Efficient Interpolation of Articulated Shapes Using Mixed Shape Spaces

Interpolation between compatible triangle meshes that represent different poses of some object is a fundamental operation in geometry processing. A common approach is to consider the static input shapes as points in a suitable shape space and then use simple linear interpolation in this space to fin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum Jg. 32; H. 8; S. 258 - 270
Hauptverfasser: Marras, S., Cashman, T. J., Hormann, K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Blackwell Publishing Ltd 01.12.2013
Schlagworte:
ISSN:0167-7055, 1467-8659
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Interpolation between compatible triangle meshes that represent different poses of some object is a fundamental operation in geometry processing. A common approach is to consider the static input shapes as points in a suitable shape space and then use simple linear interpolation in this space to find an interpolated shape. In this paper, we present a new interpolation technique that is particularly tailored for meshes that represent articulated shapes. It is up to an order of magnitude faster than state‐of‐the‐art methods and gives very similar results. To achieve this, our approach introduces a novel shape space that takes advantage of the underlying structure of articulated shapes and distinguishes between rigid parts and non‐rigid joints. This allows us to use fast vertex interpolation on the rigid parts and resort to comparatively slow edge‐based interpolation only for the joints. Interpolation between compatible triangle meshes that represent different poses of some object is a fundamental operation in geometry processing. A common approach is to consider the static input shapes as points in a suitable shape space and then use simple linear interpolation in this space to find an interpolated shape. In this paper, we present a new interpolation technique that is particularly tailored for meshes that represent articulated shapes. It is up to an order of magnitude faster than state‐of‐the‐art methods and gives very similar results. To achieve this, our approach introduces a novel shape space that takes advantage of the underlying structure of articulated shapes and distinguishes between rigid parts and non‐rigid joints.
AbstractList Interpolation between compatible triangle meshes that represent different poses of some object is a fundamental operation in geometry processing. A common approach is to consider the static input shapes as points in a suitable shape space and then use simple linear interpolation in this space to find an interpolated shape. In this paper, we present a new interpolation technique that is particularly tailored for meshes that represent articulated shapes. It is up to an order of magnitude faster than state-of-the-art methods and gives very similar results. To achieve this, our approach introduces a novel shape space that takes advantage of the underlying structure of articulated shapes and distinguishes between rigid parts and non-rigid joints. This allows us to use fast vertex interpolation on the rigid parts and resort to comparatively slow edge-based interpolation only for the joints. [PUBLICATION ABSTRACT]
Interpolation between compatible triangle meshes that represent different poses of some object is a fundamental operation in geometry processing. A common approach is to consider the static input shapes as points in a suitable shape space and then use simple linear interpolation in this space to find an interpolated shape. In this paper, we present a new interpolation technique that is particularly tailored for meshes that represent articulated shapes. It is up to an order of magnitude faster than state-of-the-art methods and gives very similar results. To achieve this, our approach introduces a novel shape space that takes advantage of the underlying structure of articulated shapes and distinguishes between rigid parts and non-rigid joints. This allows us to use fast vertex interpolation on the rigid parts and resort to comparatively slow edge-based interpolation only for the joints. Interpolation between compatible triangle meshes that represent different poses of some object is a fundamental operation in geometry processing. A common approach is to consider the static input shapes as points in a suitable shape space and then use simple linear interpolation in this space to find an interpolated shape. In this paper, we present a new interpolation technique that is particularly tailored for meshes that represent articulated shapes. It is up to an order of magnitude faster than state-of-the-art methods and gives very similar results. To achieve this, our approach introduces a novel shape space that takes advantage of the underlying structure of articulated shapes and distinguishes between rigid parts and non-rigid joints.
Interpolation between compatible triangle meshes that represent different poses of some object is a fundamental operation in geometry processing. A common approach is to consider the static input shapes as points in a suitable shape space and then use simple linear interpolation in this space to find an interpolated shape. In this paper, we present a new interpolation technique that is particularly tailored for meshes that represent articulated shapes. It is up to an order of magnitude faster than state‐of‐the‐art methods and gives very similar results. To achieve this, our approach introduces a novel shape space that takes advantage of the underlying structure of articulated shapes and distinguishes between rigid parts and non‐rigid joints. This allows us to use fast vertex interpolation on the rigid parts and resort to comparatively slow edge‐based interpolation only for the joints.
Interpolation between compatible triangle meshes that represent different poses of some object is a fundamental operation in geometry processing. A common approach is to consider the static input shapes as points in a suitable shape space and then use simple linear interpolation in this space to find an interpolated shape. In this paper, we present a new interpolation technique that is particularly tailored for meshes that represent articulated shapes. It is up to an order of magnitude faster than state‐of‐the‐art methods and gives very similar results. To achieve this, our approach introduces a novel shape space that takes advantage of the underlying structure of articulated shapes and distinguishes between rigid parts and non‐rigid joints. This allows us to use fast vertex interpolation on the rigid parts and resort to comparatively slow edge‐based interpolation only for the joints. Interpolation between compatible triangle meshes that represent different poses of some object is a fundamental operation in geometry processing. A common approach is to consider the static input shapes as points in a suitable shape space and then use simple linear interpolation in this space to find an interpolated shape. In this paper, we present a new interpolation technique that is particularly tailored for meshes that represent articulated shapes. It is up to an order of magnitude faster than state‐of‐the‐art methods and gives very similar results. To achieve this, our approach introduces a novel shape space that takes advantage of the underlying structure of articulated shapes and distinguishes between rigid parts and non‐rigid joints.
Author Cashman, T. J.
Hormann, K.
Marras, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Marras
  fullname: Marras, S.
  email: stefano.marras@usi.ch
  organization: Università della Svizzera italiana, Lugano, Switzerland
– sequence: 2
  givenname: T. J.
  surname: Cashman
  fullname: Cashman, T. J.
  email: thomas.cashman@usi.ch
  organization: Università della Svizzera italiana, Lugano, Switzerland
– sequence: 3
  givenname: K.
  surname: Hormann
  fullname: Hormann, K.
  email: kai.hormann@usi.ch
  organization: Università della Svizzera italiana, Lugano, Switzerland
BookMark eNp1kE1PAjEQhhujiYge_AebeNHDaj-2292jEEAM4kFRb81YWiwuu2u7RPn3VlAPRHtpp3neycxzgHbLqtQIHRN8TsK5UDNzTijFdAe1SJKKOEt5votamIS3wJzvowPv5xjjRKS8hfo9Y6yyumyiYdloV1cFNLYqo8pEl66xahlqPY3uXqDWPpp4W86iG_vx8xXd1aC0P0R7Bgqvj77vNpr0e_fdq3h0Oxh2L0exYmlGYyOAck4ShTEnFFItjMhBUJgmPJ9y0JlOAARjOWUEqGIG51PAgJ-z3ECesTY63fStXfW21L6RC-uVLgoodbX0MmxJeMI5JQE92ULn1dKVYToZxARDKSM8UBcbSrnKe6eNVLZZG2gc2EISLL-8yuBVrr2GxNlWonZ2AW71J_vd_d0WevU_KLuD_k8i3iSsb_THbwLcq0wFE1w-jgfy-qnzMO7TruywT8Utlm8
CitedBy_id crossref_primary_10_1155_2014_781950
crossref_primary_10_1016_j_cag_2016_05_016
crossref_primary_10_1016_j_cad_2021_103027
crossref_primary_10_1016_j_cag_2014_09_005
Cites_doi 10.1145/2070781.2024158
10.1111/j.1467-8659.2007.01103.x
10.1007/s00371-009-0394-5
10.1145/2019627.2019640
10.1145/1015706.1015736
10.1111/j.1467-8659.2012.03180.x
10.1016/j.gmod.2012.04.001
10.1145/1073368.1073412
10.1073/pnas.0500334102
10.1111/j.1467-8659.2009.01600.x
10.1145/1360612.1360628
10.1111/j.1467-8659.2012.03032.x
10.1145/1356682.1356685
10.1145/1073204.1073206
10.1145/1276377.1276457
10.1145/1391989.1391995
10.1111/j.1467-8659.2011.01974.x
10.1145/1531326.1531342
10.1109/TPAMI.2010.210
10.1145/1073204.1073217
ContentType Journal Article
Copyright 2013 The Authors Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.
Copyright © 2013 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2013 The Authors Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.
– notice: Copyright © 2013 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12202
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Computer and Information Systems Abstracts
Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 270
ExternalDocumentID 3139044241
10_1111_cgf_12202
CGF12202
ark_67375_WNG_JXBVNF2C_B
Genre article
Feature
GrantInformation_xml – fundername: SNF
  funderid: 200021‐134639
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c3682-f7a25514c00512a6e7f79a72ad459d5ae8e4aa7339231a2c3f09da0a0b89fa983
IEDL.DBID DRFUL
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327433800022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-7055
IngestDate Thu Sep 04 19:58:37 EDT 2025
Sun Oct 05 00:31:33 EDT 2025
Tue Nov 18 22:39:04 EST 2025
Sat Nov 29 03:41:10 EST 2025
Sun Sep 21 06:20:07 EDT 2025
Sun Sep 21 06:23:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3682-f7a25514c00512a6e7f79a72ad459d5ae8e4aa7339231a2c3f09da0a0b89fa983
Notes ark:/67375/WNG-JXBVNF2C-B
ArticleID:CGF12202
istex:00B381D9CCC8D1BDE0056628FFB4E0B3F972301A
SNF - No. 200021-134639
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1462026315
PQPubID 30877
PageCount 13
ParticipantIDs proquest_miscellaneous_1671545521
proquest_journals_1462026315
crossref_citationtrail_10_1111_cgf_12202
crossref_primary_10_1111_cgf_12202
wiley_primary_10_1111_cgf_12202_CGF12202
istex_primary_ark_67375_WNG_JXBVNF2C_B
PublicationCentury 2000
PublicationDate December 2013
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: December 2013
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References [YYPM11] Yang Y.-L., Yang Y.-J., Pottmann H., Mitra N. J.: Shape space exploration of constrained meshes. ACM Transactions on Graphics 30, 6 (2011), #124:1-12.
[FB11] Fröhlich S., Botsch M.: Example-driven deformations based on discrete shells. Computer Graphics Forum 30, 8 (2011), 2246-2257.
[WDAH10] Winkler T., Drieseberg J., Alexa M., Hormann K.: Multi-scale geometry interpolation. Computer Graphics Forum 29, 2 (2010), 309-318.
[KG08] Kircher S., Garland M.: Free-form motion processing. ACM Transactions on Graphics 27, 2 (2008), #12:1-13.
[CH12] Cashman T. J., Hormann K.: A continuous, editable representation for deforming mesh sequences with separate signals for time, pose and shape. Computer Graphics Forum 31, 2 (2012), 735-744.
[MBH*12] Marras S., Bronstein M. M., Hormann K., Scateni R., Scopogno R.: Motion-based mesh segmentation using augmented silhouettes. Graphical Models 74, 4 (2012), 164-172.
[Sha08] Shamir A.: A survey on mesh segmentation techniques. Computer Graphics Forum 27, 6 (2008), 1539-1556.
[SZT*08] Shi X., Zhou K., Tong Y., Desbrun M., Bao H., Guo B.: Example-based dynamic skinning in real time. ACM Transactions on Graphics 27, 3 (2008), #29:1-8.
[KMP07] Kilian M., Mitra N. J., Pottmann H.: Geometric modeling in shape space. ACM Transactions on Graphics 26, 3 (2007), #64:1-8.
[CDHR08] Chen Y., Davis T. A., Hager W. W., Rajamanickam S.: Algorithm 887: CHOLMOD, supernodal sparse cholesky factorization and update/downdate. ACM Transactions on Mathematical Software 35, 3 (2008), 2201-2214.
[BB11] Bronstein M. M., Bronstein A. M.: Shape recognition with spectral distances. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 5 (2011), 1065-1071.
[WB10] Wuhrer S., Brunton A.: Segmenting animated objects into near-rigid components. The Visual Computer 26, 2 (2010), 147-155.
[HRWW12] Heeren B., Rumpf M., Wardetzky M., Wirth B.: Time-discrete geodesics in the space of shells. Computer Graphics Forum 31, 5 (2012), 1755-1764.
[LSLCO05] Lipman Y., Sorkine O., Levin D., Cohen-Or, D.: Linear rotation-invariant coordinates for meshes. ACM Transactions on Graphics 24, 3 (2005), 479-487.
[CLL*05] Coifman R. R., Lafon S., Lee A. B., Maggioni M., Nadler B., Warner F., Zucker S. W.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. Proceedings of the National Academy of Sciences USA 102, 21 (2005), 7426-7431.
[BVGP09] Baran I., Vlasic D., Grinspun E., Popović, J.: Semantic deformation transfer. ACM Transactions on Graphics (TOG) 28, 3 (2009), #36:1-6.
[SP04] Sumner R. W., Popović, J.: Deformation transfer for triangle meshes. ACM Transactions on Graphics 23, 3 (2004), 399-405.
[JT05] James D. L., Twigg C. D.: Skinning mesh animations. ACM Transactions on Graphics 24, 3 (2005), 399-407.
[KP11] Kim J., Pollard N. S.: Fast simulation of skeleton-driven deformable body characters. ACM Transactions on Graphics 30, 5 (2011), #121:1-19.
2010; 26
2000
2010
2010; 29
2005; 102
2008; 27
2004; 23
2011; 30
2011; 33
2008; 35
2005
2003
2012; 31
2005; 24
2007; 26
2012; 74
2009; 28
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_25_1
e_1_2_6_14_1
Williams J. A. (e_1_2_6_22_1) 2000
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_23_1
e_1_2_6_2_1
Grinspun E. (e_1_2_6_10_1) 2003
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – reference: [Sha08] Shamir A.: A survey on mesh segmentation techniques. Computer Graphics Forum 27, 6 (2008), 1539-1556.
– reference: [YYPM11] Yang Y.-L., Yang Y.-J., Pottmann H., Mitra N. J.: Shape space exploration of constrained meshes. ACM Transactions on Graphics 30, 6 (2011), #124:1-12.
– reference: [WB10] Wuhrer S., Brunton A.: Segmenting animated objects into near-rigid components. The Visual Computer 26, 2 (2010), 147-155.
– reference: [BVGP09] Baran I., Vlasic D., Grinspun E., Popović, J.: Semantic deformation transfer. ACM Transactions on Graphics (TOG) 28, 3 (2009), #36:1-6.
– reference: [JT05] James D. L., Twigg C. D.: Skinning mesh animations. ACM Transactions on Graphics 24, 3 (2005), 399-407.
– reference: [MBH*12] Marras S., Bronstein M. M., Hormann K., Scateni R., Scopogno R.: Motion-based mesh segmentation using augmented silhouettes. Graphical Models 74, 4 (2012), 164-172.
– reference: [LSLCO05] Lipman Y., Sorkine O., Levin D., Cohen-Or, D.: Linear rotation-invariant coordinates for meshes. ACM Transactions on Graphics 24, 3 (2005), 479-487.
– reference: [CLL*05] Coifman R. R., Lafon S., Lee A. B., Maggioni M., Nadler B., Warner F., Zucker S. W.: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. Proceedings of the National Academy of Sciences USA 102, 21 (2005), 7426-7431.
– reference: [SZT*08] Shi X., Zhou K., Tong Y., Desbrun M., Bao H., Guo B.: Example-based dynamic skinning in real time. ACM Transactions on Graphics 27, 3 (2008), #29:1-8.
– reference: [KG08] Kircher S., Garland M.: Free-form motion processing. ACM Transactions on Graphics 27, 2 (2008), #12:1-13.
– reference: [BB11] Bronstein M. M., Bronstein A. M.: Shape recognition with spectral distances. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 5 (2011), 1065-1071.
– reference: [HRWW12] Heeren B., Rumpf M., Wardetzky M., Wirth B.: Time-discrete geodesics in the space of shells. Computer Graphics Forum 31, 5 (2012), 1755-1764.
– reference: [SP04] Sumner R. W., Popović, J.: Deformation transfer for triangle meshes. ACM Transactions on Graphics 23, 3 (2004), 399-405.
– reference: [FB11] Fröhlich S., Botsch M.: Example-driven deformations based on discrete shells. Computer Graphics Forum 30, 8 (2011), 2246-2257.
– reference: [CDHR08] Chen Y., Davis T. A., Hager W. W., Rajamanickam S.: Algorithm 887: CHOLMOD, supernodal sparse cholesky factorization and update/downdate. ACM Transactions on Mathematical Software 35, 3 (2008), 2201-2214.
– reference: [WDAH10] Winkler T., Drieseberg J., Alexa M., Hormann K.: Multi-scale geometry interpolation. Computer Graphics Forum 29, 2 (2010), 309-318.
– reference: [CH12] Cashman T. J., Hormann K.: A continuous, editable representation for deforming mesh sequences with separate signals for time, pose and shape. Computer Graphics Forum 31, 2 (2012), 735-744.
– reference: [KP11] Kim J., Pollard N. S.: Fast simulation of skeleton-driven deformable body characters. ACM Transactions on Graphics 30, 5 (2011), #121:1-19.
– reference: [KMP07] Kilian M., Mitra N. J., Pottmann H.: Geometric modeling in shape space. ACM Transactions on Graphics 26, 3 (2007), #64:1-8.
– volume: 74
  start-page: 164
  issue: 4
  year: 2012
  end-page: 172
  article-title: Motion‐based mesh segmentation using augmented silhouettes
  publication-title: Graphical Models
– start-page: 62
  year: 2003
  end-page: 67
– volume: 30
  start-page: 2246
  issue: 8
  year: 2011
  end-page: 2257
  article-title: Example‐driven deformations based on discrete shells
  publication-title: Computer Graphics Forum
– volume: 27
  start-page: 1
  issue: 2
  year: 2008
  end-page: 13
  article-title: Free‐form motion processing
  publication-title: ACM Transactions on Graphics
– volume: 102
  start-page: 7426
  issue: 21
  year: 2005
  end-page: 7431
  article-title: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 30
  start-page: 1
  issue: 5
  year: 2011
  end-page: 19
  article-title: Fast simulation of skeleton‐driven deformable body characters
  publication-title: ACM Transactions on Graphics
– volume: 29
  start-page: 309
  issue: 2
  year: 2010
  end-page: 318
  article-title: Multi‐scale geometry interpolation
  publication-title: Computer Graphics Forum
– volume: 35
  start-page: 2201
  issue: 3
  year: 2008
  end-page: 2214
  article-title: Algorithm 887: CHOLMOD, supernodal sparse cholesky factorization and update/downdate
  publication-title: ACM Transactions on Mathematical Software
– volume: 24
  start-page: 479
  issue: 3
  year: 2005
  end-page: 487
  article-title: Linear rotation‐invariant coordinates for meshes
  publication-title: ACM Transactions on Graphics
– volume: 26
  start-page: 1
  issue: 3
  year: 2007
  end-page: 8
  article-title: Geometric modeling in shape space
  publication-title: ACM Transactions on Graphics
– volume: 31
  start-page: 1755
  issue: 5
  year: 2012
  end-page: 1764
  article-title: Time‐discrete geodesics in the space of shells
  publication-title: Computer Graphics Forum
– volume: 30
  start-page: 1
  issue: 6
  year: 2011
  end-page: 12
  article-title: Shape space exploration of constrained meshes
  publication-title: ACM Transactions on Graphics
– volume: 28
  start-page: 1
  issue: 3
  year: 2009
  end-page: 6
  article-title: Semantic deformation transfer
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 24
  start-page: 399
  issue: 3
  year: 2005
  end-page: 407
  article-title: Skinning mesh animations
  publication-title: ACM Transactions on Graphics
– volume: 27
  start-page: 1
  issue: 3
  year: 2008
  end-page: 8
  article-title: Example‐based dynamic skinning in real time
  publication-title: ACM Transactions on Graphics
– volume: 27
  start-page: 1539
  issue: 6
  year: 2008
  end-page: 1556
  article-title: A survey on mesh segmentation techniques
  publication-title: Computer Graphics Forum
– start-page: 301
  year: 2005
  end-page: 310
– volume: 23
  start-page: 399
  issue: 3
  year: 2004
  end-page: 405
  article-title: Deformation transfer for triangle meshes
  publication-title: ACM Transactions on Graphics
– volume: 26
  start-page: 147
  issue: 2
  year: 2010
  end-page: 155
  article-title: Segmenting animated objects into near‐rigid components
  publication-title: The Visual Computer
– start-page: 2199
  year: 2000
  end-page: 2202
– volume: 33
  start-page: 1065
  issue: 5
  year: 2011
  end-page: 1071
  article-title: Shape recognition with spectral distances
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2010
– volume: 31
  start-page: 735
  issue: 2
  year: 2012
  end-page: 744
  article-title: A continuous, editable representation for deforming mesh sequences with separate signals for time, pose and shape
  publication-title: Computer Graphics Forum
– start-page: 62
  volume-title: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
  year: 2003
  ident: e_1_2_6_10_1
– ident: e_1_2_6_25_1
  doi: 10.1145/2070781.2024158
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1467-8659.2007.01103.x
– ident: e_1_2_6_2_1
– ident: e_1_2_6_23_1
  doi: 10.1007/s00371-009-0394-5
– ident: e_1_2_6_16_1
  doi: 10.1145/2019627.2019640
– ident: e_1_2_6_20_1
  doi: 10.1145/1015706.1015736
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1467-8659.2012.03180.x
– ident: e_1_2_6_18_1
  doi: 10.1016/j.gmod.2012.04.001
– ident: e_1_2_6_5_1
  doi: 10.1145/1073368.1073412
– ident: e_1_2_6_8_1
  doi: 10.1073/pnas.0500334102
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1467-8659.2009.01600.x
– ident: e_1_2_6_11_1
– start-page: 2199
  volume-title: Proceedings of the 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing
  year: 2000
  ident: e_1_2_6_22_1
– ident: e_1_2_6_21_1
  doi: 10.1145/1360612.1360628
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1467-8659.2012.03032.x
– ident: e_1_2_6_14_1
  doi: 10.1145/1356682.1356685
– ident: e_1_2_6_13_1
  doi: 10.1145/1073204.1073206
– ident: e_1_2_6_15_1
  doi: 10.1145/1276377.1276457
– ident: e_1_2_6_6_1
  doi: 10.1145/1391989.1391995
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1467-8659.2011.01974.x
– ident: e_1_2_6_4_1
  doi: 10.1145/1531326.1531342
– ident: e_1_2_6_3_1
  doi: 10.1109/TPAMI.2010.210
– ident: e_1_2_6_17_1
  doi: 10.1145/1073204.1073217
SSID ssj0004765
Score 2.0721009
Snippet Interpolation between compatible triangle meshes that represent different poses of some object is a fundamental operation in geometry processing. A common...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 258
SubjectTerms Analysis
Articulated
Compatibility
computational geometry
Computer graphics
digital geometry processing
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling-Hierarchy and geometric transformations
Interpolation
shape blending/morphing
State of the art
Studies
Triangles
Title Efficient Interpolation of Articulated Shapes Using Mixed Shape Spaces
URI https://api.istex.fr/ark:/67375/WNG-JXBVNF2C-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12202
https://www.proquest.com/docview/1462026315
https://www.proquest.com/docview/1671545521
Volume 32
WOSCitedRecordID wos000327433800022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED5CsofuYd3ajmbNhltG6YuHI_-QxZ7WrO4oWShNk-bNnGVpCxtJSNqRP386-UcTaGGwN2OfjDjpfJ_kT98BfESddVFkzM0iLt0gzD03VlHmCsyRDg3E2mrpjft8MIgnE3HdgM_VWZhCH6LecKPIsN9rCnDMVhtBLn_oT13GSEiyxcy8DZrQ-nqTjPqPxyJ5FFbS3iQaUwoLEZGnbryVjlrk2fUW1txErDblJLv_1dnX8KpEms6XYmq8gYaa7cHLDf3BfUgurICEyTtOQT6cF8w4Z66LdlTbS-XO8Ccu1Mqx9ALn-3Rd3XKGC2J0HcAoubjtfXPLwgquNN5nrubICClJCkmGkeKaC-QM8yAUeYgqVgEi931Cf8ikrz2Ro4deFguNIvbfQnM2n6lDcDzt5bmndCaZDriWsfIDyc2iSwtt0q_fhrPKv6ksVcep-MXvtFp9GNek1jVtOKlNF4XUxlNGp3aQagtc_iJuGg_Tu8FlejU5Hw8S1kvP29CpRjEtw3JF6xzzjsjvhm04rh-bgKK_JDhT8wdjE3GClQbWmL7bMX2-N2nvMrEX7_7d9Ah2GJXUsJSYDjTvlw_qPbyQf-6nq-WHcg7_BYH88zY
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEB7CbqHtQ9IrZHO0bimlLy5e-ZAFeUk2cY5uTGmO7psYy1IbGnaX3STk50cjH9lAC4W-GXtkxEjj-SR_-gbgI5qij6JgfpFw5UdxGfipTgpfYIl0aCA1TkvvYsjzPB2NxLcl2G7OwlT6EO2GG0WG-15TgNOG9EKUq5_mS58xUpLsRnYaxR3o7n3PzocP5yJ5Ejfa3qQaUysLEZOnbfwoH3XJtXePwOYiZHU5J1v5v96-gOUaa3o71eR4CUt6_AqeLygQvoZs30lI2MzjVfTDScWN8yamakfVvXTpnf7CqZ57jmDgnVzeNbe80ylxut7AebZ_Njj069IKvrL-Z77hyAgrKQpKhonmhgvkDMsoFmWMOtURIg9Dwn_IVGgCUWKAQZEKgyINV6Eznoz1GniBCcoy0KZQzETcqFSHkeJ22WWEsQk47MHnxsFS1brjVP7iSjbrD-sa6VzTgw-t6bQS2_iT0Sc3Sq0Fzn4TO43H8kd-II9Huxd5xgZytwebzTDKOjDntNKx70jCftyD9-1jG1L0nwTHenJjbRJOwNICG9t3N6h_740cHGTuYv3fTd_B08Ozk6EcHuVfN-AZowIbjiCzCZ3r2Y3egifq9vpyPntbT-h7Fnz3Jg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5VXYToA1AOdaFAQAjxEpR1DscSL3Tb9GCJKkrbfbMmPtqq1e5qt0X9-Xicg60EEhJvUTKOrLG_zNj5_A3Ae7TVAEXFwirjKkxSHYW5yapQoEY6NJBbr6V3MuJlmY_H4nAFPrdnYWp9iG7DjZDhv9cEcDPTdgnl6sx-GjBGSpK9JBWZg2Vv-3txPPp9LpJnaavtTaoxjbIQMXm6xnfiUY9ce3sn2VxOWX3MKR79X28fw8Mm1wy-1JNjHVbM5AmsLSkQPoVix0tIuMgT1PTDac2NC6a2bkfVvYwOjs5xZhaBJxgE3y5u21vB0Yw4Xc_guNj5MdwLm9IKoXL-Z6HlyChXUgRKhpnhlgvkDLXzpE7R5CZB5HFM-R8yFdtIaIwwqnJhUeTxc1idTCdmA4LIRlpHxlaK2YRblZs4Udwtu6ywLgDHffjYOliqRnecyl9cyXb94VwjvWv68K4zndViG38y-uBHqbPA-SWx03gqT8tdeTDeOikLNpRbfdhsh1E2wFzQSse9I4sHaR_edo8dpOg_CU7M9MbZZJwSS5fYuL77Qf17b-Rwt_AXL_7d9A3cP9wu5Gi__PoSHjCqr-H5MZuwej2_Ma_gnvp5fbGYv27m8y-uNfah
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Interpolation+of+Articulated+Shapes+Using+Mixed+Shape+Spaces&rft.jtitle=Computer+graphics+forum&rft.au=Marras%2C+S&rft.au=Cashman%2C+T+J&rft.au=Hormann%2C+K&rft.date=2013-12-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=32&rft.issue=8&rft.spage=258&rft.epage=270&rft_id=info:doi/10.1111%2Fcgf.12202&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon