Visual Analytics for the Exploration of Tumor Tissue Characterization

Tumors are heterogeneous tissues consisting of multiple regions with distinct characteristics. Characterization of these intra‐tumor regions can improve patient diagnosis and enable a better targeted treatment. Ideally, tissue characterization could be performed non‐invasively, using medical imaging...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 34; číslo 3; s. 11 - 20
Hlavní autoři: Raidou, R.G., van der Heide, U.A., Dinh, C.V., Ghobadi, G., Kallehauge, J.F., Breeuwer, M., Vilanova, A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.06.2015
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Tumors are heterogeneous tissues consisting of multiple regions with distinct characteristics. Characterization of these intra‐tumor regions can improve patient diagnosis and enable a better targeted treatment. Ideally, tissue characterization could be performed non‐invasively, using medical imaging data, to derive per voxel a number of features, indicative of tissue properties. However, the high dimensionality and complexity of this imaging‐derived feature space is prohibiting for easy exploration and analysis ‐ especially when clinical researchers require to associate observations from the feature space to other reference data, e.g., features derived from histopathological data. Currently, the exploratory approach used in clinical research consists of juxtaposing these data, visually comparing them and mentally reconstructing their relationships. This is a time consuming and tedious process, from which it is difficult to obtain the required insight. We propose a visual tool for: (1) easy exploration and visual analysis of the feature space of imaging‐derived tissue characteristics and (2) knowledge discovery and hypothesis generation and confirmation, with respect to reference data used in clinical research. We employ, as central view, a 2D embedding of the imaging‐derived features. Multiple linked interactive views provide functionality for the exploration and analysis of the local structure of the feature space, enabling linking to patient anatomy and clinical reference data. We performed an initial evaluation with ten clinical researchers. All participants agreed that, unlike current practice, the proposed visual tool enables them to identify, explore and analyze heterogeneous intra‐tumor regions and particularly, to generate and confirm hypotheses, with respect to clinical reference data.
AbstractList Tumors are heterogeneous tissues consisting of multiple regions with distinct characteristics. Characterization of these intra‐tumor regions can improve patient diagnosis and enable a better targeted treatment. Ideally, tissue characterization could be performed non‐invasively, using medical imaging data, to derive per voxel a number of features, indicative of tissue properties. However, the high dimensionality and complexity of this imaging‐derived feature space is prohibiting for easy exploration and analysis ‐ especially when clinical researchers require to associate observations from the feature space to other reference data, e.g., features derived from histopathological data. Currently, the exploratory approach used in clinical research consists of juxtaposing these data, visually comparing them and mentally reconstructing their relationships. This is a time consuming and tedious process, from which it is difficult to obtain the required insight. We propose a visual tool for: (1) easy exploration and visual analysis of the feature space of imaging‐derived tissue characteristics and (2) knowledge discovery and hypothesis generation and confirmation, with respect to reference data used in clinical research. We employ, as central view, a 2D embedding of the imaging‐derived features. Multiple linked interactive views provide functionality for the exploration and analysis of the local structure of the feature space, enabling linking to patient anatomy and clinical reference data. We performed an initial evaluation with ten clinical researchers. All participants agreed that, unlike current practice, the proposed visual tool enables them to identify, explore and analyze heterogeneous intra‐tumor regions and particularly, to generate and confirm hypotheses, with respect to clinical reference data.
Author Dinh, C.V.
Kallehauge, J.F.
Raidou, R.G.
Breeuwer, M.
Vilanova, A.
Ghobadi, G.
van der Heide, U.A.
Author_xml – sequence: 1
  givenname: R.G.
  surname: Raidou
  fullname: Raidou, R.G.
  organization: Eindhoven University of Technology, The Netherlands
– sequence: 2
  givenname: U.A.
  surname: van der Heide
  fullname: van der Heide, U.A.
  organization: Department of Radiotherapy, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, The Netherlands
– sequence: 3
  givenname: C.V.
  surname: Dinh
  fullname: Dinh, C.V.
  organization: Department of Radiotherapy, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, The Netherlands
– sequence: 4
  givenname: G.
  surname: Ghobadi
  fullname: Ghobadi, G.
  organization: Department of Radiotherapy, the Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, The Netherlands
– sequence: 5
  givenname: J.F.
  surname: Kallehauge
  fullname: Kallehauge, J.F.
  organization: Department of Medical Physics, Aarhus University Hospital, Denmark
– sequence: 6
  givenname: M.
  surname: Breeuwer
  fullname: Breeuwer, M.
  organization: Philips Healthcare Best, The Netherlands
– sequence: 7
  givenname: A.
  surname: Vilanova
  fullname: Vilanova, A.
  organization: Delft University of Technology, The Netherlands
BookMark eNp1kE1PAjEQhhuDiYge_AebeNHDQrvdfuwRCaCR6AWRW9MtXSkuW2x3I_jrXT70QHQuM8k8zyTznoNGYQsNwBWCbVRXR71lbRRRhE9AE8WUhZySpAGaENUzg4ScgXPvFxDCmFHSBP2J8ZXMg24h801plA8y64JyroP-epVbJ0tji8Bmwbha1oux8b7SQW8unVSlduZrB1yA00zmXl8eegu8DPrj3n04eh4-9LqjUGHKcUh5BlOdcpTCiEpEYZLwlKCZjjhLWJpIlTEVkQzHMEF6hiiFDLGYcB0pFscpboGb_d2Vsx-V9qVYGq90nstC28oLxBiHmDDCa_T6CF3YytVf1hRNWBTHCG6pzp5SznrvdCaUKXcvlU6aXCAotrGKOlaxi7U2bo-MlTNL6TZ_sofrnybXm_9B0RsOfoxwbxhf6vWvId27oAwzIl6fhuIREjyaTO_EFH8DaWGWMA
CitedBy_id crossref_primary_10_1111_cgf_14172
crossref_primary_10_1159_000504940
crossref_primary_10_1109_TVCG_2019_2934547
crossref_primary_10_3390_electronics12030743
crossref_primary_10_1111_cgf_12899
crossref_primary_10_1111_cgf_14830
crossref_primary_10_1002_widm_1427
crossref_primary_10_1109_TVCG_2023_3326939
crossref_primary_10_1016_j_cag_2022_07_023
crossref_primary_10_1111_cgf_13726
crossref_primary_10_1111_cgf_14859
crossref_primary_10_1016_j_phro_2018_06_002
crossref_primary_10_1038_s41598_020_64471_w
crossref_primary_10_1109_TVCG_2016_2598463
Cites_doi 10.1109/MCG.2009.45
10.1016/j.ijrobp.2011.07.021
10.1007/978-0-387-45528-0
10.1109/VAST.2010.5652392
10.1145/1268517.1268563
10.1109/MC.2002.1016905
10.2307/2289444
10.1097/01.pas.0000173646.99337.b1
10.1016/j.mric.2008.07.002
10.1111/j.1467-8659.2011.01920.x
10.1137/0906011
10.1016/j.cag.2010.05.016
10.5220/0004719901690176
10.1016/S0167-8140(15)30519-3
10.1109/TVCG.2007.70569
10.1109/VISUAL.1994.346302
10.1109/TVCG.2011.279
10.1109/TVCG.2008.95
10.1109/VAST.2010.5652443
10.1002/nbm.2940
10.1007/BF01898350
ContentType Journal Article
Copyright 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2015 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2015 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12613
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 20
ExternalDocumentID 3747609931
10_1111_cgf_12613
CGF12613
ark_67375_WNG_K053LVXB_X
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
ALUQN
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c3683-68f0beb81b026a160998b51de28797b9acf7c25f34091ed1660717458e2c744b3
IEDL.DBID DRFUL
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358328200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sun Nov 09 14:34:44 EST 2025
Sun Sep 07 03:48:39 EDT 2025
Sat Nov 29 07:50:20 EST 2025
Tue Nov 18 21:05:27 EST 2025
Wed Aug 20 07:25:02 EDT 2025
Tue Nov 11 03:32:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3683-68f0beb81b026a160998b51de28797b9acf7c25f34091ed1660717458e2c744b3
Notes istex:9803B82F2DE87718D3AEF6A7A2DF998AB021888D
ark:/67375/WNG-K053LVXB-X
Supporting Information
ArticleID:CGF12613
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1697244108
PQPubID 30877
PageCount 10
ParticipantIDs proquest_miscellaneous_1778035758
proquest_journals_1697244108
crossref_citationtrail_10_1111_cgf_12613
crossref_primary_10_1111_cgf_12613
wiley_primary_10_1111_cgf_12613_CGF12613
istex_primary_ark_67375_WNG_K053LVXB_X
PublicationCentury 2000
PublicationDate 2015-06
June 2015
2015-06-00
20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Preim B., Oeltze S., Mlejnek M., Groller E., Hennemuth A., Behrens S.: Survey of the visual exploration and analysis of perfusion data. Visualization and Computer Graphics, IEEE Transactions on 15, 2 (2009), 205-220. 3
Oeltze S., Doleisch H., Hauser H., Muigg P., Preim B.: Interactive visual analysis of perfusion data. Visualization and Computer Graphics, IEEE Transactions on 13, 6 (2007), 1392-1399. 3
Bishop C.M.: Pattern recognition and machine learning. New York: Springer, 2006. 5
Asimov D.: The Grand Tour: a tool for viewing multidimensional data. SIAM Journal on Scientific and Statistical Computing 6, 1 (1985), 128-143. 3
Sourbron S.P., Buckley D.L.: Classic models for dynamic contrast-enhanced MRI. NMR in biomedicine 26, 8 (2013), 1004-27. 2, 7, 8
Lam H., Bertini E., Isenberg P., Plaisant C., Carpendale S.: Empirical studies in information visualization: Seven scenarios. IEEE Transactions on Visualization and Computer Graphics 18, 9 (2012), 1520-1536. 6
Tan P.-N., Steinbach M., Kumar V.: Introduction to Data Mining. Addison Wesley, 2005. 5
Inselberg A.: The plane with parallel coordinates. The Visual Computer 1, 2 (1985), 69-91. 5
Turkbey B., Thomasson D., Pang Y., Bernardo M., Choyke P.L.: The role of Dynamic Contrast-Enhanced MRI in cancer diagnosis and treatment. Diagnostic and interventional radiology. 16, 3 (2010), 186-92. 2
Seo J., Shneiderman B.: Interactively exploring hierarchical clustering results. Computer 35, 7 (2002), 80-86. 3
Linsen L., Van Long T., Rosenthal P.: Linking multidimensional feature space cluster visualization to multifield surface extraction. Computer Graphics and Applications, IEEE 29, 3 (2009), 85-89. 3
Groenendaal G., Borren A., Moman M.R., Monninkhof E., van Diest P.J., Philippens M.E., van Vulpen M., van der Heide U.A.: Pathologic validation of a model based on diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging for tumor delineation in the prostate peripheral zone. International Journal of Radiation Oncology* Biology* Physics 82, 3 (2012), e537-e544. 2, 7
Van der Maaten L., Hinton G.: Visualizing high-dimensional data using t-SNE. Journal of Machine Learning Research 9, 85 (2008), 2579-2605. 3
Epstein J.I., Allsbrook Jr W.C., Amin M.B., Egevad L.L., Committee I.G., et al.: The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. The American journal of surgical pathology 29, 9 (2005), 1228-1242. 2
Kallehauge J., Haack S., Lindegaard J., Fokdal L., Mohamed S., Tanderup K., Pedersen E., Nielsen T.: Tracer kinetic model selection for dynamic contrast-enhanced MRI of locally advanced cervical cancer. Radiotherapy and Oncology 111 (2014), 174. 2, 8
Somford D.M., Fütterer J. J., Hambrock T., Barentsz J.O.: Diffusion and perfusion MR imaging of the prostate. Magnetic resonance imaging clinics of North America 16, 4 (2008), 685-695. 2
Carr D.B., Littlefield R.J.: Scatterplot matrix techniques for large N. Journal of the American Statistical Association 82, 398 (1987), 424-436. 4
Glasser S., Preim U., Tönnies K., Preim B.: A visual analytics approach to diagnosis of breast DCE-MRI data. Computers & Graphics 34, 5 (2010), 602-611. 3
2010; 34
2012; 82
1985; 1
2013; 26
2010; 16
2010
2002; 35
2008; 16
1985; 6
2008; 9
2008
2011; 30
2007
2006
1995
1994
2012; 18
2005
2004
2000; 2000
2014; 111
2005; 29
2007; 13
2012; 31
2009; 29
2009; 28
1987; 82
2000
2007; 2007
2014
2009; 15
e_1_2_8_27_2
e_1_2_8_29_2
Jeong D.H. (e_1_2_8_19_2) 2009
e_1_2_8_23_2
Poco J. (e_1_2_8_24_2) 2012
e_1_2_8_25_2
Van der Maaten L. (e_1_2_8_35_2) 2008; 9
Doleisch H. (e_1_2_8_9_2) 2007
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_5_2
e_1_2_8_8_2
Sprenger T.C. (e_1_2_8_28_2) 2000
Turkbey B. (e_1_2_8_34_2) 2010; 16
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_21_2
Raidou R.G. (e_1_2_8_26_2) 2014
Gresh D.L. (e_1_2_8_15_2) 2000
e_1_2_8_22_2
Hendley R.J. (e_1_2_8_16_2) 1995
van Ham F. (e_1_2_8_36_2) 2004
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_14_2
e_1_2_8_37_2
Brewer C.A. (e_1_2_8_6_2) 1994
Tan P.‐N. (e_1_2_8_33_2) 2005
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_11_2
e_1_2_8_32_2
References_xml – reference: Inselberg A.: The plane with parallel coordinates. The Visual Computer 1, 2 (1985), 69-91. 5
– reference: Somford D.M., Fütterer J. J., Hambrock T., Barentsz J.O.: Diffusion and perfusion MR imaging of the prostate. Magnetic resonance imaging clinics of North America 16, 4 (2008), 685-695. 2
– reference: Oeltze S., Doleisch H., Hauser H., Muigg P., Preim B.: Interactive visual analysis of perfusion data. Visualization and Computer Graphics, IEEE Transactions on 13, 6 (2007), 1392-1399. 3
– reference: Bishop C.M.: Pattern recognition and machine learning. New York: Springer, 2006. 5
– reference: Epstein J.I., Allsbrook Jr W.C., Amin M.B., Egevad L.L., Committee I.G., et al.: The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. The American journal of surgical pathology 29, 9 (2005), 1228-1242. 2
– reference: Glasser S., Preim U., Tönnies K., Preim B.: A visual analytics approach to diagnosis of breast DCE-MRI data. Computers & Graphics 34, 5 (2010), 602-611. 3
– reference: Sourbron S.P., Buckley D.L.: Classic models for dynamic contrast-enhanced MRI. NMR in biomedicine 26, 8 (2013), 1004-27. 2, 7, 8
– reference: Seo J., Shneiderman B.: Interactively exploring hierarchical clustering results. Computer 35, 7 (2002), 80-86. 3
– reference: Tan P.-N., Steinbach M., Kumar V.: Introduction to Data Mining. Addison Wesley, 2005. 5
– reference: Carr D.B., Littlefield R.J.: Scatterplot matrix techniques for large N. Journal of the American Statistical Association 82, 398 (1987), 424-436. 4
– reference: Preim B., Oeltze S., Mlejnek M., Groller E., Hennemuth A., Behrens S.: Survey of the visual exploration and analysis of perfusion data. Visualization and Computer Graphics, IEEE Transactions on 15, 2 (2009), 205-220. 3
– reference: Lam H., Bertini E., Isenberg P., Plaisant C., Carpendale S.: Empirical studies in information visualization: Seven scenarios. IEEE Transactions on Visualization and Computer Graphics 18, 9 (2012), 1520-1536. 6
– reference: Kallehauge J., Haack S., Lindegaard J., Fokdal L., Mohamed S., Tanderup K., Pedersen E., Nielsen T.: Tracer kinetic model selection for dynamic contrast-enhanced MRI of locally advanced cervical cancer. Radiotherapy and Oncology 111 (2014), 174. 2, 8
– reference: Van der Maaten L., Hinton G.: Visualizing high-dimensional data using t-SNE. Journal of Machine Learning Research 9, 85 (2008), 2579-2605. 3
– reference: Groenendaal G., Borren A., Moman M.R., Monninkhof E., van Diest P.J., Philippens M.E., van Vulpen M., van der Heide U.A.: Pathologic validation of a model based on diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging for tumor delineation in the prostate peripheral zone. International Journal of Radiation Oncology* Biology* Physics 82, 3 (2012), e537-e544. 2, 7
– reference: Turkbey B., Thomasson D., Pang Y., Bernardo M., Choyke P.L.: The role of Dynamic Contrast-Enhanced MRI in cancer diagnosis and treatment. Diagnostic and interventional radiology. 16, 3 (2010), 186-92. 2
– reference: Linsen L., Van Long T., Rosenthal P.: Linking multidimensional feature space cluster visualization to multifield surface extraction. Computer Graphics and Applications, IEEE 29, 3 (2009), 85-89. 3
– reference: Asimov D.: The Grand Tour: a tool for viewing multidimensional data. SIAM Journal on Scientific and Statistical Computing 6, 1 (1985), 128-143. 3
– start-page: 27
  year: 2010
  end-page: 34
– volume: 30
  start-page: 711
  year: 2011
  end-page: 720
– volume: 82
  start-page: 424
  issue: 398
  year: 1987
  end-page: 436
  article-title: Scatterplot matrix techniques for large N
  publication-title: Journal of the American Statistical Association
– volume: 28
  start-page: 767
  year: 2009
  end-page: 774
– volume: 82
  start-page: e537
  issue: 3
  year: 2012
  end-page: e544
  article-title: Pathologic validation of a model based on diffusion‐weighted imaging and dynamic contrast‐enhanced magnetic resonance imaging for tumor delineation in the prostate peripheral zone
  publication-title: International Journal of Radiation Oncology* Biology* Physics
– year: 2005
– volume: 35
  start-page: 80
  issue: 7
  year: 2002
  end-page: 86
  article-title: Interactively exploring hierarchical clustering results
  publication-title: Computer
– volume: 1
  start-page: 69
  issue: 2
  year: 1985
  end-page: 91
  article-title: The plane with parallel coordinates
  publication-title: The Visual Computer
– start-page: 61
  year: 2000
  end-page: 68
– start-page: 123
  year: 2007
  end-page: 130
– start-page: 199
  year: 2004
  end-page: 206
– volume: 29
  start-page: 1228
  issue: 9
  year: 2005
  end-page: 1242
  article-title: The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma
  publication-title: The American journal of surgical pathology
– volume: 6
  start-page: 128
  issue: 1
  year: 1985
  end-page: 143
  article-title: The Grand Tour: a tool for viewing multidimensional data
  publication-title: SIAM Journal on Scientific and Statistical Computing
– volume: 16
  start-page: 186
  issue: 3
  year: 2010
  end-page: 92
  article-title: The role of Dynamic Contrast‐Enhanced MRI in cancer diagnosis and treatment
  publication-title: Diagnostic and interventional radiology.
– start-page: 169
  year: 2014
  end-page: 176
– start-page: 90
  year: 1995
  end-page: 96
– start-page: 54
  year: 1994
  end-page: 63
– volume: 2007
  start-page: 281
  year: 2007
  end-page: 288
– volume: 15
  start-page: 205
  issue: 2
  year: 2009
  end-page: 220
  article-title: Survey of the visual exploration and analysis of perfusion data
  publication-title: Visualization and Computer Graphics, IEEE Transactions on
– volume: 2000
  start-page: 489
  year: 2000
  end-page: 492
– year: 2010
– volume: 111
  start-page: 174
  year: 2014
  article-title: Tracer kinetic model selection for dynamic contrast‐enhanced MRI of locally advanced cervical cancer
  publication-title: Radiotherapy and Oncology
– volume: 9
  start-page: 2579
  issue: 85
  year: 2008
  end-page: 2605
  article-title: Visualizing high‐dimensional data using t‐SNE
  publication-title: Journal of Machine Learning Research
– start-page: 326
  year: 1994
  end-page: 333
– start-page: 11
  year: 2014
  end-page: 20
– year: 2006
– start-page: 712
  year: 2007
  end-page: 720
– volume: 34
  start-page: 602
  issue: 5
  year: 2010
  end-page: 611
  article-title: A visual analytics approach to diagnosis of breast DCE‐MRI data
  publication-title: Computers & Graphics
– start-page: 3
  year: 2010
  end-page: 10
– volume: 18
  start-page: 1520
  issue: 9
  year: 2012
  end-page: 1536
  article-title: Empirical studies in information visualization: Seven scenarios
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 16
  start-page: 685
  issue: 4
  year: 2008
  end-page: 695
  article-title: Diffusion and perfusion MR imaging of the prostate
  publication-title: Magnetic resonance imaging clinics of North America
– volume: 26
  start-page: 1004
  issue: 8
  year: 2013
  end-page: 27
  article-title: Classic models for dynamic contrast‐enhanced MRI
  publication-title: NMR in biomedicine
– start-page: 309
  year: 2008
  end-page: 322
– volume: 29
  start-page: 85
  issue: 3
  year: 2009
  end-page: 89
  article-title: Linking multidimensional feature space cluster visualization to multifield surface extraction
  publication-title: Computer Graphics and Applications, IEEE
– volume: 13
  start-page: 1392
  issue: 6
  year: 2007
  end-page: 1399
  article-title: Interactive visual analysis of perfusion data
  publication-title: Visualization and Computer Graphics, IEEE Transactions on
– volume: 31
  start-page: 1075
  year: 2012
  end-page: 1084
– volume-title: Introduction to Data Mining.
  year: 2005
  ident: e_1_2_8_33_2
– ident: e_1_2_8_5_2
– start-page: 489
  volume-title: In Proceedings Visualization
  year: 2000
  ident: e_1_2_8_15_2
– start-page: 11
  volume-title: Eurographics
  year: 2014
  ident: e_1_2_8_26_2
– ident: e_1_2_8_22_2
  doi: 10.1109/MCG.2009.45
– ident: e_1_2_8_12_2
  doi: 10.1016/j.ijrobp.2011.07.021
– ident: e_1_2_8_4_2
  doi: 10.1007/978-0-387-45528-0
– ident: e_1_2_8_30_2
– volume: 16
  start-page: 186
  issue: 3
  year: 2010
  ident: e_1_2_8_34_2
  article-title: The role of Dynamic Contrast‐Enhanced MRI in cancer diagnosis and treatment
  publication-title: Diagnostic and interventional radiology.
– ident: e_1_2_8_17_2
  doi: 10.1109/VAST.2010.5652392
– ident: e_1_2_8_11_2
  doi: 10.1145/1268517.1268563
– ident: e_1_2_8_31_2
  doi: 10.1109/MC.2002.1016905
– ident: e_1_2_8_7_2
  doi: 10.2307/2289444
– start-page: 199
  volume-title: Information Visualization, 2004. INFOVIS 2004. IEEE Symposium on
  year: 2004
  ident: e_1_2_8_36_2
– ident: e_1_2_8_10_2
  doi: 10.1097/01.pas.0000173646.99337.b1
– ident: e_1_2_8_29_2
  doi: 10.1016/j.mric.2008.07.002
– ident: e_1_2_8_32_2
  doi: 10.1111/j.1467-8659.2011.01920.x
– ident: e_1_2_8_2_2
  doi: 10.1137/0906011
– ident: e_1_2_8_14_2
  doi: 10.1016/j.cag.2010.05.016
– ident: e_1_2_8_13_2
  doi: 10.5220/0004719901690176
– ident: e_1_2_8_20_2
  doi: 10.1016/S0167-8140(15)30519-3
– ident: e_1_2_8_3_2
– start-page: 90
  volume-title: Information Visualization, 1995. Proceedings.
  year: 1995
  ident: e_1_2_8_16_2
– start-page: 767
  volume-title: Computer Graphics Forum
  year: 2009
  ident: e_1_2_8_19_2
– ident: e_1_2_8_23_2
  doi: 10.1109/TVCG.2007.70569
– start-page: 54
  volume-title: IS&T/SPIE 1994 International Symposium on Electronic Imaging: Science and Technology
  year: 1994
  ident: e_1_2_8_6_2
– ident: e_1_2_8_37_2
  doi: 10.1109/VISUAL.1994.346302
– ident: e_1_2_8_21_2
  doi: 10.1109/TVCG.2011.279
– ident: e_1_2_8_25_2
  doi: 10.1109/TVCG.2008.95
– ident: e_1_2_8_8_2
  doi: 10.1109/VAST.2010.5652443
– ident: e_1_2_8_27_2
  doi: 10.1002/nbm.2940
– start-page: 1075
  volume-title: Computer Graphics Forum
  year: 2012
  ident: e_1_2_8_24_2
– volume: 9
  start-page: 2579
  issue: 85
  year: 2008
  ident: e_1_2_8_35_2
  article-title: Visualizing high‐dimensional data using t‐SNE
  publication-title: Journal of Machine Learning Research
– start-page: 712
  volume-title: Proceedings of the 39th conference on Winter simulation: 40 years! The best is yet to come
  year: 2007
  ident: e_1_2_8_9_2
– ident: e_1_2_8_18_2
  doi: 10.1007/BF01898350
– start-page: 61
  volume-title: Proceedings of the conference on Visualization'00
  year: 2000
  ident: e_1_2_8_28_2
SSID ssj0004765
Score 2.2553718
Snippet Tumors are heterogeneous tissues consisting of multiple regions with distinct characteristics. Characterization of these intra‐tumor regions can improve...
Tumors are heterogeneous tissues consisting of multiple regions with distinct characteristics. Characterization of these intra-tumor regions can improve...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11
SubjectTerms Analysis
Categories and Subject Descriptors (according to ACM CCS)
Computer graphics
Consumption
Data mining
Exploration
I.3.8 [Computer Graphics]: Applications-Applications
J.3 [Computer Applications]: Life and Medical Sciences-Life and Medical Sciences
Medical diagnosis
Medical imaging
Medical services
Patients
Studies
Tumors
Visual
Visualization
Title Visual Analytics for the Exploration of Tumor Tissue Characterization
URI https://api.istex.fr/ark:/67375/WNG-K053LVXB-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12613
https://www.proquest.com/docview/1697244108
https://www.proquest.com/docview/1778035758
Volume 34
WOSCitedRecordID wos000358328200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxtBFD6kiQ_1wbbaYjQtWyniy5bszszOLH1qo7HQEKREzdswty3SmkhixJ_vmdlLIygU-rYw38JwLjPf2T3zDcAnqyzjVJuYKKxVKdUkzmlqYiVEZqll1Nqgrj_i47GYTvOzFnypz8KU-hDNBzefGWG99gmu9HItyc2v4nOC_J-8gE6KcUvb0Dn-OTwf_T0WyTNWS3t70ZhKWMg38jQvP9qOOt6y94-45jpjDVvO8NV_TfY1bFVMM_pahsYbaLnZNmyu6Q_uwMnF1XLlMV6ZxOs1R0hhI6SEUdmaF7wWzYtosrrGgUlwUjRoNJ7LI5xv4Xx4Mhl8j6t7FWJDMkHiTBR97TQSVizAVJIhSRSaJdZh9ZRznStTcJOygmDtlzibZF6DjlMmXGq4d-c7aM_mM7cLEbFK9xW62TpCjTYa1yttM8W0zXFzTLtwVJtXmkp03N998UfWxQdaRgbLdOGggd6UShtPgQ6DjxqEWvz2rWmcycvxqfyBS8roYvpNTrvQq50oq6xcyiTLOdKZpC-68LEZxnzyP0nUzM1XiOFc9AmSWMQcBZc-Pxs5OB2Gh71_h-7DS-RcrOw260H7drFy72HD3N1eLRcfqhB-AIvN8nM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fSxwxEB70TrA-2NZaeta221KKLyu3l2STBV_06mlxPUo57b2F_FoR27ty54l_fifZHz3BQqFvC5lAmC-TfJOdfAH4aJVlnGoTE4W5KqWaxBntmVgJkVpqGbU2qOvnfDgU43H2dQUO6rswpT5Ec-DmIyOs1z7A_YH0UpSbq2I_wQSArEKb4jRiLWh__ja4yP_ci-Qpq7W9vWpMpSzkK3mazg_2o7Z37f0DsrlMWcOeM3j6f6N9BpsV14wOy8nxHFbcZAs2lhQIX8Dx5fV84W28NolXbI6QxEZICqOyOC_gFk2LaLT4iQ2jAFPUb1Sey0uc23AxOB71T-PqZYXYkFSQOBVFVzuNlBVTMJWkSBOFZol1mD9lXGfKFNz0WEEw-0ucTVKvQscpE65nuAf0JbQm04l7BRGxSncVAm0doUYbjSuWtqli2ma4PfY6sFf7V5pKdty_fvFD1ukHekYGz3TgQ2P6q9TaeMzoUwCpsVCzG1-cxpn8PjyRZ7io5JfjIznuwG6Noqzici6TNONIaJKu6MD7phkjyv8mURM3XaAN56JLkMaizV7A9O-jkf2TQfjY-XfTd7B-OjrPZf5lePYaniADY2Xt2S60bmcL9wbWzN3t9Xz2tprPvwEVdfZj
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxNBFD7URkQfrJeKqa2uItKXLdnMdcEXm3arNIQiac3bMLctpTUpSSP9-Z6ZvZiCBcG3hfkWhnPmzHxn95xvAD467ZigxqZEY65KqSFpTvs21VJyRx2jzkV1_aEYjeRkkp-sweemF6bSh2g_uIXIiPt1CHB_7cqVKLfn5V6GCQB5AB3Kco5h2Tn4XpwO__RFCs4abe-gGlMrC4VKnvblO-dRJ5j29g7ZXKWs8cwpNv5vts_gac01ky_V4ngOa376Ap6sKBC-hMOzi8UyYII2SVBsTpDEJkgKk6o4L_otmZXJePkTB8bRTcmgVXmumjg34bQ4HA--pvXNCqklXJKUy7JnvEHKiimYzjjSRGlY5jzmT7kwubalsH1WEsz-Mu8yHlToBGXS960IDn0F69PZ1L-GhDhtehod7Tyh1liDO5ZxXDPjcjwe-13YbeyrbC07Hm6_uFJN-oGWUdEyXfjQQq8rrY2_gT5FJ7UIPb8MxWmCqR-jI3WMm8rwbLKvJl3Ybryo6rhcqIznAglN1pNdeN8OY0SF3yR66mdLxAghewRpLGJ2o0_vn40aHBXxYevfoe_g0clBoYbfRsdv4DESMFaVnm3D-s186Xfgof11c7GYv62X82-uH_Xe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+Analytics+for+the+Exploration+of+Tumor+Tissue+Characterization&rft.jtitle=Computer+graphics+forum&rft.au=Raidou%2C+R.G.&rft.au=van+der+Heide%2C+U.A.&rft.au=Dinh%2C+C.V.&rft.au=Ghobadi%2C+G.&rft.date=2015-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=34&rft.issue=3&rft.spage=11&rft.epage=20&rft_id=info:doi/10.1111%2Fcgf.12613&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_K053LVXB_X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon