An Efficient and Robust Estimation of Spatio‐Temporally Distributed Parameters in Dynamic Models by an Ensemble Kalman Filter

The accuracy of Earth system models is compromised by unknown and/or unresolved dynamics, making the quantification of systematic model errors essential. While a model parameter estimation, which allows parameters to change spatio‐temporally, shows promise in quantifying and mitigating systematic mo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of advances in modeling earth systems Ročník 16; číslo 2
Hlavní autoři: Sawada, Yohei, Duc, Le
Médium: Journal Article
Jazyk:angličtina
Vydáno: Washington John Wiley & Sons, Inc 01.02.2024
American Geophysical Union (AGU)
Témata:
ISSN:1942-2466, 1942-2466
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The accuracy of Earth system models is compromised by unknown and/or unresolved dynamics, making the quantification of systematic model errors essential. While a model parameter estimation, which allows parameters to change spatio‐temporally, shows promise in quantifying and mitigating systematic model errors, the estimation of the spatio‐temporally distributed model parameters has been practically challenging. Here we present an efficient and practical method to estimate time‐varying parameters in high‐dimensional spaces. In our proposed method, Hybrid Offline and Online Parameter Estimation with ensemble Kalman filtering (HOOPE‐EnKF), model parameters estimated by EnKF are constrained by results of offline batch optimization, in which the posterior distribution of model parameters is obtained by comparing simulated and observed climatological variables. HOOPE‐EnKF outperforms the original EnKF in synthetic experiments using a two‐scale Lorenz96 model and a simple global general circulation model. One advantage of HOOPE‐EnKF over traditional EnKFs is that its performance is not greatly affected by inflation factors for model parameters, thus eliminating the need for extensive tuning of inflation factors. We thoroughly discuss the potential of HOOPE‐EnKF as a practical method for improving parameterizations of process‐based models and prediction in real‐world applications such as numerical weather prediction. Plain Language Summary Earth system models help us understand and predict the behavior of our planet, but their accuracy is limited due to unknown or unresolved factors. Adjusting the parameters of these models based on the changing patterns in time and space can help improve their accuracy. However, this has been a challenging task. In this study, we introduce a new method called Hybrid Offline and Online Parameter Estimation with ensemble Kalman filtering (HOOPE‐EnKF) that efficiently estimates these changing parameters. This method combines an existing EnKF with offline batch optimization, which compares long‐term simulation with observations to fine‐tune the model. Our experiments show that HOOPE‐EnKF performs better than the original EnKF and is less sensitive to certain hyperparameters, reducing the need for time‐consuming calibrations. HOOPE‐EnKF has a great potential for improving the accuracy of models and predictions in real‐world applications, like weather forecasting, and can help scientists better understand our planet's complex systems. Key Points Ensemble Kalman filter (EnKF) is extended to estimate high‐dimensional time‐varying model parameters The proposed method is insensitive to the choice of covariance inflation factors The proposed method successfully quantifies systematic model errors from observations
AbstractList Abstract The accuracy of Earth system models is compromised by unknown and/or unresolved dynamics, making the quantification of systematic model errors essential. While a model parameter estimation, which allows parameters to change spatio‐temporally, shows promise in quantifying and mitigating systematic model errors, the estimation of the spatio‐temporally distributed model parameters has been practically challenging. Here we present an efficient and practical method to estimate time‐varying parameters in high‐dimensional spaces. In our proposed method, Hybrid Offline and Online Parameter Estimation with ensemble Kalman filtering (HOOPE‐EnKF), model parameters estimated by EnKF are constrained by results of offline batch optimization, in which the posterior distribution of model parameters is obtained by comparing simulated and observed climatological variables. HOOPE‐EnKF outperforms the original EnKF in synthetic experiments using a two‐scale Lorenz96 model and a simple global general circulation model. One advantage of HOOPE‐EnKF over traditional EnKFs is that its performance is not greatly affected by inflation factors for model parameters, thus eliminating the need for extensive tuning of inflation factors. We thoroughly discuss the potential of HOOPE‐EnKF as a practical method for improving parameterizations of process‐based models and prediction in real‐world applications such as numerical weather prediction.
The accuracy of Earth system models is compromised by unknown and/or unresolved dynamics, making the quantification of systematic model errors essential. While a model parameter estimation, which allows parameters to change spatio‐temporally, shows promise in quantifying and mitigating systematic model errors, the estimation of the spatio‐temporally distributed model parameters has been practically challenging. Here we present an efficient and practical method to estimate time‐varying parameters in high‐dimensional spaces. In our proposed method, Hybrid Offline and Online Parameter Estimation with ensemble Kalman filtering (HOOPE‐EnKF), model parameters estimated by EnKF are constrained by results of offline batch optimization, in which the posterior distribution of model parameters is obtained by comparing simulated and observed climatological variables. HOOPE‐EnKF outperforms the original EnKF in synthetic experiments using a two‐scale Lorenz96 model and a simple global general circulation model. One advantage of HOOPE‐EnKF over traditional EnKFs is that its performance is not greatly affected by inflation factors for model parameters, thus eliminating the need for extensive tuning of inflation factors. We thoroughly discuss the potential of HOOPE‐EnKF as a practical method for improving parameterizations of process‐based models and prediction in real‐world applications such as numerical weather prediction. Earth system models help us understand and predict the behavior of our planet, but their accuracy is limited due to unknown or unresolved factors. Adjusting the parameters of these models based on the changing patterns in time and space can help improve their accuracy. However, this has been a challenging task. In this study, we introduce a new method called Hybrid Offline and Online Parameter Estimation with ensemble Kalman filtering (HOOPE‐EnKF) that efficiently estimates these changing parameters. This method combines an existing EnKF with offline batch optimization, which compares long‐term simulation with observations to fine‐tune the model. Our experiments show that HOOPE‐EnKF performs better than the original EnKF and is less sensitive to certain hyperparameters, reducing the need for time‐consuming calibrations. HOOPE‐EnKF has a great potential for improving the accuracy of models and predictions in real‐world applications, like weather forecasting, and can help scientists better understand our planet's complex systems. Ensemble Kalman filter (EnKF) is extended to estimate high‐dimensional time‐varying model parameters The proposed method is insensitive to the choice of covariance inflation factors The proposed method successfully quantifies systematic model errors from observations
The accuracy of Earth system models is compromised by unknown and/or unresolved dynamics, making the quantification of systematic model errors essential. While a model parameter estimation, which allows parameters to change spatio‐temporally, shows promise in quantifying and mitigating systematic model errors, the estimation of the spatio‐temporally distributed model parameters has been practically challenging. Here we present an efficient and practical method to estimate time‐varying parameters in high‐dimensional spaces. In our proposed method, Hybrid Offline and Online Parameter Estimation with ensemble Kalman filtering (HOOPE‐EnKF), model parameters estimated by EnKF are constrained by results of offline batch optimization, in which the posterior distribution of model parameters is obtained by comparing simulated and observed climatological variables. HOOPE‐EnKF outperforms the original EnKF in synthetic experiments using a two‐scale Lorenz96 model and a simple global general circulation model. One advantage of HOOPE‐EnKF over traditional EnKFs is that its performance is not greatly affected by inflation factors for model parameters, thus eliminating the need for extensive tuning of inflation factors. We thoroughly discuss the potential of HOOPE‐EnKF as a practical method for improving parameterizations of process‐based models and prediction in real‐world applications such as numerical weather prediction.
The accuracy of Earth system models is compromised by unknown and/or unresolved dynamics, making the quantification of systematic model errors essential. While a model parameter estimation, which allows parameters to change spatio‐temporally, shows promise in quantifying and mitigating systematic model errors, the estimation of the spatio‐temporally distributed model parameters has been practically challenging. Here we present an efficient and practical method to estimate time‐varying parameters in high‐dimensional spaces. In our proposed method, Hybrid Offline and Online Parameter Estimation with ensemble Kalman filtering (HOOPE‐EnKF), model parameters estimated by EnKF are constrained by results of offline batch optimization, in which the posterior distribution of model parameters is obtained by comparing simulated and observed climatological variables. HOOPE‐EnKF outperforms the original EnKF in synthetic experiments using a two‐scale Lorenz96 model and a simple global general circulation model. One advantage of HOOPE‐EnKF over traditional EnKFs is that its performance is not greatly affected by inflation factors for model parameters, thus eliminating the need for extensive tuning of inflation factors. We thoroughly discuss the potential of HOOPE‐EnKF as a practical method for improving parameterizations of process‐based models and prediction in real‐world applications such as numerical weather prediction. Plain Language Summary Earth system models help us understand and predict the behavior of our planet, but their accuracy is limited due to unknown or unresolved factors. Adjusting the parameters of these models based on the changing patterns in time and space can help improve their accuracy. However, this has been a challenging task. In this study, we introduce a new method called Hybrid Offline and Online Parameter Estimation with ensemble Kalman filtering (HOOPE‐EnKF) that efficiently estimates these changing parameters. This method combines an existing EnKF with offline batch optimization, which compares long‐term simulation with observations to fine‐tune the model. Our experiments show that HOOPE‐EnKF performs better than the original EnKF and is less sensitive to certain hyperparameters, reducing the need for time‐consuming calibrations. HOOPE‐EnKF has a great potential for improving the accuracy of models and predictions in real‐world applications, like weather forecasting, and can help scientists better understand our planet's complex systems. Key Points Ensemble Kalman filter (EnKF) is extended to estimate high‐dimensional time‐varying model parameters The proposed method is insensitive to the choice of covariance inflation factors The proposed method successfully quantifies systematic model errors from observations
Author Duc, Le
Sawada, Yohei
Author_xml – sequence: 1
  givenname: Yohei
  orcidid: 0000-0003-0216-4677
  surname: Sawada
  fullname: Sawada, Yohei
  email: yohei.sawada@sogo.t.u-tokyo.ac.jp
  organization: Japan Meteorological Agency
– sequence: 2
  givenname: Le
  surname: Duc
  fullname: Duc, Le
  organization: Japan Meteorological Agency
BookMark eNp9kc9u1DAQxiNUJNrCjQewxJUFj-04yXHVprTQFYiWs-U_Y-RVYi92Vign-gg8I09ClkWoJ04z8-mnb2b0nVUnMUWsqpdA3wBl3VtGGd_cUcpbBk-qU-gEWzEh5cmj_ll1VsqWUiklq0-rH-tIeu-DDRgnoqMjn5PZl4n0ZQqjnkKKJHlytzu0vx5-3uO4S1kPw0wuQ5lyMPsJHfmksx5xwlxIiORyjnoMlmySw6EQMy_GpI8FRzMg-aCHcZmvwrDwz6unXg8FX_yt59WXq_7-4np1-_HdzcX6dmW5bPlKNtB50TTUceu1YAYbD01tKdeuBahrBJDgJQrQ0FnXsU5oq10nHXDuBD-vbo6-Lumt2uXltzyrpIP6I6T8Vek8BTugQm6dRi-Mb41omNPGYdPWwNAYEB1bvF4dvXY5fdtjmdQ27XNczles4yBp04BcqNdHyuZUSkb_bytQdYhLPY5rwfkR_x4GnP_LqvfrTc8OCv8NWziZuQ
Cites_doi 10.1175/2010MWR3570.1
10.1002/2015GL067238
10.2151/jmsj.2013‐403
10.1007/978-0-387-45528-0
10.1016/j.jcp.2020.109716
10.1029/2022MS003164
10.5194/gmd‐11‐3999‐2018
10.1175/MWR‐D‐19‐0233.1
10.1029/2019WR024739
10.1002/2015WR017192
10.1016/j.physd.2006.11.008
10.2151/jmsj.2013‐201
10.1029/2021MS002882
10.1029/2021MS002502
10.5194/hess‐22‐2903‐2018
10.1007/s00382‐002‐0268‐2
10.1175/1520‐0493(1989)117<1779:ACMFSF>2.0.CO;2
10.1029/2010JD014673
10.1175/BAMS‐D‐15‐00104.1
10.1029/2021MS002564
10.1029/2017JD028092
10.1029/2019MS001705
10.1007/s10596‐021‐10035‐4
10.1175/MWR‐D‐13‐00200.1
10.1029/2019WR025721
10.1002/qj.2879
10.1029/2020JD032688
10.1080/16000870.2018.1442099
10.5194/gmd‐14‐5623‐2021
10.1080/01621459.2019.1592753
10.5194/hess‐24‐4777‐2020
10.1093/biomet/57.1.97
10.1016/j.jocs.2020.101171
10.1029/2020MS002454
10.1175/2007MWR1873.1
10.1175/MWR‐D‐11‐00276.1
10.1029/2004WR003604
10.1016/j.advwatres.2004.09.002
10.1016/j.advwatres.2012.04.002
10.5281/zenodo.8400926
10.5281/zenodo.1198432
10.1029/2020JD034214
10.1007/s10596‐018‐9731‐y
10.5194/gmd‐9‐1341‐2016
10.1561/2200000073
ContentType Journal Article
Copyright 2024 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
F1W
H96
HCIFZ
KL.
L.G
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1029/2023MS003821
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central (New)
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1942-2466
EndPage n/a
ExternalDocumentID oai_doaj_org_article_e3cdaef4bf8b472dabde78512ebb1492
10_1029_2023MS003821
JAME22023
Genre researchArticle
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  funderid: 22K18822
– fundername: Japan Science and Technology Agency
  funderid: JPMJMS2281
GroupedDBID 0R~
1OC
24P
29J
31~
5VS
8-1
8FE
8FH
AAMMB
AAZKR
ABDBF
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
AEFGJ
AEGXH
AENEX
AEUYN
AFKRA
AGXDD
AIDQK
AIDYY
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZFZN
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
D1K
EAD
EAP
EAS
EBS
EJD
EPL
ESX
GODZA
GROUPED_DOAJ
HCIFZ
IAO
IGS
IPNFZ
ITC
K6-
KQ8
LK5
M7R
M~E
O9-
OK1
P2P
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
RIG
RNS
TUS
~OA
AAYXX
AFFHD
CITATION
HZ~
WIN
7TG
ABUWG
AZQEC
DWQXO
F1W
H96
KL.
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3683-6719f4770d3cfa42be7f175c03ad81155e1161f6e41a19cd9294acad96d133d43
IEDL.DBID 24P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001157373600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1942-2466
IngestDate Tue Oct 07 10:47:03 EDT 2025
Fri Jul 25 23:22:57 EDT 2025
Sat Nov 29 02:09:18 EST 2025
Sun Jul 06 04:45:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3683-6719f4770d3cfa42be7f175c03ad81155e1161f6e41a19cd9294acad96d133d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0216-4677
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023MS003821
PQID 2931607716
PQPubID 616667
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_e3cdaef4bf8b472dabde78512ebb1492
proquest_journals_2931607716
crossref_primary_10_1029_2023MS003821
wiley_primary_10_1029_2023MS003821_JAME22023
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
20240201
2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of advances in modeling earth systems
PublicationYear 2024
Publisher John Wiley & Sons, Inc
American Geophysical Union (AGU)
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union (AGU)
References 2011; 116
2021; 25
2012; 140
1989; 117
2011; 139
2023; 15
2021; 126
2019; 11
2019; 55
2021; 424
2018; 123
2020; 148
2005; 41
2016; 52
2006
2020; 56
2020; 125
2018; 22
2005; 28
2016; 142
1970; 57
2021; 14
2021; 13
2007; 135
2023
2013; 51
2017; 98
2007; 230
2020; 115
2018; 70
2016; 43
2013b; 91
2018
2022; 14
2016
2020; 24
2020; 44
2018; 11
2014; 142
2003; 20
2016; 9
2013a; 91
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_49_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_46_1
e_1_2_11_47_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
Rasmussen C. E. (e_1_2_11_33_1) 2006
e_1_2_11_38_1
e_1_2_11_39_1
e_1_2_11_19_1
References_xml – volume: 142
  start-page: 2974
  issue: 701
  year: 2016
  end-page: 2984
  article-title: Estimation of the functional form of subgrid‐scale parametrizations using ensemble‐based data assimilation: A simple model experiment
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 13
  issue: 7
  year: 2021
  article-title: Sub‐seasonal forecasting with a large ensemble of deep‐learning weather prediction models
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 11
  start-page: 2680
  issue: 8
  year: 2019
  end-page: 2693
  article-title: Can machines learn to predict weather? Using deep learning to predict gridded 500‐hPa geopotential height from historical weather data
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 148
  start-page: 1607
  issue: 4
  year: 2020
  end-page: 1628
  article-title: Combined state‐parameter estimation with the LETKF for convective‐scale weather forecasting
  publication-title: Monthly Weather Review
– volume: 44
  year: 2020
  article-title: Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model
  publication-title: Journal of Computational Science
– volume: 22
  start-page: 885
  issue: 3
  year: 2018
  end-page: 908
  article-title: Analysis of iterative ensemble smoothers for solving inverse problems
  publication-title: Computational Geosciences
– volume: 11
  start-page: 3999
  issue: 10
  year: 2018
  end-page: 4009
  article-title: Challenges and design choices for global weather and climate models based on machine learning
  publication-title: Geoscientific Model Development
– volume: 56
  start-page: 1
  issue: 1
  year: 2020
  end-page: 25
  article-title: Surrogate‐based Bayesian inverse modeling of the hydrological system: An adaptive approach considering surrogate approximation error
  publication-title: Water Resources Research
– volume: 25
  start-page: 985
  issue: 3
  year: 2021
  end-page: 1003
  article-title: An efficient ensemble Kalman Filter implementation via shrinkage covariance matrix estimation: Exploiting prior knowledge
  publication-title: Computational Geosciences
– volume: 57
  start-page: 97
  issue: 1
  year: 1970
  end-page: 109
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika
– volume: 20
  start-page: 175
  year: 2003
  end-page: 191
  article-title: Atmospheric simulations using a GCM with simplified physical parametrizations. partI: Model climatology and variability in multi‐decadal experiments
  publication-title: Climate Dynamics
– volume: 91
  start-page: 453
  year: 2013b
  end-page: 469
  article-title: Estimating model parameters with ensemble‐based data assimilation
  publication-title: A Review
– volume: 70
  start-page: 1
  issue: 1
  year: 2018
  end-page: 17
  article-title: Stochastic parameterization identification using ensemble Kalman filtering combined with maximum likelihood methods
  publication-title: Tellus A: Dynamic Meteorology and Oceanography
– volume: 13
  issue: 9
  year: 2021
  article-title: Calibration and uncertainty quantification of convective parameters in an idealized GCM
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 140
  start-page: 3078
  issue: 9
  year: 2012
  end-page: 3089
  article-title: Evaluating methods to account for system errors in ensemble data assimilation
  publication-title: Monthly Weather Review
– volume: 115
  start-page: 866
  issue: 530
  year: 2020
  end-page: 885
  article-title: Ensemble Kalman methods for high‐dimensional hierarchical dynamic space‐time models
  publication-title: Journal of the American Statistical Association
– volume: 135
  start-page: 3841
  issue: 11
  year: 2007
  end-page: 3861
  article-title: Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution
  publication-title: Monthly Weather Review
– volume: 43
  start-page: 752
  issue: 2
  year: 2016
  end-page: 759
  article-title: Assimilating atmospheric observations into the ocean using strongly coupled ensemble data assimilation
  publication-title: Geophysical Research Letters
– volume: 142
  start-page: 2150
  issue: 6
  year: 2014
  end-page: 2164
  article-title: Nonglobal parameter estimation using local ensemble Kalman filtering
  publication-title: Monthly Weather Review
– volume: 15
  issue: 2
  year: 2023
  article-title: Application of recurrent neural networks to model bias correction: Idealized experiments with the Lorenz‐96 model
  publication-title: Journal of Advances in Modeling Earth Systems
– year: 2016
– volume: 98
  start-page: 959
  issue: 5
  year: 2017
  end-page: 970
  article-title: Automatic model calibration: A new way to improve numerical weather forecasting
  publication-title: Bulletin of the American Meteorological Society
– volume: 22
  start-page: 2903
  issue: 5
  year: 2018
  end-page: 2919
  article-title: Time‐varying parameter models for catchments with land use change: The importance of model structure
  publication-title: Hydrology and Earth System Sciences
– volume: 55
  start-page: 7086
  issue: 8
  year: 2019
  end-page: 7107
  article-title: Bayesian calibration and sensitivity analysis for a karst aquifer model using active subspaces
  publication-title: Water Resources Research
– volume: 139
  start-page: 1519
  issue: 5
  year: 2011
  end-page: 1535
  article-title: The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman Filter
  publication-title: Monthly Weather Review
– volume: 11
  start-page: 355
  issue: 5–6
  year: 2019
  end-page: 607
  article-title: Computational optimal transport: With applications to data science
  publication-title: Foundations and Trends in Machine Learning
– volume: 28
  start-page: 135
  issue: 2
  year: 2005
  end-page: 147
  article-title: Dual state–parameter estimation of hydrological models using ensemble Kalman filter
  publication-title: Advances in Water Resources
– volume: 230
  start-page: 112
  issue: 1–2
  year: 2007
  end-page: 126
  article-title: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter
  publication-title: Physica D: Nonlinear Phenomena
– volume: 51
  start-page: 457
  year: 2013
  end-page: 478
  article-title: Hydrologic data assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts and applications
  publication-title: Advances in Water Resources
– volume: 91
  start-page: 453
  issue: 4
  year: 2013a
  end-page: 469
  article-title: Estimating model parameters with ensemble‐based data assimilation: Parameter covariance treatment
  publication-title: Journal of the Meteorological Society of Japan
– volume: 9
  start-page: 1341
  issue: 4
  year: 2016
  end-page: 1360
  article-title: TerrSysMP‐PDAF (version 1.0): A modular high‐performance data assimilation framework for an integrated land surface‐subsurface model
  publication-title: Geoscientific Model Development
– volume: 117
  start-page: 1779
  issue: 8
  year: 1989
  end-page: 1800
  article-title: A comprehensive mass flux scheme for Cumulus parameterization in large‐scale models
  publication-title: Monthly Weather Review
– volume: 52
  start-page: 3350
  issue: 5
  year: 2016
  end-page: 3372
  article-title: Hydrologic modeling in dynamic catchments: A data assimilation approach
  publication-title: Water Resources Research
– volume: 14
  issue: 6
  year: 2022
  article-title: An efficient estimation of time‐varying parameters of dynamic models by combining offline batch optimization and online data assimilation
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 116
  issue: D9
  year: 2011
  article-title: “Variable localization” in an ensemble Kalman filter: Application to the carbon cycle data assimilation
  publication-title: Journal of Geophysical Research Atmospheres
– year: 2006
– volume: 123
  start-page: 7375
  issue: 14
  year: 2018
  end-page: 7392
  article-title: Online model parameter estimation with ensemble data assimilation in the real global atmosphere: A case with the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) and the Global Satellite Mapping of Precipitation data
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 126
  issue: 16
  year: 2021
  article-title: Revisiting online and offline data assimilation comparison for paleoclimate reconstruction: An idealized OSSE study
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 14
  issue: 4
  year: 2022
  article-title: Multiplicative non‐Gaussian model error estimation in data assimilation
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 125
  issue: 20
  year: 2020
  article-title: Machine learning accelerates parameter optimization and uncertainty assessment of a land surface model
  publication-title: Journal of Geophysical Research: Atmospheres
– year: 2018
  article-title: Samhatfield/letkf‐speedy: Publication (v1.0.0)
  publication-title: Zenodo
– volume: 24
  start-page: 4777
  issue: 10
  year: 2020
  end-page: 4791
  article-title: Socio‐hydrological data assimilation: Analyzing human‐flood interactions by model‐data integration
  publication-title: Hydrology and Earth System Sciences
– volume: 14
  start-page: 5623
  issue: 9
  year: 2021
  end-page: 5635
  article-title: Combining ensemble Kalman filter and reservoir computing to predict spatio‐temporal chaotic systems from imperfect observations and models
  publication-title: Geoscientific Model Development
– volume: 41
  start-page: 1
  issue: 5
  year: 2005
  end-page: 17
  article-title: Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter
  publication-title: Water Resources Research
– volume: 424
  year: 2021
  article-title: Calibrate, emulate, sample
  publication-title: Journal of Computational Physics
– year: 2023
  article-title: [Source code] Code for "An efficient and robust estimation of spatio‐temporally distributed parameters in dynamic models by an ensemble Kalman filter
  publication-title: Zenodo
– ident: e_1_2_11_20_1
  doi: 10.1175/2010MWR3570.1
– ident: e_1_2_11_41_1
  doi: 10.1002/2015GL067238
– ident: e_1_2_11_35_1
  doi: 10.2151/jmsj.2013‐403
– ident: e_1_2_11_4_1
  doi: 10.1007/978-0-387-45528-0
– ident: e_1_2_11_19_1
– ident: e_1_2_11_6_1
  doi: 10.1016/j.jcp.2020.109716
– ident: e_1_2_11_2_1
  doi: 10.1029/2022MS003164
– ident: e_1_2_11_8_1
  doi: 10.5194/gmd‐11‐3999‐2018
– ident: e_1_2_11_34_1
  doi: 10.1175/MWR‐D‐19‐0233.1
– ident: e_1_2_11_42_1
  doi: 10.1029/2019WR024739
– ident: e_1_2_11_28_1
  doi: 10.1002/2015WR017192
– ident: e_1_2_11_13_1
  doi: 10.1016/j.physd.2006.11.008
– ident: e_1_2_11_36_1
  doi: 10.2151/jmsj.2013‐201
– ident: e_1_2_11_38_1
  doi: 10.1029/2021MS002882
– ident: e_1_2_11_47_1
  doi: 10.1029/2021MS002502
– ident: e_1_2_11_27_1
  doi: 10.5194/hess‐22‐2903‐2018
– ident: e_1_2_11_22_1
  doi: 10.1007/s00382‐002‐0268‐2
– ident: e_1_2_11_43_1
  doi: 10.1175/1520‐0493(1989)117<1779:ACMFSF>2.0.CO;2
– ident: e_1_2_11_14_1
  doi: 10.1029/2010JD014673
– ident: e_1_2_11_7_1
  doi: 10.1175/BAMS‐D‐15‐00104.1
– ident: e_1_2_11_29_1
  doi: 10.1029/2021MS002564
– ident: e_1_2_11_16_1
  doi: 10.1029/2017JD028092
– ident: e_1_2_11_46_1
  doi: 10.1029/2019MS001705
– ident: e_1_2_11_18_1
  doi: 10.1007/s10596‐021‐10035‐4
– ident: e_1_2_11_3_1
  doi: 10.1175/MWR‐D‐13‐00200.1
– ident: e_1_2_11_49_1
  doi: 10.1029/2019WR025721
– ident: e_1_2_11_31_1
  doi: 10.1002/qj.2879
– ident: e_1_2_11_37_1
  doi: 10.1029/2020JD032688
– ident: e_1_2_11_23_1
– ident: e_1_2_11_32_1
  doi: 10.1080/16000870.2018.1442099
– ident: e_1_2_11_44_1
  doi: 10.5194/gmd‐14‐5623‐2021
– ident: e_1_2_11_15_1
  doi: 10.1080/01621459.2019.1592753
– ident: e_1_2_11_40_1
  doi: 10.5194/hess‐24‐4777‐2020
– ident: e_1_2_11_11_1
  doi: 10.1093/biomet/57.1.97
– ident: e_1_2_11_5_1
  doi: 10.1016/j.jocs.2020.101171
– volume-title: Gaussian processes for machine learning
  year: 2006
  ident: e_1_2_11_33_1
– ident: e_1_2_11_9_1
  doi: 10.1029/2020MS002454
– ident: e_1_2_11_21_1
  doi: 10.1175/2007MWR1873.1
– ident: e_1_2_11_48_1
  doi: 10.1175/MWR‐D‐11‐00276.1
– ident: e_1_2_11_24_1
  doi: 10.1029/2004WR003604
– ident: e_1_2_11_25_1
  doi: 10.1016/j.advwatres.2004.09.002
– ident: e_1_2_11_45_1
  doi: 10.1016/j.advwatres.2012.04.002
– ident: e_1_2_11_39_1
  doi: 10.5281/zenodo.8400926
– ident: e_1_2_11_12_1
  doi: 10.5281/zenodo.1198432
– ident: e_1_2_11_26_1
  doi: 10.1029/2020JD034214
– ident: e_1_2_11_10_1
  doi: 10.1007/s10596‐018‐9731‐y
– ident: e_1_2_11_17_1
  doi: 10.5194/gmd‐9‐1341‐2016
– ident: e_1_2_11_30_1
  doi: 10.1561/2200000073
SSID ssj0066625
Score 2.318626
Snippet The accuracy of Earth system models is compromised by unknown and/or unresolved dynamics, making the quantification of systematic model errors essential. While...
Abstract The accuracy of Earth system models is compromised by unknown and/or unresolved dynamics, making the quantification of systematic model errors...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms Data assimilation
Dynamic models
ensemble Kalman filter
General circulation models
Kalman filters
Optimization
Parameter estimation
Parameters
Weather forecasting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELYqxKGXCmirhgKaQ-HUqIntjePjFrJCakGo0Ipb5L9IK4VstVmQ9tQ-As_YJ2FsZ9FyKReOtqLRyDP2fBOPvyHk0yhn3DJapqZUmKDgINVGO0-vPeKaCpWFasJf38X5eXl9LS_WWn35mrBIDxwX7otjxirXcN2UmgtqlbbON5SnTmtE9-H0zYRcJVPxDEZMTkdDmXtGpc_w2dmlvwWj-ZMAFHj6n4DLdYgaYsxki7wZwCGMo1Lb5JXrdkhyhrh2Ng-_v-EIjtspgswwekv-jDuoAgkExg5QnYUfM33bL6DCnRsfJcKsgctQNv3v7_1VJKJq2yWceMZc3-zKWbhQvkTL82zCtIOT2KQefJu0tge9RMFQdb270a2Db6q9wfFk6q_Z35Gfk-rq-DQdWiqkhhUlSwuRy4YLkVlmGsWpdqJBAGEypmyJ4HDkcoSATeF4rnJpLIInroyysrCYzFrO3pONbta5DwRYYTXTMve24SitFGhbVZocZRZG6oQcrta5_h2ZM-pw401lvW6PhHz1Rnj8xvNdhwn0gnrwgvo5L0jI3sqE9bAJ-xqRjKfPw4wwIZ-DWf-rSI1hrqJ-ZvclVPpIXqMsHiu898jGYn7r9smmuVtM-_lBcNcHFKbxCA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5cCFNyK0RXMATkRsbG8ep6qPrJCgq1VbUG-RX6lWSpOy2Vbqif4EfiO_pDOOF9pLLxxtWRNLM575xp58w9j7cSKkFTyPTa4wQcFBrI12RK89lppnauSrCX98y6bT_OSkmIULtz6UVa58onfUtjN0R_4ZwxJxoSG83z7_GVPXKHpdDS00HrJ1YipDO1_fLaezw5UvRmzOx6HcfcQLyvTFwRG9hvHkTiDyfP13QOZtqOpjzeTp_-7yGXsSUCbsDGbxnD1w7QsWHSBA7hb-Hh0-wl4zR7TqRy_Zr50WSs8mgUEIVGvhsNMX_RJKdAHD343Q1XDk66__XP8-HhitmuYK9ol6l7pmOQszRbVeRNgJ8xb2h273QP3Wmh70FQqGsu3dmW4cfFXNGY4nc3qvf8W-T8rjvS9x6M0QG5HmIk6zpKhllo2sMLWSXLusRiRiRkLZHFHm2CWIJevUyUQlhbGIwqQyyhapxazYSvGarbVd694wEKnVQheJq6WWKC3P0EhUbhKUmZpCR-zDSlHV-UDBUfmnc15UtxUasV3S4t81RJztJ7rFaRXOYeWEsYq-VOdaZtwqbV2GqJM7rTFZ5BHbXCm2Cqe5r_5pNWKfvF3cu5EK42XJaebt_dI22GNcJYci8E22tlxcuC32yFwu5_3iXbDlGwHQ_nc
  priority: 102
  providerName: ProQuest
Title An Efficient and Robust Estimation of Spatio‐Temporally Distributed Parameters in Dynamic Models by an Ensemble Kalman Filter
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023MS003821
https://www.proquest.com/docview/2931607716
https://doaj.org/article/e3cdaef4bf8b472dabde78512ebb1492
Volume 16
WOSCitedRecordID wos001157373600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: PCBAR
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: BENPR
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: PIMPY
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: WIN
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: 24P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQy4ELUB4iUFY-ACci1o-Nk2MfWVHBrqK2QDlFfqVaKU3QZovUC_AT-I38ks442Wp7QUJcEtmyHSse29-Mx98Q8mrChHSCp7FNNSgokIiNNR7ptSfScKXHwZvw80c1n6dnZ1kxGNzwLkzPD3FjcMOZEdZrnODadAPZAHJkYtzv2QmebOE98m3GhEKp5rJYr8SAzEPQVdDTecxlkgyO71D_3WbtW1tSYO6_BTc3QWvYdaYP_re_D8n9AW_SvV5Adsgd3zwi0QygcrsMFnX6hh7UC8CtIfWY_NxraB54JWA7orpx9Lg1l92K5rAY9PccaVvRk-CJ_efX79Oe26qur-ghkvBi_CzvaKHR6wupO-mioYd93HuKkdfqjporaJjmTecvTO3pB11fQHq6wJP7J-TTND89eB8PURpiK5JUxIliWSWVGjthKy258aoCTGLHQrsU8ObEM0CVVeIl0yyzDvCY1Fa7LHGgHzspnpKtpm38M0JF4owwGfOVNBJaSxWIi04tgzYTm5mIvF4PVPmtJ-MowyE6z8rN3xuRfRzFmzJIoR0y2uV5OczI0gvrNH6pSo1U3GnjvAL8yb0xoDbyiOyuZaAc5nVXAjhCRj5QMiPyNoz2XztSws6Zc8x5_m_FX5B78JK9e_gu2VotL_1Lctd-Xy265ShI-Yhs7-fz4ngUzAjwnP3IIa84mhVfIfXlaH4N2LgDXA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuvBEpBfZAOWER7278OCBUmkSN8lBEAyond19GkRy7jVNQTvAT-CX8KH4Js2sb2ktvPXDclT227M8z33i_nQF42fUZ14xGnooEJig48KSSxpbX7nJJQ9FxasJP43A6jY6P49kW_Gr2wlhZZeMTnaPWhbL_yN9gWLK10JDevzs982zXKLu62rTQqGAxMptvmLKVb4c9fL97lA7684NDr-4q4CkWRMwLQj9OeRh2NFOp4FSaMMUYqjpM6Aj5Udf4yILSwHBf-LHSyB-4UELHgcZ8TnOGdm_ANrdgb8H2bDiZfW58P-YCtFvL6zs0tn8W2OTIrr5R_1Lgc_0BLpHai9TYxbbB3f_tqdyDOzWLJvsV7O_DlskfQHuCCUCxcusE5BU5yBbIxt3oIXzfz0nfVcvAIEtErsmHQp6Xa9JHF1ft3iRFSo6cvvz3j5_zqmJXlm1Iz5YWtl3BjCYzYbVstiApWeSkt8nFcqGI7SeXlURu0DDp56VZysyQkciWOB4srB7hEXy8lufxGFp5kZsnQFigJZOxb1IuOVqLQvwIRKR8tBmoWLZhrwFGclqVGEmcNIDGyUUAteG9Rc3fY2xhcDdRrL4ktZ9JDFNa2CulkeQh1UJqEyKrpkZKTIZpG3YbICW1tyqTfyhqw2uHwytvJEE-0Kd2Zudqay_g1uF8Mk7Gw-noKdzGM3gleN-F1np1bp7BTfV1vShXz-vviMDJdYP0DxXHWf8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VFCEu_CNcCuyBcsJqvLvxzwGh0iQiShNFtKBycvfPKJJjt3EKygkegefhcXgSZtc2tJfeeuC4lj227G9nvtn9PAPwshcwrhmNfRULTFBw4EsljS2v3eOSRqLr1ISfDqLpND4-TmYb8Kv9F8bKKluf6By1LpVdI9_FsGRroSG9380aWcSsP3x7eubbDlJ2p7Vtp1FDZGzW3zB9q96M-vitdygdDo723_tNhwFfsTBmfhgFScajqKuZygSn0kQZxlPVZULHyJV6JkBGlIWGByJIlEYuwYUSOgk15naaM7R7AzaRknPagc3ZaDL73MYBzAtor5Had2liVxnY5NDuxNHgUhB0vQIuEdyLNNnFueHd__kN3YM7Dbsme_V0uA8bpngA3gQTg3Lp9g_IK7Kfz5Glu9FD-L5XkIGrooHBl4hCkw-lPK9WZICur_6rk5QZOXS6898_fh7VlbzyfE36tuSw7RZmNJkJq3GzhUrJvCD9dSEWc0Vsn7m8InKNhsmgqMxC5oaMRb7A8XBudQqP4OO1vI_H0CnKwjwBwkItmUwCk3HJ0Voc4eQQsQrQZqgS6cFOC5L0tC49kjrJAE3Si2Dy4J1F0N9zbMFwd6Bcfkkb_5MaprSwd8piySOqhdQmQrZNjZSYJFMPtltQpY0Xq9J_iPLgtcPklQ-SIk8YUHtk62prL-AWIjM9GE3HT-E2XsBrHfw2dFbLc_MMbqqvq3m1fN5MKQIn143RP-uFYr8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+and+Robust+Estimation+of+Spatio%E2%80%90Temporally+Distributed+Parameters+in+Dynamic+Models+by+an+Ensemble+Kalman+Filter&rft.jtitle=Journal+of+advances+in+modeling+earth+systems&rft.au=Sawada%2C+Yohei&rft.au=Duc%2C+Le&rft.date=2024-02-01&rft.issn=1942-2466&rft.eissn=1942-2466&rft.volume=16&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2023MS003821&rft.externalDBID=10.1029%252F2023MS003821&rft.externalDocID=JAME22023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-2466&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-2466&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-2466&client=summon