An Efficient and Robust Estimation of Spatio‐Temporally Distributed Parameters in Dynamic Models by an Ensemble Kalman Filter
The accuracy of Earth system models is compromised by unknown and/or unresolved dynamics, making the quantification of systematic model errors essential. While a model parameter estimation, which allows parameters to change spatio‐temporally, shows promise in quantifying and mitigating systematic mo...
Uloženo v:
| Vydáno v: | Journal of advances in modeling earth systems Ročník 16; číslo 2 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Washington
John Wiley & Sons, Inc
01.02.2024
American Geophysical Union (AGU) |
| Témata: | |
| ISSN: | 1942-2466, 1942-2466 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The accuracy of Earth system models is compromised by unknown and/or unresolved dynamics, making the quantification of systematic model errors essential. While a model parameter estimation, which allows parameters to change spatio‐temporally, shows promise in quantifying and mitigating systematic model errors, the estimation of the spatio‐temporally distributed model parameters has been practically challenging. Here we present an efficient and practical method to estimate time‐varying parameters in high‐dimensional spaces. In our proposed method, Hybrid Offline and Online Parameter Estimation with ensemble Kalman filtering (HOOPE‐EnKF), model parameters estimated by EnKF are constrained by results of offline batch optimization, in which the posterior distribution of model parameters is obtained by comparing simulated and observed climatological variables. HOOPE‐EnKF outperforms the original EnKF in synthetic experiments using a two‐scale Lorenz96 model and a simple global general circulation model. One advantage of HOOPE‐EnKF over traditional EnKFs is that its performance is not greatly affected by inflation factors for model parameters, thus eliminating the need for extensive tuning of inflation factors. We thoroughly discuss the potential of HOOPE‐EnKF as a practical method for improving parameterizations of process‐based models and prediction in real‐world applications such as numerical weather prediction.
Plain Language Summary
Earth system models help us understand and predict the behavior of our planet, but their accuracy is limited due to unknown or unresolved factors. Adjusting the parameters of these models based on the changing patterns in time and space can help improve their accuracy. However, this has been a challenging task. In this study, we introduce a new method called Hybrid Offline and Online Parameter Estimation with ensemble Kalman filtering (HOOPE‐EnKF) that efficiently estimates these changing parameters. This method combines an existing EnKF with offline batch optimization, which compares long‐term simulation with observations to fine‐tune the model. Our experiments show that HOOPE‐EnKF performs better than the original EnKF and is less sensitive to certain hyperparameters, reducing the need for time‐consuming calibrations. HOOPE‐EnKF has a great potential for improving the accuracy of models and predictions in real‐world applications, like weather forecasting, and can help scientists better understand our planet's complex systems.
Key Points
Ensemble Kalman filter (EnKF) is extended to estimate high‐dimensional time‐varying model parameters
The proposed method is insensitive to the choice of covariance inflation factors
The proposed method successfully quantifies systematic model errors from observations |
|---|---|
| AbstractList | Abstract The accuracy of Earth system models is compromised by unknown and/or unresolved dynamics, making the quantification of systematic model errors essential. While a model parameter estimation, which allows parameters to change spatio‐temporally, shows promise in quantifying and mitigating systematic model errors, the estimation of the spatio‐temporally distributed model parameters has been practically challenging. Here we present an efficient and practical method to estimate time‐varying parameters in high‐dimensional spaces. In our proposed method, Hybrid Offline and Online Parameter Estimation with ensemble Kalman filtering (HOOPE‐EnKF), model parameters estimated by EnKF are constrained by results of offline batch optimization, in which the posterior distribution of model parameters is obtained by comparing simulated and observed climatological variables. HOOPE‐EnKF outperforms the original EnKF in synthetic experiments using a two‐scale Lorenz96 model and a simple global general circulation model. One advantage of HOOPE‐EnKF over traditional EnKFs is that its performance is not greatly affected by inflation factors for model parameters, thus eliminating the need for extensive tuning of inflation factors. We thoroughly discuss the potential of HOOPE‐EnKF as a practical method for improving parameterizations of process‐based models and prediction in real‐world applications such as numerical weather prediction. The accuracy of Earth system models is compromised by unknown and/or unresolved dynamics, making the quantification of systematic model errors essential. While a model parameter estimation, which allows parameters to change spatio‐temporally, shows promise in quantifying and mitigating systematic model errors, the estimation of the spatio‐temporally distributed model parameters has been practically challenging. Here we present an efficient and practical method to estimate time‐varying parameters in high‐dimensional spaces. In our proposed method, Hybrid Offline and Online Parameter Estimation with ensemble Kalman filtering (HOOPE‐EnKF), model parameters estimated by EnKF are constrained by results of offline batch optimization, in which the posterior distribution of model parameters is obtained by comparing simulated and observed climatological variables. HOOPE‐EnKF outperforms the original EnKF in synthetic experiments using a two‐scale Lorenz96 model and a simple global general circulation model. One advantage of HOOPE‐EnKF over traditional EnKFs is that its performance is not greatly affected by inflation factors for model parameters, thus eliminating the need for extensive tuning of inflation factors. We thoroughly discuss the potential of HOOPE‐EnKF as a practical method for improving parameterizations of process‐based models and prediction in real‐world applications such as numerical weather prediction. Earth system models help us understand and predict the behavior of our planet, but their accuracy is limited due to unknown or unresolved factors. Adjusting the parameters of these models based on the changing patterns in time and space can help improve their accuracy. However, this has been a challenging task. In this study, we introduce a new method called Hybrid Offline and Online Parameter Estimation with ensemble Kalman filtering (HOOPE‐EnKF) that efficiently estimates these changing parameters. This method combines an existing EnKF with offline batch optimization, which compares long‐term simulation with observations to fine‐tune the model. Our experiments show that HOOPE‐EnKF performs better than the original EnKF and is less sensitive to certain hyperparameters, reducing the need for time‐consuming calibrations. HOOPE‐EnKF has a great potential for improving the accuracy of models and predictions in real‐world applications, like weather forecasting, and can help scientists better understand our planet's complex systems. Ensemble Kalman filter (EnKF) is extended to estimate high‐dimensional time‐varying model parameters The proposed method is insensitive to the choice of covariance inflation factors The proposed method successfully quantifies systematic model errors from observations The accuracy of Earth system models is compromised by unknown and/or unresolved dynamics, making the quantification of systematic model errors essential. While a model parameter estimation, which allows parameters to change spatio‐temporally, shows promise in quantifying and mitigating systematic model errors, the estimation of the spatio‐temporally distributed model parameters has been practically challenging. Here we present an efficient and practical method to estimate time‐varying parameters in high‐dimensional spaces. In our proposed method, Hybrid Offline and Online Parameter Estimation with ensemble Kalman filtering (HOOPE‐EnKF), model parameters estimated by EnKF are constrained by results of offline batch optimization, in which the posterior distribution of model parameters is obtained by comparing simulated and observed climatological variables. HOOPE‐EnKF outperforms the original EnKF in synthetic experiments using a two‐scale Lorenz96 model and a simple global general circulation model. One advantage of HOOPE‐EnKF over traditional EnKFs is that its performance is not greatly affected by inflation factors for model parameters, thus eliminating the need for extensive tuning of inflation factors. We thoroughly discuss the potential of HOOPE‐EnKF as a practical method for improving parameterizations of process‐based models and prediction in real‐world applications such as numerical weather prediction. The accuracy of Earth system models is compromised by unknown and/or unresolved dynamics, making the quantification of systematic model errors essential. While a model parameter estimation, which allows parameters to change spatio‐temporally, shows promise in quantifying and mitigating systematic model errors, the estimation of the spatio‐temporally distributed model parameters has been practically challenging. Here we present an efficient and practical method to estimate time‐varying parameters in high‐dimensional spaces. In our proposed method, Hybrid Offline and Online Parameter Estimation with ensemble Kalman filtering (HOOPE‐EnKF), model parameters estimated by EnKF are constrained by results of offline batch optimization, in which the posterior distribution of model parameters is obtained by comparing simulated and observed climatological variables. HOOPE‐EnKF outperforms the original EnKF in synthetic experiments using a two‐scale Lorenz96 model and a simple global general circulation model. One advantage of HOOPE‐EnKF over traditional EnKFs is that its performance is not greatly affected by inflation factors for model parameters, thus eliminating the need for extensive tuning of inflation factors. We thoroughly discuss the potential of HOOPE‐EnKF as a practical method for improving parameterizations of process‐based models and prediction in real‐world applications such as numerical weather prediction. Plain Language Summary Earth system models help us understand and predict the behavior of our planet, but their accuracy is limited due to unknown or unresolved factors. Adjusting the parameters of these models based on the changing patterns in time and space can help improve their accuracy. However, this has been a challenging task. In this study, we introduce a new method called Hybrid Offline and Online Parameter Estimation with ensemble Kalman filtering (HOOPE‐EnKF) that efficiently estimates these changing parameters. This method combines an existing EnKF with offline batch optimization, which compares long‐term simulation with observations to fine‐tune the model. Our experiments show that HOOPE‐EnKF performs better than the original EnKF and is less sensitive to certain hyperparameters, reducing the need for time‐consuming calibrations. HOOPE‐EnKF has a great potential for improving the accuracy of models and predictions in real‐world applications, like weather forecasting, and can help scientists better understand our planet's complex systems. Key Points Ensemble Kalman filter (EnKF) is extended to estimate high‐dimensional time‐varying model parameters The proposed method is insensitive to the choice of covariance inflation factors The proposed method successfully quantifies systematic model errors from observations |
| Author | Duc, Le Sawada, Yohei |
| Author_xml | – sequence: 1 givenname: Yohei orcidid: 0000-0003-0216-4677 surname: Sawada fullname: Sawada, Yohei email: yohei.sawada@sogo.t.u-tokyo.ac.jp organization: Japan Meteorological Agency – sequence: 2 givenname: Le surname: Duc fullname: Duc, Le organization: Japan Meteorological Agency |
| BookMark | eNp9kc9u1DAQxiNUJNrCjQewxJUFj-04yXHVprTQFYiWs-U_Y-RVYi92Vign-gg8I09ClkWoJ04z8-mnb2b0nVUnMUWsqpdA3wBl3VtGGd_cUcpbBk-qU-gEWzEh5cmj_ll1VsqWUiklq0-rH-tIeu-DDRgnoqMjn5PZl4n0ZQqjnkKKJHlytzu0vx5-3uO4S1kPw0wuQ5lyMPsJHfmksx5xwlxIiORyjnoMlmySw6EQMy_GpI8FRzMg-aCHcZmvwrDwz6unXg8FX_yt59WXq_7-4np1-_HdzcX6dmW5bPlKNtB50TTUceu1YAYbD01tKdeuBahrBJDgJQrQ0FnXsU5oq10nHXDuBD-vbo6-Lumt2uXltzyrpIP6I6T8Vek8BTugQm6dRi-Mb41omNPGYdPWwNAYEB1bvF4dvXY5fdtjmdQ27XNczles4yBp04BcqNdHyuZUSkb_bytQdYhLPY5rwfkR_x4GnP_LqvfrTc8OCv8NWziZuQ |
| Cites_doi | 10.1175/2010MWR3570.1 10.1002/2015GL067238 10.2151/jmsj.2013‐403 10.1007/978-0-387-45528-0 10.1016/j.jcp.2020.109716 10.1029/2022MS003164 10.5194/gmd‐11‐3999‐2018 10.1175/MWR‐D‐19‐0233.1 10.1029/2019WR024739 10.1002/2015WR017192 10.1016/j.physd.2006.11.008 10.2151/jmsj.2013‐201 10.1029/2021MS002882 10.1029/2021MS002502 10.5194/hess‐22‐2903‐2018 10.1007/s00382‐002‐0268‐2 10.1175/1520‐0493(1989)117<1779:ACMFSF>2.0.CO;2 10.1029/2010JD014673 10.1175/BAMS‐D‐15‐00104.1 10.1029/2021MS002564 10.1029/2017JD028092 10.1029/2019MS001705 10.1007/s10596‐021‐10035‐4 10.1175/MWR‐D‐13‐00200.1 10.1029/2019WR025721 10.1002/qj.2879 10.1029/2020JD032688 10.1080/16000870.2018.1442099 10.5194/gmd‐14‐5623‐2021 10.1080/01621459.2019.1592753 10.5194/hess‐24‐4777‐2020 10.1093/biomet/57.1.97 10.1016/j.jocs.2020.101171 10.1029/2020MS002454 10.1175/2007MWR1873.1 10.1175/MWR‐D‐11‐00276.1 10.1029/2004WR003604 10.1016/j.advwatres.2004.09.002 10.1016/j.advwatres.2012.04.002 10.5281/zenodo.8400926 10.5281/zenodo.1198432 10.1029/2020JD034214 10.1007/s10596‐018‐9731‐y 10.5194/gmd‐9‐1341‐2016 10.1561/2200000073 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7TG ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO F1W H96 HCIFZ KL. L.G PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.1029/2023MS003821 |
| DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central (New) ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1942-2466 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_e3cdaef4bf8b472dabde78512ebb1492 10_1029_2023MS003821 JAME22023 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: Japan Society for the Promotion of Science funderid: 22K18822 – fundername: Japan Science and Technology Agency funderid: JPMJMS2281 |
| GroupedDBID | 0R~ 1OC 24P 29J 31~ 5VS 8-1 8FE 8FH AAMMB AAZKR ABDBF ACCMX ACUHS ACXQS ADBBV ADKYN ADZMN AEFGJ AEGXH AENEX AEUYN AFKRA AGXDD AIDQK AIDYY ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZFZN BCNDV BENPR BHPHI BKSAR CCPQU D1K EAD EAP EAS EBS EJD EPL ESX GODZA GROUPED_DOAJ HCIFZ IAO IGS IPNFZ ITC K6- KQ8 LK5 M7R M~E O9- OK1 P2P PCBAR PHGZM PHGZT PIMPY PROAC RIG RNS TUS ~OA AAYXX AFFHD CITATION HZ~ WIN 7TG ABUWG AZQEC DWQXO F1W H96 KL. L.G PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c3683-6719f4770d3cfa42be7f175c03ad81155e1161f6e41a19cd9294acad96d133d43 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001157373600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1942-2466 |
| IngestDate | Tue Oct 07 10:47:03 EDT 2025 Fri Jul 25 23:22:57 EDT 2025 Sat Nov 29 02:09:18 EST 2025 Sun Jul 06 04:45:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3683-6719f4770d3cfa42be7f175c03ad81155e1161f6e41a19cd9294acad96d133d43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0216-4677 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023MS003821 |
| PQID | 2931607716 |
| PQPubID | 616667 |
| PageCount | 27 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e3cdaef4bf8b472dabde78512ebb1492 proquest_journals_2931607716 crossref_primary_10_1029_2023MS003821 wiley_primary_10_1029_2023MS003821_JAME22023 |
| PublicationCentury | 2000 |
| PublicationDate | February 2024 2024-02-00 20240201 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Journal of advances in modeling earth systems |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc American Geophysical Union (AGU) |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: American Geophysical Union (AGU) |
| References | 2011; 116 2021; 25 2012; 140 1989; 117 2011; 139 2023; 15 2021; 126 2019; 11 2019; 55 2021; 424 2018; 123 2020; 148 2005; 41 2016; 52 2006 2020; 56 2020; 125 2018; 22 2005; 28 2016; 142 1970; 57 2021; 14 2021; 13 2007; 135 2023 2013; 51 2017; 98 2007; 230 2020; 115 2018; 70 2016; 43 2013b; 91 2018 2022; 14 2016 2020; 24 2020; 44 2018; 11 2014; 142 2003; 20 2016; 9 2013a; 91 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_49_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_46_1 e_1_2_11_47_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_37_1 Rasmussen C. E. (e_1_2_11_33_1) 2006 e_1_2_11_38_1 e_1_2_11_39_1 e_1_2_11_19_1 |
| References_xml | – volume: 142 start-page: 2974 issue: 701 year: 2016 end-page: 2984 article-title: Estimation of the functional form of subgrid‐scale parametrizations using ensemble‐based data assimilation: A simple model experiment publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 13 issue: 7 year: 2021 article-title: Sub‐seasonal forecasting with a large ensemble of deep‐learning weather prediction models publication-title: Journal of Advances in Modeling Earth Systems – volume: 11 start-page: 2680 issue: 8 year: 2019 end-page: 2693 article-title: Can machines learn to predict weather? Using deep learning to predict gridded 500‐hPa geopotential height from historical weather data publication-title: Journal of Advances in Modeling Earth Systems – volume: 148 start-page: 1607 issue: 4 year: 2020 end-page: 1628 article-title: Combined state‐parameter estimation with the LETKF for convective‐scale weather forecasting publication-title: Monthly Weather Review – volume: 44 year: 2020 article-title: Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model publication-title: Journal of Computational Science – volume: 22 start-page: 885 issue: 3 year: 2018 end-page: 908 article-title: Analysis of iterative ensemble smoothers for solving inverse problems publication-title: Computational Geosciences – volume: 11 start-page: 3999 issue: 10 year: 2018 end-page: 4009 article-title: Challenges and design choices for global weather and climate models based on machine learning publication-title: Geoscientific Model Development – volume: 56 start-page: 1 issue: 1 year: 2020 end-page: 25 article-title: Surrogate‐based Bayesian inverse modeling of the hydrological system: An adaptive approach considering surrogate approximation error publication-title: Water Resources Research – volume: 25 start-page: 985 issue: 3 year: 2021 end-page: 1003 article-title: An efficient ensemble Kalman Filter implementation via shrinkage covariance matrix estimation: Exploiting prior knowledge publication-title: Computational Geosciences – volume: 57 start-page: 97 issue: 1 year: 1970 end-page: 109 article-title: Monte Carlo sampling methods using Markov chains and their applications publication-title: Biometrika – volume: 20 start-page: 175 year: 2003 end-page: 191 article-title: Atmospheric simulations using a GCM with simplified physical parametrizations. partI: Model climatology and variability in multi‐decadal experiments publication-title: Climate Dynamics – volume: 91 start-page: 453 year: 2013b end-page: 469 article-title: Estimating model parameters with ensemble‐based data assimilation publication-title: A Review – volume: 70 start-page: 1 issue: 1 year: 2018 end-page: 17 article-title: Stochastic parameterization identification using ensemble Kalman filtering combined with maximum likelihood methods publication-title: Tellus A: Dynamic Meteorology and Oceanography – volume: 13 issue: 9 year: 2021 article-title: Calibration and uncertainty quantification of convective parameters in an idealized GCM publication-title: Journal of Advances in Modeling Earth Systems – volume: 140 start-page: 3078 issue: 9 year: 2012 end-page: 3089 article-title: Evaluating methods to account for system errors in ensemble data assimilation publication-title: Monthly Weather Review – volume: 115 start-page: 866 issue: 530 year: 2020 end-page: 885 article-title: Ensemble Kalman methods for high‐dimensional hierarchical dynamic space‐time models publication-title: Journal of the American Statistical Association – volume: 135 start-page: 3841 issue: 11 year: 2007 end-page: 3861 article-title: Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution publication-title: Monthly Weather Review – volume: 43 start-page: 752 issue: 2 year: 2016 end-page: 759 article-title: Assimilating atmospheric observations into the ocean using strongly coupled ensemble data assimilation publication-title: Geophysical Research Letters – volume: 142 start-page: 2150 issue: 6 year: 2014 end-page: 2164 article-title: Nonglobal parameter estimation using local ensemble Kalman filtering publication-title: Monthly Weather Review – volume: 15 issue: 2 year: 2023 article-title: Application of recurrent neural networks to model bias correction: Idealized experiments with the Lorenz‐96 model publication-title: Journal of Advances in Modeling Earth Systems – year: 2016 – volume: 98 start-page: 959 issue: 5 year: 2017 end-page: 970 article-title: Automatic model calibration: A new way to improve numerical weather forecasting publication-title: Bulletin of the American Meteorological Society – volume: 22 start-page: 2903 issue: 5 year: 2018 end-page: 2919 article-title: Time‐varying parameter models for catchments with land use change: The importance of model structure publication-title: Hydrology and Earth System Sciences – volume: 55 start-page: 7086 issue: 8 year: 2019 end-page: 7107 article-title: Bayesian calibration and sensitivity analysis for a karst aquifer model using active subspaces publication-title: Water Resources Research – volume: 139 start-page: 1519 issue: 5 year: 2011 end-page: 1535 article-title: The Gaussian approach to adaptive covariance inflation and its implementation with the local ensemble transform Kalman Filter publication-title: Monthly Weather Review – volume: 11 start-page: 355 issue: 5–6 year: 2019 end-page: 607 article-title: Computational optimal transport: With applications to data science publication-title: Foundations and Trends in Machine Learning – volume: 28 start-page: 135 issue: 2 year: 2005 end-page: 147 article-title: Dual state–parameter estimation of hydrological models using ensemble Kalman filter publication-title: Advances in Water Resources – volume: 230 start-page: 112 issue: 1–2 year: 2007 end-page: 126 article-title: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter publication-title: Physica D: Nonlinear Phenomena – volume: 51 start-page: 457 year: 2013 end-page: 478 article-title: Hydrologic data assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts and applications publication-title: Advances in Water Resources – volume: 91 start-page: 453 issue: 4 year: 2013a end-page: 469 article-title: Estimating model parameters with ensemble‐based data assimilation: Parameter covariance treatment publication-title: Journal of the Meteorological Society of Japan – volume: 9 start-page: 1341 issue: 4 year: 2016 end-page: 1360 article-title: TerrSysMP‐PDAF (version 1.0): A modular high‐performance data assimilation framework for an integrated land surface‐subsurface model publication-title: Geoscientific Model Development – volume: 117 start-page: 1779 issue: 8 year: 1989 end-page: 1800 article-title: A comprehensive mass flux scheme for Cumulus parameterization in large‐scale models publication-title: Monthly Weather Review – volume: 52 start-page: 3350 issue: 5 year: 2016 end-page: 3372 article-title: Hydrologic modeling in dynamic catchments: A data assimilation approach publication-title: Water Resources Research – volume: 14 issue: 6 year: 2022 article-title: An efficient estimation of time‐varying parameters of dynamic models by combining offline batch optimization and online data assimilation publication-title: Journal of Advances in Modeling Earth Systems – volume: 116 issue: D9 year: 2011 article-title: “Variable localization” in an ensemble Kalman filter: Application to the carbon cycle data assimilation publication-title: Journal of Geophysical Research Atmospheres – year: 2006 – volume: 123 start-page: 7375 issue: 14 year: 2018 end-page: 7392 article-title: Online model parameter estimation with ensemble data assimilation in the real global atmosphere: A case with the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) and the Global Satellite Mapping of Precipitation data publication-title: Journal of Geophysical Research: Atmospheres – volume: 126 issue: 16 year: 2021 article-title: Revisiting online and offline data assimilation comparison for paleoclimate reconstruction: An idealized OSSE study publication-title: Journal of Geophysical Research: Atmospheres – volume: 14 issue: 4 year: 2022 article-title: Multiplicative non‐Gaussian model error estimation in data assimilation publication-title: Journal of Advances in Modeling Earth Systems – volume: 125 issue: 20 year: 2020 article-title: Machine learning accelerates parameter optimization and uncertainty assessment of a land surface model publication-title: Journal of Geophysical Research: Atmospheres – year: 2018 article-title: Samhatfield/letkf‐speedy: Publication (v1.0.0) publication-title: Zenodo – volume: 24 start-page: 4777 issue: 10 year: 2020 end-page: 4791 article-title: Socio‐hydrological data assimilation: Analyzing human‐flood interactions by model‐data integration publication-title: Hydrology and Earth System Sciences – volume: 14 start-page: 5623 issue: 9 year: 2021 end-page: 5635 article-title: Combining ensemble Kalman filter and reservoir computing to predict spatio‐temporal chaotic systems from imperfect observations and models publication-title: Geoscientific Model Development – volume: 41 start-page: 1 issue: 5 year: 2005 end-page: 17 article-title: Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter publication-title: Water Resources Research – volume: 424 year: 2021 article-title: Calibrate, emulate, sample publication-title: Journal of Computational Physics – year: 2023 article-title: [Source code] Code for "An efficient and robust estimation of spatio‐temporally distributed parameters in dynamic models by an ensemble Kalman filter publication-title: Zenodo – ident: e_1_2_11_20_1 doi: 10.1175/2010MWR3570.1 – ident: e_1_2_11_41_1 doi: 10.1002/2015GL067238 – ident: e_1_2_11_35_1 doi: 10.2151/jmsj.2013‐403 – ident: e_1_2_11_4_1 doi: 10.1007/978-0-387-45528-0 – ident: e_1_2_11_19_1 – ident: e_1_2_11_6_1 doi: 10.1016/j.jcp.2020.109716 – ident: e_1_2_11_2_1 doi: 10.1029/2022MS003164 – ident: e_1_2_11_8_1 doi: 10.5194/gmd‐11‐3999‐2018 – ident: e_1_2_11_34_1 doi: 10.1175/MWR‐D‐19‐0233.1 – ident: e_1_2_11_42_1 doi: 10.1029/2019WR024739 – ident: e_1_2_11_28_1 doi: 10.1002/2015WR017192 – ident: e_1_2_11_13_1 doi: 10.1016/j.physd.2006.11.008 – ident: e_1_2_11_36_1 doi: 10.2151/jmsj.2013‐201 – ident: e_1_2_11_38_1 doi: 10.1029/2021MS002882 – ident: e_1_2_11_47_1 doi: 10.1029/2021MS002502 – ident: e_1_2_11_27_1 doi: 10.5194/hess‐22‐2903‐2018 – ident: e_1_2_11_22_1 doi: 10.1007/s00382‐002‐0268‐2 – ident: e_1_2_11_43_1 doi: 10.1175/1520‐0493(1989)117<1779:ACMFSF>2.0.CO;2 – ident: e_1_2_11_14_1 doi: 10.1029/2010JD014673 – ident: e_1_2_11_7_1 doi: 10.1175/BAMS‐D‐15‐00104.1 – ident: e_1_2_11_29_1 doi: 10.1029/2021MS002564 – ident: e_1_2_11_16_1 doi: 10.1029/2017JD028092 – ident: e_1_2_11_46_1 doi: 10.1029/2019MS001705 – ident: e_1_2_11_18_1 doi: 10.1007/s10596‐021‐10035‐4 – ident: e_1_2_11_3_1 doi: 10.1175/MWR‐D‐13‐00200.1 – ident: e_1_2_11_49_1 doi: 10.1029/2019WR025721 – ident: e_1_2_11_31_1 doi: 10.1002/qj.2879 – ident: e_1_2_11_37_1 doi: 10.1029/2020JD032688 – ident: e_1_2_11_23_1 – ident: e_1_2_11_32_1 doi: 10.1080/16000870.2018.1442099 – ident: e_1_2_11_44_1 doi: 10.5194/gmd‐14‐5623‐2021 – ident: e_1_2_11_15_1 doi: 10.1080/01621459.2019.1592753 – ident: e_1_2_11_40_1 doi: 10.5194/hess‐24‐4777‐2020 – ident: e_1_2_11_11_1 doi: 10.1093/biomet/57.1.97 – ident: e_1_2_11_5_1 doi: 10.1016/j.jocs.2020.101171 – volume-title: Gaussian processes for machine learning year: 2006 ident: e_1_2_11_33_1 – ident: e_1_2_11_9_1 doi: 10.1029/2020MS002454 – ident: e_1_2_11_21_1 doi: 10.1175/2007MWR1873.1 – ident: e_1_2_11_48_1 doi: 10.1175/MWR‐D‐11‐00276.1 – ident: e_1_2_11_24_1 doi: 10.1029/2004WR003604 – ident: e_1_2_11_25_1 doi: 10.1016/j.advwatres.2004.09.002 – ident: e_1_2_11_45_1 doi: 10.1016/j.advwatres.2012.04.002 – ident: e_1_2_11_39_1 doi: 10.5281/zenodo.8400926 – ident: e_1_2_11_12_1 doi: 10.5281/zenodo.1198432 – ident: e_1_2_11_26_1 doi: 10.1029/2020JD034214 – ident: e_1_2_11_10_1 doi: 10.1007/s10596‐018‐9731‐y – ident: e_1_2_11_17_1 doi: 10.5194/gmd‐9‐1341‐2016 – ident: e_1_2_11_30_1 doi: 10.1561/2200000073 |
| SSID | ssj0066625 |
| Score | 2.318626 |
| Snippet | The accuracy of Earth system models is compromised by unknown and/or unresolved dynamics, making the quantification of systematic model errors essential. While... Abstract The accuracy of Earth system models is compromised by unknown and/or unresolved dynamics, making the quantification of systematic model errors... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| SubjectTerms | Data assimilation Dynamic models ensemble Kalman filter General circulation models Kalman filters Optimization Parameter estimation Parameters Weather forecasting |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELYqxKGXCmirhgKaQ-HUqIntjePjFrJCakGo0Ipb5L9IK4VstVmQ9tQ-As_YJ2FsZ9FyKReOtqLRyDP2fBOPvyHk0yhn3DJapqZUmKDgINVGO0-vPeKaCpWFasJf38X5eXl9LS_WWn35mrBIDxwX7otjxirXcN2UmgtqlbbON5SnTmtE9-H0zYRcJVPxDEZMTkdDmXtGpc_w2dmlvwWj-ZMAFHj6n4DLdYgaYsxki7wZwCGMo1Lb5JXrdkhyhrh2Ng-_v-EIjtspgswwekv-jDuoAgkExg5QnYUfM33bL6DCnRsfJcKsgctQNv3v7_1VJKJq2yWceMZc3-zKWbhQvkTL82zCtIOT2KQefJu0tge9RMFQdb270a2Db6q9wfFk6q_Z35Gfk-rq-DQdWiqkhhUlSwuRy4YLkVlmGsWpdqJBAGEypmyJ4HDkcoSATeF4rnJpLIInroyysrCYzFrO3pONbta5DwRYYTXTMve24SitFGhbVZocZRZG6oQcrta5_h2ZM-pw401lvW6PhHz1Rnj8xvNdhwn0gnrwgvo5L0jI3sqE9bAJ-xqRjKfPw4wwIZ-DWf-rSI1hrqJ-ZvclVPpIXqMsHiu898jGYn7r9smmuVtM-_lBcNcHFKbxCA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5cCFNyK0RXMATkRsbG8ep6qPrJCgq1VbUG-RX6lWSpOy2Vbqif4EfiO_pDOOF9pLLxxtWRNLM575xp58w9j7cSKkFTyPTa4wQcFBrI12RK89lppnauSrCX98y6bT_OSkmIULtz6UVa58onfUtjN0R_4ZwxJxoSG83z7_GVPXKHpdDS00HrJ1YipDO1_fLaezw5UvRmzOx6HcfcQLyvTFwRG9hvHkTiDyfP13QOZtqOpjzeTp_-7yGXsSUCbsDGbxnD1w7QsWHSBA7hb-Hh0-wl4zR7TqRy_Zr50WSs8mgUEIVGvhsNMX_RJKdAHD343Q1XDk66__XP8-HhitmuYK9ol6l7pmOQszRbVeRNgJ8xb2h273QP3Wmh70FQqGsu3dmW4cfFXNGY4nc3qvf8W-T8rjvS9x6M0QG5HmIk6zpKhllo2sMLWSXLusRiRiRkLZHFHm2CWIJevUyUQlhbGIwqQyyhapxazYSvGarbVd694wEKnVQheJq6WWKC3P0EhUbhKUmZpCR-zDSlHV-UDBUfmnc15UtxUasV3S4t81RJztJ7rFaRXOYeWEsYq-VOdaZtwqbV2GqJM7rTFZ5BHbXCm2Cqe5r_5pNWKfvF3cu5EK42XJaebt_dI22GNcJYci8E22tlxcuC32yFwu5_3iXbDlGwHQ_nc priority: 102 providerName: ProQuest |
| Title | An Efficient and Robust Estimation of Spatio‐Temporally Distributed Parameters in Dynamic Models by an Ensemble Kalman Filter |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023MS003821 https://www.proquest.com/docview/2931607716 https://doaj.org/article/e3cdaef4bf8b472dabde78512ebb1492 |
| Volume | 16 |
| WOSCitedRecordID | wos001157373600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1942-2466 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066625 issn: 1942-2466 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1942-2466 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066625 issn: 1942-2466 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1942-2466 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066625 issn: 1942-2466 databaseCode: PCBAR dateStart: 20090201 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1942-2466 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066625 issn: 1942-2466 databaseCode: BENPR dateStart: 20090201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1942-2466 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066625 issn: 1942-2466 databaseCode: PIMPY dateStart: 20090201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1942-2466 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066625 issn: 1942-2466 databaseCode: WIN dateStart: 20090101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1942-2466 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066625 issn: 1942-2466 databaseCode: 24P dateStart: 20090101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQy4ELUB4iUFY-ACci1o-Nk2MfWVHBrqK2QDlFfqVaKU3QZovUC_AT-I38ks442Wp7QUJcEtmyHSse29-Mx98Q8mrChHSCp7FNNSgokIiNNR7ptSfScKXHwZvw80c1n6dnZ1kxGNzwLkzPD3FjcMOZEdZrnODadAPZAHJkYtzv2QmebOE98m3GhEKp5rJYr8SAzEPQVdDTecxlkgyO71D_3WbtW1tSYO6_BTc3QWvYdaYP_re_D8n9AW_SvV5Adsgd3zwi0QygcrsMFnX6hh7UC8CtIfWY_NxraB54JWA7orpx9Lg1l92K5rAY9PccaVvRk-CJ_efX79Oe26qur-ghkvBi_CzvaKHR6wupO-mioYd93HuKkdfqjporaJjmTecvTO3pB11fQHq6wJP7J-TTND89eB8PURpiK5JUxIliWSWVGjthKy258aoCTGLHQrsU8ObEM0CVVeIl0yyzDvCY1Fa7LHGgHzspnpKtpm38M0JF4owwGfOVNBJaSxWIi04tgzYTm5mIvF4PVPmtJ-MowyE6z8rN3xuRfRzFmzJIoR0y2uV5OczI0gvrNH6pSo1U3GnjvAL8yb0xoDbyiOyuZaAc5nVXAjhCRj5QMiPyNoz2XztSws6Zc8x5_m_FX5B78JK9e_gu2VotL_1Lctd-Xy265ShI-Yhs7-fz4ngUzAjwnP3IIa84mhVfIfXlaH4N2LgDXA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAkuvBEpBfZAOWER7278OCBUmkSN8lBEAyond19GkRy7jVNQTvAT-CX8KH4Js2sb2ktvPXDclT227M8z33i_nQF42fUZ14xGnooEJig48KSSxpbX7nJJQ9FxasJP43A6jY6P49kW_Gr2wlhZZeMTnaPWhbL_yN9gWLK10JDevzs982zXKLu62rTQqGAxMptvmLKVb4c9fL97lA7684NDr-4q4CkWRMwLQj9OeRh2NFOp4FSaMMUYqjpM6Aj5Udf4yILSwHBf-LHSyB-4UELHgcZ8TnOGdm_ANrdgb8H2bDiZfW58P-YCtFvL6zs0tn8W2OTIrr5R_1Lgc_0BLpHai9TYxbbB3f_tqdyDOzWLJvsV7O_DlskfQHuCCUCxcusE5BU5yBbIxt3oIXzfz0nfVcvAIEtErsmHQp6Xa9JHF1ft3iRFSo6cvvz3j5_zqmJXlm1Iz5YWtl3BjCYzYbVstiApWeSkt8nFcqGI7SeXlURu0DDp56VZysyQkciWOB4srB7hEXy8lufxGFp5kZsnQFigJZOxb1IuOVqLQvwIRKR8tBmoWLZhrwFGclqVGEmcNIDGyUUAteG9Rc3fY2xhcDdRrL4ktZ9JDFNa2CulkeQh1UJqEyKrpkZKTIZpG3YbICW1tyqTfyhqw2uHwytvJEE-0Kd2Zudqay_g1uF8Mk7Gw-noKdzGM3gleN-F1np1bp7BTfV1vShXz-vviMDJdYP0DxXHWf8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VFCEu_CNcCuyBcsJqvLvxzwGh0iQiShNFtKBycvfPKJJjt3EKygkegefhcXgSZtc2tJfeeuC4lj227G9nvtn9PAPwshcwrhmNfRULTFBw4EsljS2v3eOSRqLr1ISfDqLpND4-TmYb8Kv9F8bKKluf6By1LpVdI9_FsGRroSG9380aWcSsP3x7eubbDlJ2p7Vtp1FDZGzW3zB9q96M-vitdygdDo723_tNhwFfsTBmfhgFScajqKuZygSn0kQZxlPVZULHyJV6JkBGlIWGByJIlEYuwYUSOgk15naaM7R7AzaRknPagc3ZaDL73MYBzAtor5Had2liVxnY5NDuxNHgUhB0vQIuEdyLNNnFueHd__kN3YM7Dbsme_V0uA8bpngA3gQTg3Lp9g_IK7Kfz5Glu9FD-L5XkIGrooHBl4hCkw-lPK9WZICur_6rk5QZOXS6898_fh7VlbzyfE36tuSw7RZmNJkJq3GzhUrJvCD9dSEWc0Vsn7m8InKNhsmgqMxC5oaMRb7A8XBudQqP4OO1vI_H0CnKwjwBwkItmUwCk3HJ0Voc4eQQsQrQZqgS6cFOC5L0tC49kjrJAE3Si2Dy4J1F0N9zbMFwd6Bcfkkb_5MaprSwd8piySOqhdQmQrZNjZSYJFMPtltQpY0Xq9J_iPLgtcPklQ-SIk8YUHtk62prL-AWIjM9GE3HT-E2XsBrHfw2dFbLc_MMbqqvq3m1fN5MKQIn143RP-uFYr8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+and+Robust+Estimation+of+Spatio%E2%80%90Temporally+Distributed+Parameters+in+Dynamic+Models+by+an+Ensemble+Kalman+Filter&rft.jtitle=Journal+of+advances+in+modeling+earth+systems&rft.au=Sawada%2C+Yohei&rft.au=Duc%2C+Le&rft.date=2024-02-01&rft.issn=1942-2466&rft.eissn=1942-2466&rft.volume=16&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2023MS003821&rft.externalDBID=10.1029%252F2023MS003821&rft.externalDocID=JAME22023 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-2466&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-2466&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-2466&client=summon |