A Multi-sided Bézier Patch with a Simple Control Structure

A new n‐sided surface scheme is presented, that generalizes tensor product Bézier patches. Boundaries and corresponding cross‐derivatives are specified as conventional Bézier surfaces of arbitrary degrees. The surface is defined over a convex polygonal domain; local coordinates are computed from gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum Jg. 35; H. 2; S. 307 - 317
Hauptverfasser: Várady, Tamás, Salvi, Péter, Karikó, György
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Blackwell Publishing Ltd 01.05.2016
Schlagworte:
ISSN:0167-7055, 1467-8659
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A new n‐sided surface scheme is presented, that generalizes tensor product Bézier patches. Boundaries and corresponding cross‐derivatives are specified as conventional Bézier surfaces of arbitrary degrees. The surface is defined over a convex polygonal domain; local coordinates are computed from generalized barycentric coordinates; control points are multiplied by weighted, biparametric Bernstein functions. A method for interpolating a middle point is also presented. This Generalized Bézier (GB) patch is based on a new displacement scheme that builds up multi‐sided patches as a combination of a base patch, n displacement patches and an interior patch; this is considered to be an alternative to the Boolean sum concept. The input ribbons may have different degrees, but the final patch representation has a uniform degree. Interior control points—other than those specified by the user—are placed automatically by a special degree elevation algorithm. GB patches connect to adjacent Bézier surfaces with G1continuity. The control structure is simple and intuitive; the number of control points is proportional to those of quadrilateral control grids. The scheme is introduced through simple examples; suggestions for future work are also discussed.
AbstractList A new n-sided surface scheme is presented, that generalizes tensor product Bezier patches. Boundaries and corresponding cross-derivatives are specified as conventional Bezier surfaces of arbitrary degrees. The surface is defined over a convex polygonal domain; local coordinates are computed from generalized barycentric coordinates; control points are multiplied by weighted, biparametric Bernstein functions. A method for interpolating a middle point is also presented. This Generalized Bezier (GB) patch is based on a new displacement scheme that builds up multi-sided patches as a combination of a base patch, n displacement patches and an interior patch; this is considered to be an alternative to the Boolean sum concept. The input ribbons may have different degrees, but the final patch representation has a uniform degree. Interior control points-other than those specified by the user-are placed automatically by a special degree elevation algorithm. GB patches connect to adjacent Bezier surfaces with G super(1)continuity. The control structure is simple and intuitive; the number of control points is proportional to those of quadrilateral control grids. The scheme is introduced through simple examples; suggestions for future work are also discussed.
A new n‐sided surface scheme is presented, that generalizes tensor product Bézier patches. Boundaries and corresponding cross‐derivatives are specified as conventional Bézier surfaces of arbitrary degrees. The surface is defined over a convex polygonal domain; local coordinates are computed from generalized barycentric coordinates; control points are multiplied by weighted, biparametric Bernstein functions. A method for interpolating a middle point is also presented. This Generalized Bézier (GB) patch is based on a new displacement scheme that builds up multi‐sided patches as a combination of a base patch, n displacement patches and an interior patch; this is considered to be an alternative to the Boolean sum concept. The input ribbons may have different degrees, but the final patch representation has a uniform degree. Interior control points—other than those specified by the user—are placed automatically by a special degree elevation algorithm. GB patches connect to adjacent Bézier surfaces with G1continuity. The control structure is simple and intuitive; the number of control points is proportional to those of quadrilateral control grids. The scheme is introduced through simple examples; suggestions for future work are also discussed.
A new n-sided surface scheme is presented, that generalizes tensor product Bézier patches. Boundaries and corresponding cross-derivatives are specified as conventional Bézier surfaces of arbitrary degrees. The surface is defined over a convex polygonal domain; local coordinates are computed from generalized barycentric coordinates; control points are multiplied by weighted, biparametric Bernstein functions. A method for interpolating a middle point is also presented. This Generalized Bézier (GB) patch is based on a new displacement scheme that builds up multi-sided patches as a combination of a base patch, n displacement patches and an interior patch; this is considered to be an alternative to the Boolean sum concept. The input ribbons may have different degrees, but the final patch representation has a uniform degree. Interior control points--other than those specified by the user--are placed automatically by a special degree elevation algorithm. GB patches connect to adjacent Bézier surfaces with G1continuity. The control structure is simple and intuitive; the number of control points is proportional to those of quadrilateral control grids. The scheme is introduced through simple examples; suggestions for future work are also discussed.
A new n‐sided surface scheme is presented, that generalizes tensor product Bézier patches. Boundaries and corresponding cross‐derivatives are specified as conventional Bézier surfaces of arbitrary degrees. The surface is defined over a convex polygonal domain; local coordinates are computed from generalized barycentric coordinates; control points are multiplied by weighted, biparametric Bernstein functions. A method for interpolating a middle point is also presented. This Generalized Bézier (GB) patch is based on a new displacement scheme that builds up multi‐sided patches as a combination of a base patch, n displacement patches and an interior patch; this is considered to be an alternative to the Boolean sum concept. The input ribbons may have different degrees, but the final patch representation has a uniform degree. Interior control points—other than those specified by the user—are placed automatically by a special degree elevation algorithm. GB patches connect to adjacent Bézier surfaces with G 1 continuity. The control structure is simple and intuitive; the number of control points is proportional to those of quadrilateral control grids. The scheme is introduced through simple examples; suggestions for future work are also discussed.
Author Karikó, György
Salvi, Péter
Várady, Tamás
Author_xml – sequence: 1
  givenname: Tamás
  surname: Várady
  fullname: Várady, Tamás
  organization: Budapest University of Technology and Economics
– sequence: 2
  givenname: Péter
  surname: Salvi
  fullname: Salvi, Péter
  organization: Budapest University of Technology and Economics
– sequence: 3
  givenname: György
  surname: Karikó
  fullname: Karikó, György
  organization: ShapEx Ltd
BookMark eNp1kE8vBDEYhxshsZaDbzCJC4ehnU6nnTgxYUl2EUu4NdV5S5mdWW0n_nwjn8MXM2txEHp5e3ie39v-VtBi3dSA0DrB26Q7O_rWbJNEULqAeiTNeCwyli-iHibdnWPGltGK9_cY45RnrId296JRWwUbe1tCGe2_v71acNGZCvouerLhLlLR2E6mFURFUwfXVNE4uFaH1sEqWjKq8rD2Nfvo8vDgojiKh6eD42JvGGuaCRonVCR5DiJlwBUzCicsxXBjVEooVUmpkpwxrUoKWPFcGGHKTIhEp5wAN9jQPtqc505d89iCD3JivYaqUjU0rZdEdIlZwjDt0I1f6H3Turp7nSQ8J0LktNvaRztzSrvGewdGahtUsLMPKltJguWsTNmVKT_L7IytX8bU2YlyL3-yX-lPtoKX_0FZDA6_jXhuWB_g-cdQ7kFmnHImr04GcnQ0uh6eXxQypx-rwZMK
CitedBy_id crossref_primary_10_14232_actacyb_299598
crossref_primary_10_1109_TVCG_2022_3220575
crossref_primary_10_1145_3687972
crossref_primary_10_1016_j_cag_2025_104316
crossref_primary_10_1016_j_cag_2024_103952
crossref_primary_10_1016_j_cagd_2020_101828
crossref_primary_10_1016_j_cag_2025_104441
crossref_primary_10_1016_j_cad_2017_11_008
crossref_primary_10_1016_j_cad_2017_02_002
crossref_primary_10_1016_j_cag_2025_104322
crossref_primary_10_1016_j_cagd_2024_102338
crossref_primary_10_1016_j_cagd_2021_102019
crossref_primary_10_1016_j_cag_2018_05_006
crossref_primary_10_1016_j_camwa_2020_01_001
crossref_primary_10_1016_j_cagd_2023_102222
crossref_primary_10_1016_j_cagd_2017_05_002
crossref_primary_10_1016_j_cad_2024_103731
crossref_primary_10_1016_j_cagd_2022_102065
crossref_primary_10_1016_j_cagd_2024_102286
crossref_primary_10_1016_j_cag_2016_07_001
crossref_primary_10_1016_j_gmod_2025_101275
Cites_doi 10.1111/cgf.12588
10.1016/j.cad.2011.08.028
10.1145/130826.130828
10.1016/j.cagd.2015.03.017
10.21236/AD0663504
10.1145/1183287.1183295
10.1016/j.cad.2015.07.014
10.1016/S0167-8396(01)00019-X
10.1016/S0167-8396(97)00007-1
10.1016/j.cagd.2014.06.006
10.1145/77055.77059
10.1016/0167-8396(94)90205-4
10.1016/0167-8396(84)90005-0
10.1016/S0167-8396(96)00029-5
ContentType Journal Article
Copyright 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2016 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2016 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12833
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 317
ExternalDocumentID 4069770611
10_1111_cgf_12833
CGF12833
ark_67375_WNG_MHMXLRTC_9
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
WRC
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c3683-238299e845e7a5fa02540ebfa4133a2da2955cad3e0a798f8fd6882c471e7f0f3
IEDL.DBID DRFUL
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000377222200029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Sun Nov 09 11:34:14 EST 2025
Sun Nov 09 07:48:06 EST 2025
Sat Nov 29 03:41:13 EST 2025
Tue Nov 18 21:16:30 EST 2025
Wed Jan 22 16:36:04 EST 2025
Tue Nov 11 03:32:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3683-238299e845e7a5fa02540ebfa4133a2da2955cad3e0a798f8fd6882c471e7f0f3
Notes istex:9CFD8C5195D60D984E92EB60F3AB89F94B0B33CF
ark:/67375/WNG-MHMXLRTC-9
ArticleID:CGF12833
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1791889341
PQPubID 30877
PageCount 11
ParticipantIDs proquest_miscellaneous_1825462503
proquest_journals_1791889341
crossref_citationtrail_10_1111_cgf_12833
crossref_primary_10_1111_cgf_12833
wiley_primary_10_1111_cgf_12833_CGF12833
istex_primary_ark_67375_WNG_MHMXLRTC_9
PublicationCentury 2000
PublicationDate 2016-05
May 2016
2016-05-00
20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Várady T., Rockwood A., Salvi P.: Transfinite surface interpolation over irregular n-sided domains. Computer Aided Design 43, 11 (2011), 1330-1340. 2
Warren J.: Creating multisided rational Bézier surfaces using base points. Transactions on Graphics 11 (1992), 127-139. 2
Gregory J. A., Zhou J.: Filling polygonal holes with bicubic patches. Computer Aided Geometric Design 11, 4 (1994), 391-410. 2
Zheng J., Ball A.: Control point surfaces over non-four-sided areas. Computer Aided Geometric Design 14, 9 (1997), 807-821. 2
Loop C. T., DeRose T. D.: A multisided generalization of Bézier surfaces. Transactions on Graphics 8 (1989), 204-234. 2
Zheng J.: The n-sided control point surfaces without twist constraints. Computer Aided Geometric Design 18, 2 (2001), 129-134. 2
Salvi P., Várady T., Rockwood A.: Ribbon-based transfinite surfaces. Computer Aided Geometric Design 31, 9 (2014), 613-630. 1, 2, 9
Coons S. A.: Surfaces for Computer-Aided Design of Space Forms. Tech. Rep. MIT/LCS/TR-41, Massachusetts Institute of Technology, 1967. 2
Smith J., Schaefer S.: Selective degree elevation for multisided Bézier patches. Computer Graphics Forum 34, 2 (2015), 609-615. 2
Hosaka M., Kimura F.: Non-four-sided patch expressions with control points. Computer Aided Geometric Design 1, 1 (1984), 75-86. 2
Sun L.-Y., Zhu C.-G.: G1 continuity between toric surface patches. Computer Aided Geometric Design 35-36 (2015), 255-267. Geometric Modeling and Processing 2015. 2
Hormann K., Floater M. S.: Mean value coordinates for arbitrary planar polygons. Transactions on Graphics 25, 4 (2006), 1424-1441. 3
Prautzsch H.: Freeform splines. Computer Aided Geometric Design 14, 3 (1997), 201-206. 2
2015; 34
1984; 1
1997; 14
2006; 25
2008; 27
1989; 8
1998
1986
1994; 11
2011; 43
1994
1983
2015
2001; 18
1992; 11
2015; 35–36
1967
2014; 31
Loop C. (e_1_2_9_9_2) 2008
e_1_2_9_20_2
e_1_2_9_12_2
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_4_2
Malraison P. (e_1_2_9_10_2) 1998
Gregory J. A. (e_1_2_9_3_2) 1986
Peters J. (e_1_2_9_11_2) 1994
e_1_2_9_8_2
e_1_2_9_14_2
e_1_2_9_16_2
Sabin M. (e_1_2_9_13_2) 1983
e_1_2_9_15_2
Coons S. A. (e_1_2_9_2_2) 1967
e_1_2_9_18_2
e_1_2_9_17_2
e_1_2_9_19_2
References_xml – reference: Sun L.-Y., Zhu C.-G.: G1 continuity between toric surface patches. Computer Aided Geometric Design 35-36 (2015), 255-267. Geometric Modeling and Processing 2015. 2
– reference: Várady T., Rockwood A., Salvi P.: Transfinite surface interpolation over irregular n-sided domains. Computer Aided Design 43, 11 (2011), 1330-1340. 2
– reference: Hosaka M., Kimura F.: Non-four-sided patch expressions with control points. Computer Aided Geometric Design 1, 1 (1984), 75-86. 2
– reference: Salvi P., Várady T., Rockwood A.: Ribbon-based transfinite surfaces. Computer Aided Geometric Design 31, 9 (2014), 613-630. 1, 2, 9
– reference: Gregory J. A., Zhou J.: Filling polygonal holes with bicubic patches. Computer Aided Geometric Design 11, 4 (1994), 391-410. 2
– reference: Hormann K., Floater M. S.: Mean value coordinates for arbitrary planar polygons. Transactions on Graphics 25, 4 (2006), 1424-1441. 3
– reference: Smith J., Schaefer S.: Selective degree elevation for multisided Bézier patches. Computer Graphics Forum 34, 2 (2015), 609-615. 2
– reference: Warren J.: Creating multisided rational Bézier surfaces using base points. Transactions on Graphics 11 (1992), 127-139. 2
– reference: Zheng J., Ball A.: Control point surfaces over non-four-sided areas. Computer Aided Geometric Design 14, 9 (1997), 807-821. 2
– reference: Loop C. T., DeRose T. D.: A multisided generalization of Bézier surfaces. Transactions on Graphics 8 (1989), 204-234. 2
– reference: Zheng J.: The n-sided control point surfaces without twist constraints. Computer Aided Geometric Design 18, 2 (2001), 129-134. 2
– reference: Coons S. A.: Surfaces for Computer-Aided Design of Space Forms. Tech. Rep. MIT/LCS/TR-41, Massachusetts Institute of Technology, 1967. 2
– reference: Prautzsch H.: Freeform splines. Computer Aided Geometric Design 14, 3 (1997), 201-206. 2
– volume: 34
  start-page: 609
  issue: 2
  year: 2015
  end-page: 615
  article-title: Selective degree elevation for multisided Bézier patches
  publication-title: Computer Graphics Forum
– start-page: 2
  year: 1967
– start-page: 419
  year: 1998
  end-page: 430
  article-title: A bibliography for n‐sided surfaces
– volume: 35–36
  start-page: 255
  year: 2015
  end-page: 267
  article-title: continuity between toric surface patches
  publication-title: Computer Aided Geometric Design
– volume: 11
  start-page: 127
  year: 1992
  end-page: 139
  article-title: Creating multisided rational Bézier surfaces using base points
  publication-title: Transactions on Graphics
– volume: 1
  start-page: 75
  issue: 1
  year: 1984
  end-page: 86
  article-title: Non‐four‐sided patch expressions with control points
  publication-title: Computer Aided Geometric Design
– volume: 8
  start-page: 204
  year: 1989
  end-page: 234
  article-title: A multisided generalization of Bézier surfaces
  publication-title: Transactions on Graphics
– start-page: 217
  year: 1986
  end-page: 232
  article-title: N‐sided surface patches
– start-page: 57
  year: 1983
  end-page: 70
  article-title: Non‐rectangular surface patches suitable for inclusion in a B‐spline surface
– volume: 25
  start-page: 1424
  issue: 4
  year: 2006
  end-page: 1441
  article-title: Mean value coordinates for arbitrary planar polygons
  publication-title: Transactions on Graphics
– volume: 27
  start-page: 1373
  year: 2008
  end-page: 1382
  article-title: tensor product splines over extraordinary vertices
– volume: 31
  start-page: 613
  issue: 9
  year: 2014
  end-page: 630
  article-title: Ribbon‐based transfinite surfaces
  publication-title: Computer Aided Geometric Design
– start-page: 2
  year: 1994
  article-title: Constructing surfaces of arbitrary topology using biquadratic and bicubic splines
– volume: 18
  start-page: 129
  issue: 2
  year: 2001
  end-page: 134
  article-title: The n‐sided control point surfaces without twist constraints
  publication-title: Computer Aided Geometric Design
– volume: 14
  start-page: 807
  issue: 9
  year: 1997
  end-page: 821
  article-title: Control point surfaces over non‐four‐sided areas
  publication-title: Computer Aided Geometric Design
– volume: 11
  start-page: 391
  issue: 4
  year: 1994
  end-page: 410
  article-title: Filling polygonal holes with bicubic patches
  publication-title: Computer Aided Geometric Design
– volume: 14
  start-page: 201
  issue: 3
  year: 1997
  end-page: 206
  article-title: Freeform splines
  publication-title: Computer Aided Geometric Design
– volume: 43
  start-page: 1330
  issue: 11
  year: 2011
  end-page: 1340
  article-title: Transfinite surface interpolation over irregular n‐sided domains
  publication-title: Computer Aided Design
– start-page: 2
  year: 2015
  article-title: Generalizing bicubic splines for modeling and IGA with irregular layout
– ident: e_1_2_9_14_2
  doi: 10.1111/cgf.12588
– start-page: 217
  volume-title: Mathematics of Surfaces I
  year: 1986
  ident: e_1_2_9_3_2
– ident: e_1_2_9_17_2
  doi: 10.1016/j.cad.2011.08.028
– ident: e_1_2_9_18_2
  doi: 10.1145/130826.130828
– start-page: 419
  volume-title: Mathematics of Surfaces VIII
  year: 1998
  ident: e_1_2_9_10_2
– ident: e_1_2_9_16_2
  doi: 10.1016/j.cagd.2015.03.017
– start-page: 2
  volume-title: Surfaces for Computer‐Aided Design of Space Forms
  year: 1967
  ident: e_1_2_9_2_2
  doi: 10.21236/AD0663504
– start-page: 2
  volume-title: Designing Fair Curves and Surfaces: Shape Quality in Geometric Modeling and Computer‐Aided Design
  year: 1994
  ident: e_1_2_9_11_2
– ident: e_1_2_9_5_2
  doi: 10.1145/1183287.1183295
– ident: e_1_2_9_7_2
  doi: 10.1016/j.cad.2015.07.014
– start-page: 57
  volume-title: EuroGraphics
  year: 1983
  ident: e_1_2_9_13_2
– ident: e_1_2_9_20_2
  doi: 10.1016/S0167-8396(01)00019-X
– ident: e_1_2_9_19_2
  doi: 10.1016/S0167-8396(97)00007-1
– ident: e_1_2_9_15_2
  doi: 10.1016/j.cagd.2014.06.006
– ident: e_1_2_9_8_2
  doi: 10.1145/77055.77059
– ident: e_1_2_9_4_2
  doi: 10.1016/0167-8396(94)90205-4
– ident: e_1_2_9_6_2
  doi: 10.1016/0167-8396(84)90005-0
– start-page: 1373
  volume-title: Computer Graphics Forum
  year: 2008
  ident: e_1_2_9_9_2
– ident: e_1_2_9_12_2
  doi: 10.1016/S0167-8396(96)00029-5
SSID ssj0004765
Score 2.2843432
Snippet A new n‐sided surface scheme is presented, that generalizes tensor product Bézier patches. Boundaries and corresponding cross‐derivatives are specified as...
A new n-sided surface scheme is presented, that generalizes tensor product Bézier patches. Boundaries and corresponding cross-derivatives are specified as...
A new n-sided surface scheme is presented, that generalizes tensor product Bezier patches. Boundaries and corresponding cross-derivatives are specified as...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 307
SubjectTerms Algorithms
Analysis
and object representations
Bezier
Bezier patches
Boundaries
Categories and Subject Descriptors (according to ACM CCS)
Displacement
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Curve
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—Curve, surface, solid, and object representations
Image processing systems
Mathematical analysis
Mathematical models
Representations
solid
Studies
surface
Topological manifolds
Title A Multi-sided Bézier Patch with a Simple Control Structure
URI https://api.istex.fr/ark:/67375/WNG-MHMXLRTC-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12833
https://www.proquest.com/docview/1791889341
https://www.proquest.com/docview/1825462503
Volume 35
WOSCitedRecordID wos000377222200029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB5BwoVDKaWIAK22qEJcjBx7Ha-FOEBK4AAR4kfktlrvD6BWoUoAoZ76CLwGz8Gb8CTMbGwTJCpV4mbJs_ZqZme_8XrmG4DvwnGMCnIR6IinAdfcBJmJeIDYzC23VJFgfLOJtNsVvV52OAEbZS3MiB-iOnAjz_D7NTm4yodjTq7P3TpurnE8CfUI121Sg_qPo87p_ktZZNpKSmpvIo0piIUokaca_AqO6qTZu1ex5njE6iGnM_OuyX6ED0WkybZGS2MWJmz_E0yP8Q_OweYW8wW4T3_vqWunYduPD38QJ9khbtAXjM5omWLHl8QgzNqjpHZ27Blnbwb2M5x2dk7ae0HRTyHQcUvEAaIzgo8VPLGpSpyiQvjQ5k4hkMUqMirKkkQrE9tQpZlwwpkWBuAa8cumLnTxPNT6V327AMzg-NAakccu51ZnuWsmzjZDhc82iHkNWCvVKnVBNk49L37J8qMDNSK9RhqwUon-HjFsvCW06m1TSajBT0pJSxN51t2VB3sHvf2jk7bMGrBcGk8W3jiURMEqMDDjzQZ8q26jH9HPEdW3Vzco4zsDYECI71rzpvz3bGR7t-MvFv9fdIlOBOjohnIll6GGtrJfYErfXl8OB1-LpfsMmnvwqw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NattAEB5cu9D2kPSXuHXSbSnFFwXZWlkrSA6JU9ultjGOQ3xbVvvTmBa7OE0IPeUR8hp5jrxJniSzq5860EKhN4FmpWVnZr_RauYbgA_MUIwKEubJJo08KqnyYtWkHmIz1VTbigTlmk1EwyGbTuNRCXbyWpiUH6I4cLOe4fZr6-D2QHrFy-VXs427axA8gApFM0L7rhyMO0f933WRUSvMub0ta0zGLGQzeYrB9_CoYpf24l6wuRqyOszprP_fbJ_CWhZrkr3UOJ5BSc-fw5MVBsIXsLtHXAnu7eWV7dupyP7N9S9ESjLCLfqE2FNaIsjhzHIIk3aa1k4OHefs2VK_hKPOp0m752UdFTwZtFjgIT4j_GhGQx2J0AhbCu_rxAiEskA0lWjGYSiFCrQvopgZZlQLQ3CJCKYj45vgFZTni7neAKJwvK8VSwKTUC3jxDRCoxu-wGcrRL0q1PN15TKjG7ddL77z_LMDV4S7FanC-0L0R8qx8Sehj045hYRYfrNJaVHIj4ddPugNpv3xpM3jKtRy7fHMH0-5JWFlGJrRRhXeFbfRk-zvETHXizOUcb0BMCTEd9WdLv8-G97udtzF638XfQuPepNBn_c_D7-8gccYebXSzMkalFFvehMeyvOfs9PlVmbHdwaR9KM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bTttAEB1BglB5aLmKUFoWhBAvRk68jtcSfaABAyJEEReRt9V6LwWBAgoXIZ76Cf0NvqN_0i_p7PpCkECq1DdLnrVXMzt7xuuZMwCrzFCMClLmyQaNPCqp8mLVoB5iM9VU24oE5ZpNRJ0O6_Xi7ghsFrUwGT9EeeBmPcPt19bB9Y0yQ14uf5gN3F2DYBSq1DaRqUB1-yg5bb_URUbNsOD2tqwxObOQzeQpB7_Co6pV7eOrYHM4ZHWYk3z6v9lOwsc81iRb2eKYghHdn4aJIQbCGfi2RVwJ7p-fv2zfTkW-_35-QqQkXdyiz4k9pSWCHF9YDmHSytLaybHjnL0f6Fk4TXZOWnte3lHBk0GTBR7iM8KPZjTUkQiNsKXwvk6NQCgLREOJRhyGUqhA-yKKmWFGNTEEl4hgOjK-Ceag0r_u63kgCsf7WrE0MCnVMk5NPTS67gt8tkLUq8F6oVcuc7px2_XiihefHagR7jRSg5VS9Cbj2HhLaM0Zp5QQg0ublBaF_Kyzyw_3Dnvto5MWj2uwWFiP5_54yy0JK8PQjNZrsFzeRk-yv0dEX1_fo4zrDYAhIb5r3dny_dnw1m7iLhb-XXQJxrvbCW_vdw4-wwcMvJpZ4uQiVNBs-guMyYe7i9vB13wZ_wWiQ_Qe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi%E2%80%90sided+B%C3%A9zier+Patch+with+a+Simple+Control+Structure&rft.jtitle=Computer+graphics+forum&rft.au=V%C3%A1rady%2C+Tam%C3%A1s&rft.au=Salvi%2C+P%C3%A9ter&rft.au=Karik%C3%B3%2C+Gy%C3%B6rgy&rft.date=2016-05-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=35&rft.issue=2&rft.spage=307&rft.epage=317&rft_id=info:doi/10.1111%2Fcgf.12833&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_12833
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon