Siegler S., Allard P., Kirtley C., Leardini A., Rosenbaum D., Whittle M., Dima D.D., Cristofolini L., Witte H., Schmid O., Stokes I.: Isbrecommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion part i: ankle, hip, and spine. Journal of Biomechanics 35, 4 (2002), 543-548. 4
– reference: Nester C., Jones R., Liu A., Howard D., Lundberg A., Arndt A., Lundgren P., Stacoff A., Wolf P.: Foot kinematics during walking measured using bone and surface mounted markers. Journal of biomechanics 40, 15 (2007), 3412-3423. 3
– reference: Corazza S., Mündermann L., Chaudhari A., Demattio T., Cobelli C., Andriacchi T.: A markerless motion capture system to study musculoskeletal biomechanics: Visual hull and simulated annealing approach. Annals of biomedical engineering 34, 6 (2006), 1019-1029. 3
– reference: Le B.H., Deng Z.: Robust and accurate skeletal rigging from mesh sequences. ACM Trans. Graph. 33, 4 (2014). 3
– reference: Delp S.L., Loan J.P., Hoy M.G., Zajac F.E., Topp E.L., Rosen J.M.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering 37, 8 (1990). 3
– reference: Jacobson A., Baran I., Popović J., Sorkine O.: Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4 (2011), 78. 5, 8, 9
– reference: Lee S.-H., Terzopoulos D.: Spline joints for multi-body dynamics. In ACM Trans. Graph. (2008), vol. 27. 4
– reference: Shotton J., Sharp T., Kipman A., Fitzgibbon A., Finocchio M., Blake A., Cook M., Moore R.: Realtime human pose recognition in parts from single depth images. Communications of the ACM 56, 1 (2013), 116-124. 3
– reference: Delp S.L., Anderson F.C., Arnold A.S., Loan P., Habib A., John C.T., Guendelman E., Thelen D.G.: Opensim: open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering 54, 11 (2007), 1940-1950. 2, 3, 9, 11
– reference: Poppe R.: Vision-based human motion analysis: An overview. Computer vision and image understanding 108, 1 (2007). 3
– reference: Corazza S., Mündermann L., Gambaretto E., Ferrigno G., Andriacchi T.P.: Markerless motion capture through visual hull, articulated icp and subject specific model generation. IJCV 87, 1-2 (2010), 156-169. 3
– reference: Holzbaur K.R., Murray W.M., Delp S.L.: A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Annals of biomedical engineering 33, 6 (2005), 829-840. 3, 8
– reference: Chang W., Zwicker M.: Global registration of dynamic range scans for articulated model reconstruction. ACM Trans. Graph. 30, 3 (2011), 26. 3, 6
– reference: Corazza S., Gambaretto E., Mundermann L., Andriacchi T.P.: Automatic generation of a subject-specific model for accurate markerless motion capture and biomechanical applications. IEEE Transactions on Biomedical Engineering 57, 4 (2010), 806-812. 3
– reference: Lu T.-W., O'Connor J.: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. Journal of biomechanics 32, 2 (1999), 129-134. 3
– reference: Fan Y., Litven J., Pai D.K.: Active volumetric musculoskeletal systems. ACM Trans. Graph. 33, 4 (2014). 2, 8
– reference: Hasler N., Stoll C., Sunkel M., Rosenhahn B., Seidel H.-P.: A statistical model of human pose and body shape. In Computer Graphics Forum (2009), vol. 28. 3
– reference: McAdams A., Zhu Y., Selle A., Empey M., Tamstorf R., Teran J., Sifakis E.: Efficient elasticity for character skinning with contact and collisions. In ACM Trans. Graph. (2011), vol. 30, p. 37. 8
– reference: Ceseracciu E., Sawacha Z., Cobelli C.: Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: Proof of concept. PloS one 9, 3 (2014), e87640. 3
– reference: Garling E., Kaptein B., Mertens B., Barendregt W., Veeger H., Nelissen R., Valstar E.: Soft-tissue artefact assessment during step-up using fluoroscopy and skin-mounted markers. Journal of Biomechanics 40 (2007), S18-S24. 3
– reference: Kavan L., Sorkine O.: Elasticity-inspired deformers for character articulation. ACM Trans. Graph. 31, 6 (2012). 3
– reference: Gilles B., Reveret L., Pai D.: Creating and animating subject-specific anatomical models. In Computer Graphics Forum (2010), vol. 29, pp. 2340-2351. 3
– reference: Jacobson A., Sorkine O.: Stretchable and twistable bones for skeletal shape deformation. ACM Trans. Graph. 30, 6 (2011), 165:1-165:8. 8
– reference: De Aguiar E., Stoll C., Theobalt C., Ahmed N., Seidel H.-P., Thrun S.: Performance capture from sparse multi-view video. In ACM Trans. Graph. (2008), vol. 27. 3
– reference: Dicko A.-H., Liu T., Gilles B., Kavan L., Faure F., Palombi O., Cani M.-P.: Anatomy transfer. ACM Trans. Graph. 32, 6 (2013). 2, 3, 11
– reference: Li H., Luo L., Vlasic D., Peers P., Popović J., Pauly M., Rusinkiewicz S.: Temporally coherent completion of dynamic shapes. ACM Trans. Graph. 31, 1 (2012), 2. 3
– reference: Wei X., Zhang P., Chai J.: Accurate realtime full-body motion capture using a single depth camera. ACM Trans. Graph. 31, 6 (2012), 188. 3, 8
– year: 2011
– year: 2009
– volume: 31
  start-page: 2
  issue: 1
  year: 2012
  article-title: Temporally coherent completion of dynamic shapes
  publication-title: ACM Trans. Graph
– start-page: 165
  year: 2000
  end-page: 172
– volume: 9
  start-page: e87640
  issue: 3
  year: 2014
  article-title: Comparison of markerless and marker‐based motion capture technologies through simultaneous data collection during gait: Proof of concept
  publication-title: PloS one
– volume: 40
  start-page: S18
  year: 2007
  end-page: S24
  article-title: Soft‐tissue artefact assessment during step‐up using fluoroscopy and skin‐mounted markers
  publication-title: Journal of Biomechanics
– year: 2005
– volume: 54
  start-page: 1940
  issue: 11
  year: 2007
  end-page: 1950
  article-title: Opensim: open‐source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Transactions on Biomedical Engineering
– start-page: 227
  year: 2012
  end-page: 242
– year: 2007
– volume: 158
  start-page: 377
  issue: 5
  year: 1985
  article-title: Mathematical model of the longitudinal growth of long bones
  publication-title: Anatomischer Anzeiger
– volume: 57
  start-page: 806
  issue: 4
  year: 2010
  end-page: 812
  article-title: Automatic generation of a subject‐specific model for accurate markerless motion capture and biomechanical applications
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 32
  start-page: 129
  issue: 2
  year: 1999
  end-page: 134
  article-title: Bone position estimation from skin marker co‐ordinates using global optimisation with joint constraints
  publication-title: Journal of biomechanics
– volume: 32
  issue: 6
  year: 2013
  article-title: Anatomy transfer
  publication-title: ACM Trans. Graph
– volume: 29
  start-page: 2340
  year: 2010
  end-page: 2351
  article-title: Creating and animating subject‐specific anatomical models
  publication-title: Computer Graphics Forum
– volume: 108
  issue: 1
  year: 2007
  article-title: Vision‐based human motion analysis: An overview
  publication-title: Computer vision and image understanding
– volume: 34
  start-page: 1019
  issue: 6
  year: 2006
  end-page: 1029
  article-title: A markerless motion capture system to study musculoskeletal biomechanics: Visual hull and simulated annealing approach
  publication-title: Annals of biomedical engineering
– volume: 56
  start-page: 116
  issue: 1
  year: 2013
  end-page: 124
  article-title: Realtime human pose recognition in parts from single depth images
  publication-title: Communications of the ACM
– year: 2010
– year: 2012
– volume: 27
  start-page: 111:1
  issue: 5
  year: 2008
  end-page: 111:9
  article-title: Non‐homogeneous resizing of complex models
  publication-title: ACM Trans. Graph
– volume: 31
  issue: 6
  year: 2012
  article-title: Elasticity‐inspired deformers for character articulation
  publication-title: ACM Trans. Graph
– volume: 28
  year: 2009
  article-title: A statistical model of human pose and body shape
  publication-title: Computer Graphics Forum
– volume: 40
  start-page: 3412
  issue: 15
  year: 2007
  end-page: 3423
  article-title: Foot kinematics during walking measured using bone and surface mounted markers
  publication-title: Journal of biomechanics
– volume: 30
  start-page: 37
  year: 2011
  article-title: Efficient elasticity for character skinning with contact and collisions
  publication-title: ACM Trans. Graph
– start-page: 828
  year: 2012
  end-page: 841
– volume: 31
  start-page: 188
  issue: 6
  year: 2012
  article-title: Accurate realtime full‐body motion capture using a single depth camera
  publication-title: ACM Trans. Graph
– volume: 27
  year: 2008
  article-title: Performance capture from sparse multi‐view video
  publication-title: ACM Trans. Graph
– volume: 27
  year: 2008
  article-title: Spline joints for multi‐body dynamics
  publication-title: ACM Trans. Graph
– volume: 33
  issue: 4
  year: 2014
  article-title: Robust and accurate skeletal rigging from mesh sequences
  publication-title: ACM Trans. Graph
– volume: 35
  start-page: 543
  issue: 4
  year: 2002
  end-page: 548
  article-title: Isbrecommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion part i: ankle, hip, and spine
  publication-title: Journal of Biomechanics
– volume: 27
  start-page: 97
  year: 2008
  article-title: Articulated mesh animation from multi‐view silhouettes
  publication-title: ACM Trans. Graph
– volume: 87
  start-page: 156
  issue: 1‐2
  year: 2010
  end-page: 169
  article-title: Markerless motion capture through visual hull, articulated icp and subject specific model generation
  publication-title: IJCV
– volume: 30
  start-page: 165:1
  issue: 6
  year: 2011
  end-page: 165:8
  article-title: Stretchable and twistable bones for skeletal shape deformation
  publication-title: ACM Trans. Graph
– volume: 38
  start-page: 981
  issue: 5
  year: 2005
  end-page: 992
  article-title: Isb recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion part ii: shoulder, elbow, wrist and hand
  publication-title: Journal of Biomechanics
– start-page: 279
  year: 2013
  end-page: 286
– volume: 30
  start-page: 78
  issue: 4
  year: 2011
  article-title: Bounded biharmonic weights for real‐time deformation
  publication-title: ACM Trans. Graph
– volume: 28
  start-page: 175
  issue: 5
  year: 2009
  article-title: Robust single‐view geometry and motion reconstruction
  publication-title: ACM Trans. Graph
– volume: 37
  issue: 8
  year: 1990
  article-title: An interactive graphics‐based model of the lower extremity to study orthopaedic surgical procedures
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 30
  start-page: 26
  issue: 3
  year: 2011
  article-title: Global registration of dynamic range scans for articulated model reconstruction
  publication-title: ACM Trans. Graph
– volume: 33
  issue: 4
  year: 2014
  article-title: Active volumetric musculoskeletal systems
  publication-title: ACM Trans. Graph
– volume: 27
  start-page: 399
  year: 2008
  end-page: 408
  article-title: Articulated object reconstruction and markerless motion capture from depth video
  publication-title: Computer Graphics Forum
– volume: 33
  start-page: 829
  issue: 6
  year: 2005
  end-page: 840
  article-title: A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control
  publication-title: Annals of biomedical engineering
– year: 2013
– ident: e_1_2_8_30_2
  doi: 10.1109/CICARE.2013.6583070
– volume: 108
  issue: 1
  year: 2007
  ident: e_1_2_8_39_2
  article-title: Vision‐based human motion analysis: An overview
  publication-title: Computer vision and image understanding
– ident: e_1_2_8_5_2
– volume-title: ECCV
  year: 2012
  ident: e_1_2_8_3_2
– ident: e_1_2_8_10_2
  doi: 10.1109/TBME.2007.901024
– ident: e_1_2_8_43_2
  doi: 10.1145/1360612.1360696
– ident: e_1_2_8_17_2
  doi: 10.1111/j.1467-8659.2010.01718.x
– ident: e_1_2_8_38_2
  doi: 10.1111/j.1467-8659.2008.01137.x
– ident: e_1_2_8_26_2
  doi: 10.1145/1409060.1409064
– ident: e_1_2_8_42_2
  doi: 10.1109/TBME.2007.903521
– ident: e_1_2_8_9_2
  doi: 10.1145/1966394.1966405
– ident: e_1_2_8_34_2
  doi: 10.1145/1360612.1360621
– ident: e_1_2_8_46_2
  doi: 10.1145/2366145.2366207
– ident: e_1_2_8_28_2
  doi: 10.1145/344779.344862
– ident: e_1_2_8_6_2
  doi: 10.1007/s10439-006-9122-8
– ident: e_1_2_8_32_2
  doi: 10.1145/2077341.2077343
– ident: e_1_2_8_14_2
  doi: 10.1109/10.102791
– ident: e_1_2_8_40_2
  doi: 10.1007/978-3-642-33718-5_52
– ident: e_1_2_8_11_2
  doi: 10.1145/1360612.1360697
– ident: e_1_2_8_15_2
  doi: 10.1145/2601097.2601215
– ident: e_1_2_8_16_2
  doi: 10.1016/j.jbiomech.2007.03.003
– start-page: 279
  volume-title: 3DTV‐Conference
  year: 2013
  ident: e_1_2_8_19_2
– ident: e_1_2_8_8_2
  doi: 10.1371/journal.pone.0087640
– ident: e_1_2_8_31_2
– ident: e_1_2_8_2_2
  doi: 10.1145/1073204.1073207
– ident: e_1_2_8_27_2
  doi: 10.1145/1618452.1618521
– ident: e_1_2_8_44_2
  doi: 10.1016/S0021-9290(01)00222-6
– start-page: 828
  volume-title: ECCV
  year: 2012
  ident: e_1_2_8_47_2
– volume: 158
  start-page: 377
  issue: 5
  year: 1985
  ident: e_1_2_8_24_2
  article-title: Mathematical model of the longitudinal growth of long bones
  publication-title: Anatomischer Anzeiger
– ident: e_1_2_8_45_2
  doi: 10.1016/j.jbiomech.2004.05.042
– ident: e_1_2_8_18_2
  doi: 10.1109/CVPR.2009.5206755
– ident: e_1_2_8_22_2
  doi: 10.1145/2010324.1964973
– ident: e_1_2_8_35_2
  doi: 10.1007/978-0-85729-997-0
– ident: e_1_2_8_20_2
  doi: 10.1007/s10439-005-3320-7
– ident: e_1_2_8_21_2
  doi: 10.1111/j.1467-8659.2009.01373.x
– ident: e_1_2_8_4_2
  doi: 10.1109/TBME.2008.2002103
– ident: e_1_2_8_36_2
  doi: 10.1145/2010324.1964932
– ident: e_1_2_8_33_2
  doi: 10.1016/S0021-9290(98)00158-4
– ident: e_1_2_8_41_2
  doi: 10.1145/2398356.2398381
– ident: e_1_2_8_7_2
  doi: 10.1007/s11263-009-0284-3
– ident: e_1_2_8_25_2
  doi: 10.1145/2366145.2366215
– ident: e_1_2_8_37_2
  doi: 10.1016/j.jbiomech.2007.05.019
– ident: e_1_2_8_29_2
  doi: 10.1145/2601097.2601161
– ident: e_1_2_8_23_2
  doi: 10.1145/2070781.2024199
– volume: 32
  issue: 6
  year: 2013
  ident: e_1_2_8_13_2
  article-title: Anatomy transfer
  publication-title: ACM Trans. Graph
– start-page: 227
  volume-title: Intelligent Computer Graphics 2012
  year: 2012
  ident: e_1_2_8_12_2
SSID ssj0004765
Score 2.2152653
Snippet We present a system to reconstruct subject‐specific anatomy models while relying only on exterior measurements represented by point clouds. Our model combines...
We present a system to reconstruct subject-specific anatomy models while relying only on exterior measurements represented by point clouds. Our model combines...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 459
SubjectTerms Algorithms
Analysis
Anatomy
Anatomy & physiology
Bones
Categories and Subject Descriptors (according to ACM CCS)
Human
Human subjects
I.3.3 [Computer Graphics]: Three Dimensional Graphics and Realism-Animation
Image processing systems
Inverse kinematics
Kinematics
Optimization
Preserves
Reconstruction
Studies
Three dimensional models
Title Adaptable Anatomical Models for Realistic Bone Motion Reconstruction
URI https://api.istex.fr/ark:/67375/WNG-W7288DHB-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12575
https://www.proquest.com/docview/1690185133
https://www.proquest.com/docview/1778035420
Volume 34
WOSCitedRecordID wos000358326600044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5014MefIvriyoiXip9pUnxtA9XD7KI71tIk1REqeKq-POd6bZ1BQXBWyGTdpjJNN8kmS8Au5llPFVh6GobRW6kheemgfJdprj2UqqkLNY7rk_5YCBub5OzCTisamFG_BD1ghtFRvG_pgBX6XAsyPVddoCzM2eT0Axw3LIGNHvn_avTr7JIHrOK2ptIY0piITrIU3f-Nh01ybIf37DmOGItppz-3L-UnYfZEmk67dHQWIAJmy_CzBj_4BL02kY9v1LxlNPOMfsuqAMcuh7tceggmnXOLfEj4guczlNusYXc6FDK-kU8uwxX_aPL7olbXqvgamKbd62JeJhExurUsjC2QmU8VqnBlDTSvvGUQRjiBylnWZxkQaA9pZkSXpCZWBjENyvQyPGjq-DEvtUi8-NEJ4p2fFWI8I2FqbEmTNAlLdivrCt1yTlOV188yir3QMPIwjAt2KlFn0dEGz8J7RUuqiXUywOdTONM3gyO5Q0PhOiddORFCzYqH8oyKIeSdgQRnmBW3oLtuhnDifZIVG6f3lCGc4GKR4GHuhce_V0b2T3uFw9rfxddh2mEXGx0ZHIDGugruwlT-v31fviyVY7gT-bg8c0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8VigQ8bONLdOtGQAjtJShfjh1pLy1d6USpEN9vlmM7CIECojDtz99dmqRF2iQk3iLlkpzuI_6d7fsZYDezjKcqDF1to8iNtPDcNFC-yxTXXkqdlMV8x-WQj0bi-jo5acCPqhdmwg9RT7hRZhT_a0pwmpCeyXJ9k-3j8MzZHDQjDCOM72bvtH8xnPZF8phV3N7EGlMyC9FOnvrhV-NRk0z75xXYnIWsxZjT__g-bT_BhxJrOp1JcKxAw-arsDzDQLgGvY5Rj8_UPuV0cqy_C_IAhw5Iux87iGedU0sMifgCp_uQW7xDjnSoaJ1Sz67DRf_n-cHALQ9WcDXxzbvWRDxMImN1alkYW6EyHqvUYFEaad94yiAQ8YOUsyxOsiDQntJMCS_ITCwMIpwNmM_xo5vgxL7VIvPjRCeK1nxViACOhamxJky8kLXge2VeqUvWcTr84l5W1QcaRhaGacFOLfo4odr4l9Be4aNaQj3d0d40zuTV6FBe8UCI3qArz1rQrpwoy7QcS1oTRICCdXkLtuvbmFC0SqJy-_CCMpwLVDwKPNS9cOn_tZEHh_3i4vPbRbdgcXB-PJTDX6OjL7CEAIxNNlC2YR79Zr_Cgv79fDt--laG819nXfW9
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_0Tkp98KO2ePUrlSK-RPK12Q34cnqNSo9D_H5bNrubIkruuLOlf74zuSSeYKHgWyCTZJjZyf5md-c3AN9zy3imwtDVNorcSAvPzQLlu0xx7WVUSVmud9z0-WAg7u6S8zk4rGthpvwQzYIbRUb5v6YAtyOTz0S5_pUf4PTM2Ty0I2oi04J27yK97r_URfKY1dzexBpTMQvRSZ7m4VfzUZtM-_cV2JyFrOWcky6_T9sVWKqwptOdDo5VmLPFJ1icYSBcg17XqNETlU853QLz75I8wKEGaY8TB_Gsc2GJIRFf4BwNC4t3yJEOJa0v1LOf4Tr9cXV86laNFVxNfPOuNREPk8hYnVkWxlaonMcqM5iURto3njIIRPwg4yyPkzwItKc0U8ILchMLgwjnC7QK_Og6OLFvtcj9ONGJoj1fFSKAY2FmrAkTL2Qd2K_NK3XFOk7NLx5lnX2gYWRpmA7sNqKjKdXGW0J7pY8aCTV-oLNpnMnbwYm85YEQvdMjedmBzdqJsgrLiaQ9QQQomJd34FtzGwOKdklUYYe_UYZzgYpHgYe6ly79tzby-CQtL77-v-gOfDjvpbJ_Nvi5AR8Rf7Hp-clNaKHb7BYs6D9P95PxdjWanwEA5PU4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptable+Anatomical+Models+for+Realistic+Bone+Motion+Reconstruction&rft.jtitle=Computer+graphics+forum&rft.au=Zhu%2C+Lifeng&rft.au=Hu%2C+Xiaoyan&rft.au=Kavan%2C+Ladislav&rft.date=2015-05-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=34&rft.issue=2&rft.spage=459&rft.epage=471&rft_id=info:doi/10.1111%2Fcgf.12575&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon