Functional Data Analysis: An Introduction and Recent Developments

ABSTRACT Functional data analysis (FDA) is a statistical framework that allows for the analysis of curves, images, or functions on higher dimensional domains. The goals of FDA, such as descriptive analyses, classification, and regression, are generally the same as for statistical analyses of scalar‐...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biometrical journal Ročník 66; číslo 7; s. e202300363 - n/a
Hlavní autori: Gertheiss, Jan, Rügamer, David, Liew, Bernard X. W., Greven, Sonja
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany Wiley - VCH Verlag GmbH & Co. KGaA 01.10.2024
Predmet:
ISSN:0323-3847, 1521-4036, 1521-4036
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract ABSTRACT Functional data analysis (FDA) is a statistical framework that allows for the analysis of curves, images, or functions on higher dimensional domains. The goals of FDA, such as descriptive analyses, classification, and regression, are generally the same as for statistical analyses of scalar‐valued or multivariate data, but FDA brings additional challenges due to the high‐ and infinite dimensionality of observations and parameters, respectively. This paper provides an introduction to FDA, including a description of the most common statistical analysis techniques, their respective software implementations, and some recent developments in the field. The paper covers fundamental concepts such as descriptives and outliers, smoothing, amplitude and phase variation, and functional principal component analysis. It also discusses functional regression, statistical inference with functional data, functional classification and clustering, and machine learning approaches for functional data analysis. The methods discussed in this paper are widely applicable in fields such as medicine, biophysics, neuroscience, and chemistry and are increasingly relevant due to the widespread use of technologies that allow for the collection of functional data. Sparse functional data methods are also relevant for longitudinal data analysis. All presented methods are demonstrated using available software in R by analyzing a dataset on human motion and motor control. To facilitate the understanding of the methods, their implementation, and hands‐on application, the code for these practical examples is made available through a code and data supplement and on GitHub.
AbstractList Functional data analysis (FDA) is a statistical framework that allows for the analysis of curves, images, or functions on higher dimensional domains. The goals of FDA, such as descriptive analyses, classification, and regression, are generally the same as for statistical analyses of scalar‐valued or multivariate data, but FDA brings additional challenges due to the high‐ and infinite dimensionality of observations and parameters, respectively. This paper provides an introduction to FDA, including a description of the most common statistical analysis techniques, their respective software implementations, and some recent developments in the field. The paper covers fundamental concepts such as descriptives and outliers, smoothing, amplitude and phase variation, and functional principal component analysis. It also discusses functional regression, statistical inference with functional data, functional classification and clustering, and machine learning approaches for functional data analysis. The methods discussed in this paper are widely applicable in fields such as medicine, biophysics, neuroscience, and chemistry and are increasingly relevant due to the widespread use of technologies that allow for the collection of functional data. Sparse functional data methods are also relevant for longitudinal data analysis. All presented methods are demonstrated using available software in R by analyzing a dataset on human motion and motor control. To facilitate the understanding of the methods, their implementation, and hands‐on application, the code for these practical examples is made available through a code and data supplement and on GitHub.
ABSTRACT Functional data analysis (FDA) is a statistical framework that allows for the analysis of curves, images, or functions on higher dimensional domains. The goals of FDA, such as descriptive analyses, classification, and regression, are generally the same as for statistical analyses of scalar‐valued or multivariate data, but FDA brings additional challenges due to the high‐ and infinite dimensionality of observations and parameters, respectively. This paper provides an introduction to FDA, including a description of the most common statistical analysis techniques, their respective software implementations, and some recent developments in the field. The paper covers fundamental concepts such as descriptives and outliers, smoothing, amplitude and phase variation, and functional principal component analysis. It also discusses functional regression, statistical inference with functional data, functional classification and clustering, and machine learning approaches for functional data analysis. The methods discussed in this paper are widely applicable in fields such as medicine, biophysics, neuroscience, and chemistry and are increasingly relevant due to the widespread use of technologies that allow for the collection of functional data. Sparse functional data methods are also relevant for longitudinal data analysis. All presented methods are demonstrated using available software in R by analyzing a dataset on human motion and motor control. To facilitate the understanding of the methods, their implementation, and hands‐on application, the code for these practical examples is made available through a code and data supplement and on GitHub.
Functional data analysis (FDA) is a statistical framework that allows for the analysis of curves, images, or functions on higher dimensional domains. The goals of FDA, such as descriptive analyses, classification, and regression, are generally the same as for statistical analyses of scalar‐valued or multivariate data, but FDA brings additional challenges due to the high‐ and infinite dimensionality of observations and parameters, respectively. This paper provides an introduction to FDA, including a description of the most common statistical analysis techniques, their respective software implementations, and some recent developments in the field. The paper covers fundamental concepts such as descriptives and outliers, smoothing, amplitude and phase variation, and functional principal component analysis. It also discusses functional regression, statistical inference with functional data, functional classification and clustering, and machine learning approaches for functional data analysis. The methods discussed in this paper are widely applicable in fields such as medicine, biophysics, neuroscience, and chemistry and are increasingly relevant due to the widespread use of technologies that allow for the collection of functional data. Sparse functional data methods are also relevant for longitudinal data analysis. All presented methods are demonstrated using available software in R by analyzing a dataset on human motion and motor control. To facilitate the understanding of the methods, their implementation, and hands‐on application, the code for these practical examples is made available through a code and data supplement and on GitHub .
Functional data analysis (FDA) is a statistical framework that allows for the analysis of curves, images, or functions on higher dimensional domains. The goals of FDA, such as descriptive analyses, classification, and regression, are generally the same as for statistical analyses of scalar-valued or multivariate data, but FDA brings additional challenges due to the high- and infinite dimensionality of observations and parameters, respectively. This paper provides an introduction to FDA, including a description of the most common statistical analysis techniques, their respective software implementations, and some recent developments in the field. The paper covers fundamental concepts such as descriptives and outliers, smoothing, amplitude and phase variation, and functional principal component analysis. It also discusses functional regression, statistical inference with functional data, functional classification and clustering, and machine learning approaches for functional data analysis. The methods discussed in this paper are widely applicable in fields such as medicine, biophysics, neuroscience, and chemistry and are increasingly relevant due to the widespread use of technologies that allow for the collection of functional data. Sparse functional data methods are also relevant for longitudinal data analysis. All presented methods are demonstrated using available software in R by analyzing a dataset on human motion and motor control. To facilitate the understanding of the methods, their implementation, and hands-on application, the code for these practical examples is made available through a code and data supplement and on GitHub.Functional data analysis (FDA) is a statistical framework that allows for the analysis of curves, images, or functions on higher dimensional domains. The goals of FDA, such as descriptive analyses, classification, and regression, are generally the same as for statistical analyses of scalar-valued or multivariate data, but FDA brings additional challenges due to the high- and infinite dimensionality of observations and parameters, respectively. This paper provides an introduction to FDA, including a description of the most common statistical analysis techniques, their respective software implementations, and some recent developments in the field. The paper covers fundamental concepts such as descriptives and outliers, smoothing, amplitude and phase variation, and functional principal component analysis. It also discusses functional regression, statistical inference with functional data, functional classification and clustering, and machine learning approaches for functional data analysis. The methods discussed in this paper are widely applicable in fields such as medicine, biophysics, neuroscience, and chemistry and are increasingly relevant due to the widespread use of technologies that allow for the collection of functional data. Sparse functional data methods are also relevant for longitudinal data analysis. All presented methods are demonstrated using available software in R by analyzing a dataset on human motion and motor control. To facilitate the understanding of the methods, their implementation, and hands-on application, the code for these practical examples is made available through a code and data supplement and on GitHub.
Author Gertheiss, Jan
Rügamer, David
Greven, Sonja
Liew, Bernard X. W.
Author_xml – sequence: 1
  givenname: Jan
  orcidid: 0000-0001-6777-4746
  surname: Gertheiss
  fullname: Gertheiss, Jan
  email: jan.gertheiss@hsu-hh.de
  organization: Helmut Schmidt University
– sequence: 2
  givenname: David
  surname: Rügamer
  fullname: Rügamer, David
  organization: Munich Center for Machine Learning
– sequence: 3
  givenname: Bernard X. W.
  surname: Liew
  fullname: Liew, Bernard X. W.
  organization: University of Essex
– sequence: 4
  givenname: Sonja
  surname: Greven
  fullname: Greven, Sonja
  organization: Humboldt‐Universität zu Berlin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39330918$$D View this record in MEDLINE/PubMed
BookMark eNqFkDtPwzAURi1URB-wMqJILCwp176OnbCVlkJRERKCOXIcV0qVR4kTUP897oMOXTr5s3S-e3VPn3TKqjSEXFMYUgB2n2TFcsiAIQAKPCM9GjDqc_fpkB4gQx9DLrukb-0SACLg7IJ0MUKEiIY9Mpq2pW6yqlS5N1GN8kYurW1mH1zyZmVTV2m7BTxVpt6H0aZsvIn5MXm1Kly2l-R8oXJrrvbvgHxNnz7HL_78_Xk2Hs19jSJkfkhpmAgeyoQJFXKapnKhOCZcBygjoyKJIBmjSSq4DDQVSBkqY1INaiGiFAfkbjd3VVffrbFNXGRWmzxXpalaGyOlwCEELh16e4Quq7Z2h20pIYNIQuComz3VJoVJ41WdFapex_9yHDDcAbqurK3N4oBQiDf24439-GDfFfhRQWeN2shrapXlJ2u_WW7WJ5bEj7O3VyacnD85DZW_
CitedBy_id crossref_primary_10_3390_e27060552
crossref_primary_10_1007_s00180_025_01652_z
crossref_primary_10_3390_math13050858
crossref_primary_10_1017_dce_2025_18
crossref_primary_10_1007_s00477_025_02986_2
crossref_primary_10_3390_jfmk10030330
crossref_primary_10_3390_axioms14080626
crossref_primary_10_1016_j_gaitpost_2024_09_010
crossref_primary_10_1038_s41598_024_61262_5
crossref_primary_10_3390_math13050853
crossref_primary_10_1080_14763141_2024_2398508
crossref_primary_10_1080_00224065_2025_2500554
crossref_primary_10_1002_wics_70026
crossref_primary_10_1016_j_jbiomech_2025_112585
crossref_primary_10_1016_j_ins_2025_122442
crossref_primary_10_15377_2409_5761_2025_12_4
crossref_primary_10_1007_s10182_025_00531_8
crossref_primary_10_1002_asmb_2879
crossref_primary_10_3390_s25123616
crossref_primary_10_54097_5jpvbv40
Cites_doi 10.1016/j.jbiomech.2015.02.051
10.1002/wics.1538
10.1007/s13171-018-0130-1
10.1111/biom.12624
10.1007/978-3-642-38868-2_7
10.1002/sta4.420
10.1016/j.jbiomech.2024.111998
10.1111/rssc.12130
10.1080/01621459.2013.826134
10.1214/15-AOS1387
10.1016/j.spa.2013.03.015
10.1080/15598608.2010.10412005
10.1007/s11749-010-0185-3
10.1080/10618600.2013.812519
10.1109/IJCNN.2019.8851700
10.1007/s11222-016-9662-1
10.1002/sta4.106
10.1002/9781119072492
10.1002/widm.53
10.1016/j.jbiomech.2021.110820
10.1080/10618600.2023.2175687
10.1214/16-EJS1145
10.1002/sta4.220
10.1093/biostatistics/kxu006
10.1111/biom.12161
10.1214/07-AOS516
10.1111/j.2517-6161.1975.tb01550.x
10.1109/IJCNN.2002.1007599
10.1111/j.1467-9469.2012.00796.x
10.1111/anzs.12074
10.1109/ICTAI56018.2022.00038
10.1111/biom.13706
10.1198/016214508000000751
10.1080/10618600.2012.743437
10.1080/10618600.2019.1710837
10.1111/j.1467-9876.2012.01062.x
10.1145/3581789
10.1080/10618600.2022.2097914
10.1016/j.csda.2014.04.015
10.1111/sjos.12025
10.1007/s10463-013-0416-y
10.1016/0047-259X(82)90088-4
10.1017/9781108610247
10.1109/WACV51458.2022.00131
10.1198/016214503000189
10.1214/17-AOAS1107
10.1016/j.csda.2016.07.010
10.1111/j.2517-6161.1985.tb01350.x
10.1111/j.1467-9868.2008.00656.x
10.1016/j.jkss.2009.06.002
10.1007/s00180-020-00958-4
10.1093/biomet/asw033
10.1007/s11222-019-09871-3
10.1016/j.jmva.2023.105243
10.1007/s00362-016-0757-8
10.1093/jrsssb/qkad026
10.1016/0893-6080(89)90020-8
10.1214/15-STS524
10.1214/17-EJS1260
10.1002/cem.2849
10.1007/978-3-319-96422-5
10.1016/j.csda.2017.11.002
10.1007/s10182-018-00337-x
10.1080/01621459.2017.1320287
10.1002/sim.7967
10.18637/jss.v094.i10
10.1214/17-STS625
10.1007/s00180-018-0842-7
10.1093/biomet/asad024
10.1109/CVPRW53098.2021.00503
10.1137/1.9781611976700.75
10.1198/jcgs.2009.08158
10.1093/biomet/asq058
10.32614/RJ-2016-021
10.1080/10618600.2017.1336444
10.1177/1471082X16681317
10.1080/00401706.1999.10485591
10.1016/j.jbiomech.2010.03.008
10.1111/rssb.12007
10.1214/aos/1013699998
10.1177/0956797611417632
10.1007/978-0-387-98185-7
10.1016/j.ecosta.2016.08.001
10.1016/j.jspi.2016.08.004
10.1016/j.neucom.2012.11.042
10.1093/biomet/ass037
10.1198/jcgs.2011.09224
10.1201/9781315117416
10.3150/11-BEJ390
10.1111/j.1467-9868.2006.00539.x
10.1109/TPAMI.2009.117
10.1007/s11263-012-0591-y
10.1198/016214505000000187
10.1002/sim.5989
10.1111/rssb.12239
10.1111/rssc.12241
10.1109/TKDE.2009.191
10.1098/rsos.211594
10.1016/j.jmva.2021.104871
10.1201/b15005
10.1016/j.jbiomech.2016.03.032
10.1080/01621459.2014.909317
10.1007/s00521-020-05395-4
10.1007/s00357-003-0007-3
10.1007/s11222-014-9473-1
10.32614/CRAN.package.slasso
10.1002/bimj.201600224
10.1007/978-1-4939-4020-2
10.3389/fpsyg.2016.01444
10.1051/ps:2006014
10.1111/j.1467-9868.2011.01003.x
10.1007/978-3-030-38438-8
10.1016/j.jbiomech.2021.110757
10.1016/j.csda.2018.02.002
10.1080/01621459.2016.1273115
10.1198/jcgs.2009.07176
10.1007/978-1-4614-3655-3
10.1080/10618600.2014.901914
10.1016/j.jsams.2018.03.009
10.1016/j.jmva.2021.104806
10.1111/j.1467-9868.2010.00749.x
10.1111/biom.12476
10.1080/00401706.2018.1456976
10.1016/j.ins.2018.12.060
10.1002/env.1003
10.1002/sta4.89
10.1002/9781118762547
10.1080/01621459.2012.734196
10.1111/j.2517-6161.1991.tb01821.x
10.1002/bimj.201300072
10.1007/s13253-015-0212-7
10.1016/j.csda.2011.06.016
10.1214/18-EJS1509
10.1007/978-3-642-36809-7
10.1016/j.neucom.2005.12.010
10.1016/j.csda.2012.12.004
10.1016/j.jbiomech.2014.03.036
10.1146/annurev-statistics-032921-033726
10.1007/s11634-013-0158-y
10.1111/biom.12236
10.1016/j.chemolab.2015.04.019
10.1080/10485252.2016.1231806
10.1016/j.csda.2011.03.011
10.1080/01621459.2018.1483827
10.1214/14-EJS865E
10.1111/j.1541-0420.2012.01808.x
10.1007/s10463-021-00798-z
10.1007/s11634-011-0095-6
10.1093/biomet/asac055
10.1111/j.1467-9868.2012.01032.x
10.1080/01621459.2021.1893179
10.1201/b11038
10.1109/TPAMI.2010.184
10.1177/1471082X14566913
10.1016/j.jelekin.2014.10.018
10.17713/ajs.v50i4.1099
10.1214/22-EJS2083
10.1198/jcgs.2010.10007
10.1080/10618600.2018.1473781
10.1214/10-EJS575
10.1080/02664768800000018
10.1111/1467-9868.00129
10.1111/insr.12163
10.1002/9781119003144
10.1198/016214504000001745
10.1002/wics.1638
10.1080/00401706.2013.863163
10.7717/peerj.3298
10.1016/j.gaitpost.2019.12.008
10.1111/biom.12278
10.1214/21-AOS2048
10.1111/rssb.12551
10.1016/j.jbiomech.2016.08.012
10.1007/b98888
10.1080/02664763.2016.1247791
10.1016/j.jmva.2015.10.003
10.1016/j.csda.2018.05.004
10.1016/j.jspi.2013.04.002
10.1201/9781315370279
10.1198/jasa.2009.0108
10.1002/sta4.20
10.1007/s00180-015-0555-0
10.1177/1471082X211056158
10.1080/10618600.2023.2165498
10.32614/CRAN.package.multiFANOVA
10.1080/01621459.1997.10473671
10.1109/CVPR.2009.5206848
10.1007/s11634-022-00513-7
10.1080/00401706.2021.2008502
10.1186/1471-2288-13-43
10.1016/j.jmva.2022.104950
10.1016/j.csda.2003.10.021
10.1080/01621459.2016.1180986
10.5705/ss.2009.302
10.1080/10485252.2023.2207673
10.5705/ss.2009.207
10.1111/biom.13427
10.1007/978-1-4612-1154-9
10.1016/j.jspi.2017.03.002
ContentType Journal Article
Copyright 2024 The Author(s). published by Wiley‐VCH GmbH.
2024 The Author(s). Biometrical Journal published by Wiley‐VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by Wiley‐VCH GmbH.
– notice: 2024 The Author(s). Biometrical Journal published by Wiley‐VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
DOI 10.1002/bimj.202300363
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-4036
EndPage n/a
ExternalDocumentID 39330918
10_1002_bimj_202300363
BIMJ2612
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Academy of Medical Sciences
  funderid: SBF006/1019
– fundername: German Research Foundation
  funderid: GR 3793/2‐2; GR 3793/3‐1; GR 3793/8‐1
– fundername: German Research Foundation
  grantid: GR 3793/8-1
– fundername: German Research Foundation
  grantid: GR 3793/3-1
– fundername: Academy of Medical Sciences
  grantid: SBF006/1019
– fundername: German Research Foundation
  grantid: GR 3793/2-2
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
24P
3-9
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M67
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
Y6R
YHZ
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3682-8118b6487b26a841dd7fa43b4c5379ea97307221bd6475c163123aeedc0af69d3
IEDL.DBID DRFUL
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001320349900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0323-3847
1521-4036
IngestDate Thu Jul 10 17:23:56 EDT 2025
Sat Nov 29 14:27:31 EST 2025
Thu Apr 03 07:04:17 EDT 2025
Sat Nov 29 06:28:54 EST 2025
Tue Nov 18 20:55:37 EST 2025
Wed Jan 22 17:15:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords longitudinal data analysis
functional regression
curve data
object‐oriented data analysis
image data
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Author(s). Biometrical Journal published by Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3682-8118b6487b26a841dd7fa43b4c5379ea97307221bd6475c163123aeedc0af69d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6777-4746
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.202300363
PMID 39330918
PQID 3116759705
PQPubID 105592
PageCount 32
ParticipantIDs proquest_miscellaneous_3110408047
proquest_journals_3116759705
pubmed_primary_39330918
crossref_primary_10_1002_bimj_202300363
crossref_citationtrail_10_1002_bimj_202300363
wiley_primary_10_1002_bimj_202300363_BIMJ2612
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
2024-Oct
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Biometrical journal
PublicationTitleAlternate Biom J
PublicationYear 2024
Publisher Wiley - VCH Verlag GmbH & Co. KGaA
Publisher_xml – name: Wiley - VCH Verlag GmbH & Co. KGaA
References 2010; 97
2017; 85
2013; 69
2015; 146
2013; 62
2013; 123
2016; 30
1999; 41
2008; 103
2024; 36
1979; 28
2017; 73
2023a; 79
2013; 112
2024; 199
2013; 351
2016; 49
2010; 4
2014a; 8
2016; 44
2021; 49
2013; 108
2022; 190
2004; 47
2013; 105
2019; 34
2016; 10
1975; 37
2020; 35
2001; 29
2021; 50
2016; 17
2011; 5
2022; 188
2016; 5
2016; 7
2017; 59
2020; 30
1967; 1
2018; 113
2013; 75
2022; 9
2015; 110
2016; 28
2006; 101
2016; 8
2020; 29
2023; 32
2014; 70
2013; 23
2017; 44
1991; 53
2021; 129
2018; 80
2016; 103
2008; 70
2007; 35
2014; 66
2003; 98
2013; 19
1997; 92
2019; 61
2023; 23
2013; 13
2017; 32
1947; 37
2016; 111
2014; 8
2014; 56
2023; 10
2015; 4
2012
2017; 26
2023; 17
2011
2006; 10
2017; 27
2023; 16
2013; 40
2009
2006
2024; 165
2005
2020; 76
2018; 67
1985; 47
2019; 81
2023
2022
2013; 32
2021
2017; 17
2000; 149
2020
2017; 11
2019
2018
2017
2016
2015
2013
2009; 3
2014; 78
2017; 105
2018; 59
2013; 2
2015; 71
2010; 19
2016; 146
2014; 27
2022; 23
2011; 55
2014; 24
2024
2012; 99
2014; 23
2010; 22
2010; 21
2005; 100
2020; 94
2011; 73
2014; 15
2024; 111
2018; 37
1945; 220
1909; 209
2019; 8
2010; 34
1989; 2
2010; 33
2019; 9
1988; 15
2014; 47
2002; 3
2019; 103
1998; 60
2014; 41
2022; 117
2018; 21
2012; 107
2018; 27
2010; 43
2015; 997
2022; 11
2018; 12
2014; 147
2022; 16
2003; 20
2009; 104
2018; 120
1982; 12
2017; 5
2017; 1
2012; 2012
2018; 124
2015; 30
2016; 72
2023b
2022; 64
2019; 481
2015; 48
2021; 33
2006; 68
2022; 84
2006; 69
2015; 43
2011; 20
2022; 78
2011; 22
2011; 21
2019; 114
2022; 74
2016; 995
2005; 33
2015; 15
2012; 74
2015; 24
2021; 13
2014b; 71
2023; 85
2015; 25
2012; 2
2009; 32
2021; 11
2015; 20
2004; 14
2023; 110
2017; 180
2016; 65
2017; 188
2009; 38
2009; 37
2019; 132
e_1_2_11_223_1
Srivastava A. (e_1_2_11_207_1) 2010; 33
Hörmann S. (e_1_2_11_91_1) 2022; 16
Xiao L. (e_1_2_11_239_1) 2013; 75
Jacques J. (e_1_2_11_103_1) 2014; 71
Brockhaus S. (e_1_2_11_17_1) 2020; 94
e_1_2_11_186_1
e_1_2_11_55_1
Montagnani E. (e_1_2_11_150_1) 2021; 129
Zhang J.‐T. (e_1_2_11_243_1) 2013
Hyndman R. J. (e_1_2_11_98_1) 2009; 38
Tutz G. (e_1_2_11_224_1) 2010; 19
Reiss P. T. (e_1_2_11_182_1) 2017; 85
Martelli S. (e_1_2_11_140_1) 2014; 47
Pawlowsky‐Glahn V. (e_1_2_11_168_1) 2015
Matuk J. (e_1_2_11_145_1) 2022; 117
R Core Team (e_1_2_11_174_1) 2023
e_1_2_11_211_1
Cheng Y. (e_1_2_11_31_1) 2020; 30
Benjamini Y. (e_1_2_11_7_1) 2001; 29
Cuevas A. (e_1_2_11_37_1) 2004; 47
Steyer L. (e_1_2_11_209_1) 2023; 79
Huckemann S. (e_1_2_11_97_1) 2009; 32
Feng S. (e_1_2_11_54_1) 2022; 74
Filzmoser P. (e_1_2_11_58_1) 2018
Warmenhoven J. (e_1_2_11_234_1) 2018; 21
Hornik K. (e_1_2_11_92_1) 1989; 2
Gertheiss J. (e_1_2_11_66_1) 2015; 20
Yi M. (e_1_2_11_241_1) 2022; 11
Müller H.‐G. (e_1_2_11_155_1) 2008; 103
e_1_2_11_208_1
Goldsmith J. (e_1_2_11_71_1) 2013; 69
Hadjipantelis P. Z. (e_1_2_11_84_1) 2014; 8
e_1_2_11_201_1
Fukuchi R. K. (e_1_2_11_62_1) 2017; 5
Li Y. (e_1_2_11_120_1) 2022; 188
Panaretos V. M. (e_1_2_11_161_1) 2020
Müller H.‐G. (e_1_2_11_154_1) 2005; 33
Blanquero R. (e_1_2_11_12_1) 2019; 481
Scheipl F. (e_1_2_11_191_1) 2016; 10
Selk L. (e_1_2_11_197_1) 2023; 17
Calissano A. (e_1_2_11_20_1) 2024; 111
Chen H. (e_1_2_11_28_1) 2014; 70
Ferraty F. (e_1_2_11_57_1) 2010; 97
Guo J. (e_1_2_11_78_1) 2018; 124
Pomann G.‐M. (e_1_2_11_172_1) 2016; 65
Delicado P. (e_1_2_11_43_1) 2010; 21
e_1_2_11_80_1
Brockhaus S. (e_1_2_11_16_1) 2017; 27
Marron J. S. (e_1_2_11_139_1) 2015; 30
Cuevas A. (e_1_2_11_36_1) 2014; 147
Fuchs K. (e_1_2_11_61_1) 2015; 146
Park S. Y. (e_1_2_11_163_1) 2015; 4
e_1_2_11_198_1
Kokoszka P. (e_1_2_11_112_1) 2017
e_1_2_11_250_1
e_1_2_11_88_1
Pataky T. C. (e_1_2_11_167_1) 2016; 49
Kowal D. R. (e_1_2_11_116_1) 2020; 29
James G. M. (e_1_2_11_104_1) 2003; 98
Murtagh F. (e_1_2_11_153_1) 2012; 2
e_1_2_11_152_1
Eilers P. H. (e_1_2_11_50_1) 2021
Lian H. (e_1_2_11_121_1) 2013; 23
Selk L. (e_1_2_11_196_1) 2024; 36
e_1_2_11_180_1
e_1_2_11_202_1
Hsing T. (e_1_2_11_96_1) 2015
e_1_2_11_188_1
e_1_2_11_95_1
e_1_2_11_11_1
Wood S. N. (e_1_2_11_237_1) 2017
Di C.‐Z. (e_1_2_11_45_1) 2009; 3
Hyndman R. J. (e_1_2_11_99_1) 2010; 19
Marron J. S. (e_1_2_11_138_1) 2014; 56
Shou H. (e_1_2_11_203_1) 2015; 71
Zhang J.‐T. (e_1_2_11_246_1) 2010; 4
Chen K. (e_1_2_11_29_1) 2012; 107
Fan Y. (e_1_2_11_52_1) 2015; 43
Jacques J. (e_1_2_11_101_1) 2013; 112
Qiu Z. (e_1_2_11_173_1) 2024; 199
James G. M. (e_1_2_11_105_1) 2009; 37
Wang S. (e_1_2_11_233_1) 2023; 16
Górecki T. (e_1_2_11_83_1) 2019; 34
e_1_2_11_115_1
Guo J. (e_1_2_11_79_1) 2019; 114
e_1_2_11_176_1
Sutskever I. (e_1_2_11_215_1) 2014; 27
Calissano A. (e_1_2_11_19_1) 2022; 190
Cuesta‐Albertos J. A. (e_1_2_11_35_1) 2010; 19
Möller A. (e_1_2_11_149_1) 2016; 30
Azaïs J.‐M. (e_1_2_11_5_1) 2013; 351
Berrendero J. R. (e_1_2_11_9_1) 2011; 55
Chakraborty A. (e_1_2_11_24_1) 2014; 66
Parodi A. (e_1_2_11_164_1) 2018; 12
Sarkar S. (e_1_2_11_189_1) 2022; 84
Matsui H. (e_1_2_11_143_1) 2014; 78
Berrendero J. R. (e_1_2_11_10_1) 2018; 113
Delaigle A. (e_1_2_11_42_1) 2012; 74
Heard N. A. (e_1_2_11_90_1) 2006; 101
Jeon J. (e_1_2_11_106_1) 2021; 49
Chiou J.‐M. (e_1_2_11_33_1) 2016; 146
Li C. (e_1_2_11_119_1) 2022; 78
Ferraty F. (e_1_2_11_56_1) 2006
Fremdt S. (e_1_2_11_59_1) 2013; 40
Zhang J.‐T. (e_1_2_11_245_1) 2014; 41
Krzysko M. (e_1_2_11_118_1) 2021; 50
Tarpey T. (e_1_2_11_219_1) 2003; 20
Górecki T. (e_1_2_11_81_1) 2015; 30
e_1_2_11_44_1
Horváth L. (e_1_2_11_94_1) 2013; 75
Zhang J.‐T. (e_1_2_11_242_1) 2011; 21
Matsui H. (e_1_2_11_144_1) 2011; 55
Fan Z. (e_1_2_11_53_1) 2017; 1
Ramsay J. O. (e_1_2_11_179_1) 2009
Ezugwu A. E. (e_1_2_11_51_1) 2021; 33
Cérou F. (e_1_2_11_38_1) 2006; 10
Hall H. (e_1_2_11_85_1) 2008; 70
Pataky T. C. (e_1_2_11_165_1) 2010; 43
Liew B. X. (e_1_2_11_127_1) 2024; 165
Ramsay J. O. (e_1_2_11_177_1) 1998; 60
Stöcker A. (e_1_2_11_212_1) 2023; 32
Gijbels I. (e_1_2_11_69_1) 2017; 32
Paparoditis E. (e_1_2_11_162_1) 2016; 103
Swihart B. J. (e_1_2_11_216_1) 2014; 56
Boogaart K. G. (e_1_2_11_228_1) 2014; 56
García‐Portugués E. (e_1_2_11_63_1) 2014; 23
Scrucca L. (e_1_2_11_195_1) 2016; 8
Rügamer D. (e_1_2_11_187_1) 2018; 67
e_1_2_11_74_1
Hartigan J. A. (e_1_2_11_89_1) 1979; 28
Choi H. (e_1_2_11_34_1) 2018; 80
Simmons J. P. (e_1_2_11_204_1) 2011; 22
Gertheiss J. (e_1_2_11_65_1) 2013; 2
Sun Y. (e_1_2_11_214_1) 2011; 20
Greven S. (e_1_2_11_77_1) 2010; 4
Sørensen H. (e_1_2_11_218_1) 2013; 32
Boogaart K. G. (e_1_2_11_227_1) 2010; 34
Chen Y. (e_1_2_11_30_1) 2016; 5
Liew B. X. (e_1_2_11_124_1) 2016; 49
Zhang J.‐T. (e_1_2_11_244_1) 2007; 35
Chiou J.‐M. (e_1_2_11_32_1) 2014; 24
Górecki T. (e_1_2_11_82_1) 2017; 44
e_1_2_11_193_1
Ramsay J. O. (e_1_2_11_178_1) 2005
Marx B. D. (e_1_2_11_141_1) 1999; 41
Goldsmith J. (e_1_2_11_70_1) 2011; 20
Rahman R. (e_1_2_11_175_1) 2019; 9
Shi J. Q. (e_1_2_11_200_1) 2011
Wood S. N. (e_1_2_11_235_1) 2011; 73
e_1_2_11_47_1
López‐Pintado S. (e_1_2_11_131_1) 2009; 104
Degras D. (e_1_2_11_41_1) 2011; 21
Chang C. (e_1_2_11_25_1) 2017; 188
Smaga L. (e_1_2_11_205_1) 2019; 61
Aue A. (e_1_2_11_4_1) 2015; 110
Rossi F. (e_1_2_11_185_1) 2006; 69
Zhou J. (e_1_2_11_249_1) 2013; 23
Loève M. (e_1_2_11_130_1) 1945; 220
Lin Z. (e_1_2_11_128_1) 2023; 110
Ieva F. (e_1_2_11_100_1) 2013; 62
Masarotto V. (e_1_2_11_142_1) 2019; 81
Goldsmith J. (e_1_2_11_73_1) 2015; 71
Horváth L. (e_1_2_11_93_1) 2012
Goldsmith J. (e_1_2_11_72_1) 2014; 23
Mercer J. (e_1_2_11_148_1) 1909; 209
Liebl D. (e_1_2_11_122_1) 2023; 85
Wood S. N. (e_1_2_11_236_1) 2016; 111
McLean M. W. (e_1_2_11_147_1) 2015; 25
Aneiros G. (e_1_2_11_2_1) 2022; 188
Shen Q. (e_1_2_11_199_1) 2004; 14
e_1_2_11_194_1
e_1_2_11_231_1
Kong D. (e_1_2_11_114_1) 2016; 28
Brunner E. (e_1_2_11_18_1) 1997; 92
e_1_2_11_23_1
Gertheiss J. (e_1_2_11_67_1) 2017; 105
Górecki T. (e_1_2_11_75_1) 2018; 59
Benko M. (e_1_2_11_8_1) 2009; 37
e_1_2_11_156_1
Koner S. (e_1_2_11_113_1) 2023; 10
e_1_2_11_133_1
Kokoszka P. (e_1_2_11_111_1) 2012; 2012
Lu Y. (e_1_2_11_132_1) 2017; 26
e_1_2_11_171_1
Jacques J. (e_1_2_11_102_1) 2014; 8
Kraus D. (e_1_2_11_117_1) 2012; 99
Barber R. F. (e_1_2_11_6_1) 2017; 11
Schmutz A. (e_1_2_11_192_1) 2020; 35
Zhang J.‐T. (e_1_2_11_247_1) 2019; 132
Robinson M. A. (e_1_2_11_184_1) 2015; 25
Arribas‐Gil A. (e_1_2_11_3_1) 2014; 15
Boogaart K. G. (e_1_2_11_226_1) 2013
e_1_2_11_169_1
Pini A. (e_1_2_11_170_1) 2016; 72
e_1_2_11_146_1
Cardot H. (e_1_2_11_21_1) 2013; 19
Thind B. (e_1_2_11_221_1) 2023; 32
Mardia K. V. (e_1_2_11_137_1) 1975; 37
Bouveyron C. (e_1_2_11_14_1) 2011; 5
Mardia K. V. (e_1_2_11_136_1) 1988; 15
Köhler M. (e_1_2_11_109_1) 2017; 59
Bosq D. (e_1_2_11_13_1) 2000
Karhunen K. (e_1_2_11_107_1) 1947; 37
e_1_2_11_232_1
Vogel F. (e_1_2_11_229_1) 2022; 9
Happ C. (e_1_2_11_86_1) 2018; 113
Cederbaum J. (e_1_2_11_22_1) 2018; 120
Rice J. A. (e_1_2_11_183_1) 1991; 53
e_1_2_11_108_1
Srivastava A. (e_1_2_11_206_1) 2016
Ding F. (e_1_2_11_46_1) 2022; 64
Yao F. (e_1_2_11_240_1) 2005; 100
e_1_2_11_134_1
Liew B. X. (e_1_2_11_125_1) 2020; 76
e_1_2_11_157_1
Dai W. (e_1_2_11_39_1) 2018; 27
Zhang M. (e_1_2_11_248_1) 2023; 17
Thomas Fletcher P. (e_1_2_11_222_1) 2013; 105
Szucs D. (e_1_2_11_217_1) 2016; 7
Greven S. (e_1_2_11_76_1) 2017; 17
Liew B. X. (e_1_2_11_126_1) 2021; 129
Pan S. J. (e_1_2_11_158_1) 2010; 22
e_1_2_11_26_1
Fu G. (e_1_2_11_60_1) 2021; 11
Ling N. (e_1_2_11_129_1) 2021; 13
Panaretos V. M. (e_1_2_11_160_1) 2016; 44
Pataky T. C. (e_1_2_11_166_1) 2015; 48
Dryden I. L. (e_1_2_11_48_1) 2016
Brockhaus S. (e_1_2_11_15_1) 2015; 15
Su Y.‐R. (e_1_2_11_213_1) 2017; 73
Chen H. (e_1_2_11_27_1) 2013; 108
Tekbudak M. Y. (e_1_2_11_220_1) 2019; 103
Volkmann A. (e_1_2_11_230_1) 2023; 23
Köhler M. (e_1_2_11_110_1) 2018; 37
e_1_2_11_210_1
Ghiglietti A. (e_1_2_11_68_1) 2017; 180
Happ C. (e_1_2_11_87_1) 2019; 8
Morris J. S. (e_1_2_11_151_1) 2006; 68
Rao A. R. (e_1_2_11_181_1) 2023; 32
Scheipl F. (e_1_2_11_190_1) 2015; 24
Ullah S. (e_1_2_11_225_1) 2013; 13
Duncan A. (e_1_2_11_49_1) 2018; 12
Wynne G. (e_1_2_11_238_1) 2022; 23
Gasser T. (e_1_2_11_64_1) 1985; 47
e_1_2_11_135_1
Dauxois J. (e_1_2_11_40_1) 1982; 12
Panaretos V. M. (e_1_2_11_159_1) 2013; 123
Liew B. X. (e_1_2_11_123_1) 2016; 17
References_xml – volume: 105
  start-page: 171
  year: 2013
  end-page: 185
  article-title: Geodesic Regression and the Theory of Least Squares on Riemannian Manifolds
  publication-title: International Journal of Computer Vision
– volume: 62
  start-page: 401
  issue: 3
  year: 2013
  end-page: 418
  article-title: Multivariate Functional Clustering for the Morphological Analysis of Electrocardiograph Curves
  publication-title: Journal of the Royal Statistical Society Series C: Applied Statistics
– volume: 49
  start-page: 3275
  issue: 14
  year: 2016
  end-page: 3280
  article-title: The Effects of Load Carriage on Joint Work at Different Running Velocities
  publication-title: Journal of Biomechanics
– volume: 101
  start-page: 18
  issue: 473
  year: 2006
  end-page: 29
  article-title: A Quantitative Study of Gene Regulation Involved in the Immune Response of Anopheline Mosquitoes
  publication-title: Journal of the American Statistical Association
– volume: 21
  start-page: 1100
  issue: 10
  year: 2018
  end-page: 1105
  article-title: A Force Profile Analysis Comparison Between Functional Data Analysis, Statistical Parametric Mapping and Statistical Non‐Parametric Mapping in On‐Water Single Sculling
  publication-title: Journal of Science and Medicine in Sport
– volume: 165
  year: 2024
  article-title: Strategies to Optimise Machine Learning Classification Performance When Using Biomechanical Features
  publication-title: Journal of Biomechanics
– volume: 117
  start-page: 1964
  issue: 540
  year: 2022
  end-page: 1980
  article-title: Bayesian Framework for Simultaneous Registration and Estimation of Noisy, Sparse, and Fragmented Functional Data
  publication-title: Journal of the American Statistical Association
– volume: 92
  start-page: 1494
  year: 1997
  end-page: 1502
  article-title: Box‐Type Approximations in Nonparametric Factorial Designs
  publication-title: Journal of the American Statistical Association
– volume: 147
  start-page: 1
  year: 2014
  end-page: 23
  article-title: A Partial Overview of the Theory of Statistics With Functional Data
  publication-title: Journal of Statistical Planning and Inference
– volume: 74
  start-page: 267
  year: 2012
  end-page: 286
  article-title: Achieving Near Perfect Classification for Functional Data
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
– volume: 1
  start-page: 167
  year: 2017
  end-page: 183
  article-title: High‐Dimensional Adaptive Function‐on‐Scalar Regression
  publication-title: Econometrics and Statistics
– volume: 4
  start-page: 571
  year: 2010
  end-page: 587
  article-title: On the Two‐Sample Behrens‐Fisher Problem for Functional Data
  publication-title: Journal of Statistical Theory and Practice
– volume: 98
  start-page: 397
  issue: 462
  year: 2003
  end-page: 408
  article-title: Clustering for Sparsely Sampled Functional Data
  publication-title: Journal of the American Statistical Association
– volume: 47
  start-page: 238
  issue: 2
  year: 1985
  end-page: 252
  article-title: Kernels for Nonparametric Curve Estimation
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
– volume: 113
  start-page: 649
  issue: 522
  year: 2018
  end-page: 659
  article-title: Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains
  publication-title: Journal of the American Statistical Association
– volume: 104
  start-page: 718
  issue: 486
  year: 2009
  end-page: 734
  article-title: On the Concept of Depth for Functional Data
  publication-title: Journal of the American Statistical Association
– volume: 13
  year: 2021
  article-title: On Semiparametric Regression in Functional Data Analysis
  publication-title: WIREs Computational Statistics
– volume: 97
  start-page: 807
  issue: 4
  year: 2010
  end-page: 824
  article-title: Most‐Predictive Design Points for Functional Data Predictors
  publication-title: Biometrika
– year: 2023b
– volume: 188
  year: 2022
  article-title: Variable Selection in Functional Regression Models: A Review
  publication-title: Journal of Multivariate Analysis
– volume: 24
  start-page: 477
  issue: 2
  year: 2015
  end-page: 501
  article-title: Functional Additive Mixed Models
  publication-title: Journal of Computational and Graphical Statistics
– volume: 12
  start-page: 1385
  issue: 3
  year: 2018
  end-page: 1421
  article-title: Statistical Shape Analysis of Simplified Neuronal Trees
  publication-title: The Annals of Applied Statistics
– volume: 26
  start-page: 894
  issue: 4
  year: 2017
  end-page: 904
  article-title: Bayesian Registration of Functions With a Gaussian Process Prior
  publication-title: Journal of Computational and Graphical Statistics
– volume: 17
  start-page: 1
  issue: 1–2
  year: 2017
  end-page: 35
  article-title: A General Framework for Functional Regression Modelling
  publication-title: Statistical Modelling
– year: 2019
– volume: 180
  start-page: 49
  year: 2017
  end-page: 68
  article-title: Statistical Inference for Stochastic Processes: Two‐Sample Hypothesis Tests
  publication-title: Journal of Statistical Planning and Inference
– start-page: 213
  year: 2022
  end-page: 218
  article-title: Scikit‐fda: Computational Tools for Machine Learning With Functional Data
– volume: 32
  start-page: 1600
  year: 2023
  end-page: 1612
  article-title: Functional Additive Models on Manifolds of Planar Shapes and Forms
  publication-title: Journal of Computational and Graphical Statistics
– volume: 71
  start-page: 92
  year: 2014b
  end-page: 106
  article-title: Model‐Based Clustering for Multivariate Functional Data
  publication-title: Computational Statistics & Data Analysis
– volume: 36
  start-page: 264
  year: 2024
  end-page: 286
  article-title: Uniform Convergence Rates and Automatic Variable Selection in Nonparametric Regression With Functional and Categorical Covariates
  publication-title: Journal of Nonparametric Statistics
– volume: 8
  start-page: 1797
  issue: 2
  year: 2014
  end-page: 1807
  article-title: Analysis of Spike Train Data: A Multivariate Mixed Effects Model for Phase and Amplitude
  publication-title: Electronic Journal of Statistics
– volume: 32
  start-page: 5222
  issue: 30
  year: 2013
  end-page: 5240
  article-title: An Introduction With Medical Applications to Functional Data Analysis
  publication-title: Statistics in Medicine
– volume: 146
  start-page: 186
  year: 2015
  end-page: 197
  article-title: Nearest Neighbor Ensembles for Functional Data With Interpretable Feature Selection
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 110
  start-page: 361
  issue: 2
  year: 2023
  end-page: 379
  article-title: Additive Models for Symmetric Positive‐Definite Matrices and Lie Groups
  publication-title: Biometrika
– volume: 19
  start-page: 537
  year: 2010
  end-page: 557
  article-title: A Simple Multiway ANOVA for Functional Data
  publication-title: Test
– volume: 37
  start-page: 1
  year: 1947
  end-page: 79
  article-title: Über Lineare Methoden in der Wahrscheinlichkeitsrechnung
  publication-title: Annales Academiae Scientiarum Fennicae
– volume: 41
  start-page: 1
  issue: 1
  year: 1999
  end-page: 13
  article-title: Generalized Linear Regression on Sampled Signals and Curves: A p‐spline Approach
  publication-title: Technometrics
– volume: 99
  start-page: 813
  year: 2012
  end-page: 832
  article-title: Dispersion Operators and Resistant Second‐Order Analysis of Functional Data
  publication-title: Biometrika
– volume: 78
  start-page: 435
  issue: 2
  year: 2022
  end-page: 447
  article-title: Joint Model for Survival and Multivariate Sparse Functional Data With Application to a Study of Alzheimer's Disease
  publication-title: Biometrics
– volume: 103
  start-page: 1534
  year: 2008
  end-page: 1544
  article-title: Functional Additive Models
  publication-title: Journal of the American Statistical Association
– volume: 56
  start-page: 171
  issue: 2
  year: 2014
  end-page: 194
  article-title: Bayes Hilbert Spaces
  publication-title: Australian & New Zealand Journal of Statistics
– volume: 49
  start-page: 2611
  year: 2021
  end-page: 2641
  article-title: Additive Regression for Non‐Euclidean Responses and Predictors
  publication-title: The Annals of Statistics
– volume: 64
  start-page: 335
  issue: 3
  year: 2022
  end-page: 345
  article-title: Functional PCA With Covariate‐Dependent Mean and Covariance Structure
  publication-title: Technometrics
– volume: 32
  start-page: 630
  issue: 4
  year: 2017
  end-page: 639
  article-title: On a General Definition of Depth for Functional Data
  publication-title: Statistical Science
– volume: 33
  start-page: 774
  year: 2005
  end-page: 805
  article-title: Generalized Functional Linear Models
  publication-title: The Annals of Statistics
– volume: 120
  start-page: 25
  year: 2018
  end-page: 41
  article-title: Fast Symmetric Additive Covariance Smoothing
  publication-title: Computational Statistics & Data Analysis
– volume: 33
  start-page: 1415
  issue: 7
  year: 2010
  end-page: 1428
  article-title: Shape Analysis of Elastic Curves in Euclidean Spaces
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 27
  start-page: 3104
  year: 2014
  end-page: 3112
  article-title: Sequence to Sequence Learning With Neural Networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 8
  start-page: 231
  issue: 3
  year: 2014a
  end-page: 255
  article-title: Functional Data Clustering: A Survey
  publication-title: Advances in Data Analysis and Classification
– volume: 108
  start-page: 1216
  year: 2013
  end-page: 1229
  article-title: A Marginal Approach to Reduced‐Rank Penalized Spline Smoothing With Application to Multi‐Level Functional Data
  publication-title: Journal of the American Statistical Association
– volume: 55
  start-page: 3304
  issue: 12
  year: 2011
  end-page: 3310
  article-title: Variable Selection for Functional Regression Models via the l1 Regularization
  publication-title: Computational Statistics & Data Analysis
– volume: 20
  start-page: 93
  issue: 1
  year: 2003
  end-page: 114
  article-title: Clustering Functional Data
  publication-title: Journal of Classification
– volume: 21
  start-page: 1735
  year: 2011
  end-page: 1765
  article-title: Simultaneous Confidence Bands for Nonparametric Regression With Functional Data
  publication-title: Statistica Sinica
– volume: 8
  start-page: 289
  issue: 1
  year: 2016
  end-page: 317
  article-title: Mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models
  publication-title: The R Journal
– volume: 85
  start-page: 842
  issue: 3
  year: 2023
  end-page: 868
  article-title: Fast and Fair Simultaneous Confidence Bands for Functional Parameters
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
– start-page: 4462
  year: 2021
  end-page: 4471
  article-title: Srvfregnet: Elastic Function Registration Using Deep Neural Networks
– volume: 129
  year: 2021
  article-title: Pedobarographic Statistical Parametric Mapping of Plantar Pressure Data in New and Confident Walking Infants: A Preliminary Analysis
  publication-title: Journal of Biomechanics
– year: 2013
– volume: 55
  start-page: 2619
  issue: 9
  year: 2011
  end-page: 2634
  article-title: Principal Components for Multivariate Functional Data
  publication-title: Computational Statistics & Data Analysis
– volume: 20
  start-page: 353
  year: 2015
  end-page: 370
  article-title: Marginal Functional Regression Models for Analyzing the Feeding Behavior of Pigs
  publication-title: Journal of Agricultural, Biological and Environmental Statistics
– year: 2009
– volume: 17
  start-page: 519
  year: 2023
  end-page: 543
  article-title: Nonparametric Regression and Classification With Functional, Categorical, and Mixed Covariates
  publication-title: Advances in Data Analysis and Classification
– volume: 44
  start-page: 771
  year: 2016
  end-page: 812
  article-title: Amplitude and Phase Variation of Point Processes
  publication-title: Annals of Statistics
– volume: 111
  start-page: 1548
  year: 2016
  end-page: 1575
  article-title: Smoothing Parameter and Model Selection for General Smooth Models
  publication-title: Journal of the American Statistical Association
– year: 2021
– volume: 113
  start-page: 1210
  year: 2018
  end-page: 1218
  article-title: On the Use of Reproducing Kernel Hilbert Spaces in Functional Classification
  publication-title: Journal of the American Statistical Association
– volume: 70
  start-page: 703
  year: 2008
  end-page: 723
  article-title: Modelling Sparse Generalized Longitudinal Observations With Latent Gaussian Processes
  publication-title: Journal of the Royal Statistical Society, Series B Statistical Methodology
– volume: 30
  start-page: 468
  issue: 4
  year: 2015
  end-page: 484
  article-title: Functional Data Analysis of Amplitude and Phase Variation
  publication-title: Statistical Science
– volume: 28
  start-page: 813
  year: 2016
  end-page: 838
  article-title: Classical Testing in Functional Linear Models
  publication-title: Journal of Nonparametric Statistics
– volume: 3
  start-page: 2843
  year: 2002
  end-page: 2848
  article-title: Functional Data Analysis With Multi Layer Perceptrons
– volume: 71
  start-page: 344
  issue: 2
  year: 2015
  end-page: 353
  article-title: Generalized Multilevel Function‐on‐Scalar Regression and Principal Component Analysis
  publication-title: Biometrics
– volume: 72
  start-page: 835
  year: 2016
  end-page: 845
  article-title: The Interval Testing Procedure: A General Framework for Inference in Functional Data Analysis
  publication-title: Biometrics
– volume: 30
  start-page: 129
  issue: 1
  year: 2020
  end-page: 140
  article-title: Nonlinear Mixed‐Effects Scalar‐on‐Function Models and Variable Selection
  publication-title: Statistics and Computing
– volume: 23
  start-page: 51
  issue: 1
  year: 2013
  end-page: 74
  article-title: Shrinkage Estimation and Selection for Multiple Functional Regression
  publication-title: Statistica Sinica
– volume: 17
  start-page: 1
  issue: 1
  year: 2016
  end-page: 10
  article-title: Effects of two Neuromuscular Training Programs on Running Biomechanics With Load Carriage: A Study Protocol for a Randomised Controlled Trial
  publication-title: BMC Musculoskeletal Disorders
– volume: 19
  start-page: 18
  issue: 1
  year: 2013
  end-page: 43
  article-title: Efficient and Fast Estimation of the Geometric Median in Hilbert Spaces With an Averaged Stochastic Gradient Algorithm
  publication-title: Bernoulli
– volume: 188
  year: 2022
  article-title: From Multivariate to Functional Data Analysis: Fundamentals, Recent Developments, and Emerging Areas
  publication-title: Journal of Multivariate Analysis
– volume: 19
  start-page: 29
  issue: 1
  year: 2010
  end-page: 45
  article-title: Rainbow Plots, Bagplots, and Boxplots for Functional Data
  publication-title: Journal of Computational and Graphical Statistics
– volume: 75
  start-page: 577
  issue: 3
  year: 2013
  end-page: 599
  article-title: Fast Bivariate P‐Splines: The Sandwich Smoother
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
– volume: 94
  start-page: 1
  issue: 10
  year: 2020
  end-page: 50
  article-title: Boosting Functional Regression Models With Fdboost
  publication-title: Journal of Statistical Software
– year: 2015
– volume: 80
  start-page: 239
  year: 2018
  end-page: 260
  article-title: A Geometric Approach to Confidence Regions and Bands for Functional Parameters
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
– volume: 59
  start-page: 1144
  issue: 6
  year: 2017
  end-page: 1165
  article-title: Flexible Bayesian Additive Joint Models With an Application to Type 1 Diabetes Research
  publication-title: Biometrical Journal
– volume: 19
  start-page: 154
  issue: 1
  year: 2010
  end-page: 174
  article-title: Feature Extraction in Signal Regression: A Boosting Technique for Functional Data Regression
  publication-title: Journal of Computational and Graphical Statistics
– volume: 112
  start-page: 164
  year: 2013
  end-page: 171
  article-title: Funclust: A Curves Clustering Method Using Functional Random Variables Density Approximation
  publication-title: Neurocomputing
– volume: 23
  start-page: 303
  issue: 4
  year: 2023
  end-page: 326
  article-title: Multivariate Functional Additive Mixed Models
  publication-title: Statistical Modelling
– volume: 84
  start-page: 1785
  issue: 5
  year: 2022
  end-page: 1820
  article-title: Covnet: Covariance Networks for Functional Data on Multidimensional Domains
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
– volume: 32
  start-page: 171
  issue: 1
  year: 2023
  end-page: 180
  article-title: Deep Learning With Functional Inputs
  publication-title: Journal of Computational and Graphical Statistics
– volume: 71
  start-page: 247
  issue: 1
  year: 2015
  end-page: 257
  article-title: Structured Functional Principal Component Analysis
  publication-title: Biometrics
– volume: 37
  start-page: 2083
  issue: 5A
  year: 2009
  end-page: 2108
  article-title: Functional Linear Regression That's Interpretable
  publication-title: The Annals of Statistics
– volume: 85
  start-page: 228
  issue: 2
  year: 2017
  end-page: 249
  article-title: Methods for Scalar‐on‐Function Regression
  publication-title: International Statistical Review
– start-page: 248
  year: 2009
  end-page: 255
  article-title: ImageNet: A Large‐Scale Hierarchical Image Database
– volume: 43
  start-page: 2296
  year: 2015
  end-page: 2325
  article-title: Functional Additive Regression
  publication-title: The Annals of Statistics
– volume: 69
  start-page: 730
  issue: 7–9
  year: 2006
  end-page: 742
  article-title: Support Vector Machine for Functional Data Classification
  publication-title: Neurocomputing
– volume: 23
  start-page: 3159
  issue: 1
  year: 2022
  end-page: 3209
  article-title: A Kernel Two‐Sample Test for Functional Data
  publication-title: The Journal of Machine Learning Research
– volume: 20
  start-page: 830
  issue: 4
  year: 2011
  end-page: 851
  article-title: Penalized Functional Regression
  publication-title: Journal of Computational and Graphical Statistics
– volume: 25
  start-page: 14
  issue: 1
  year: 2015
  end-page: 19
  article-title: Statistical Parametric Mapping (spm) for Alpha‐Based Statistical Analyses of Multi‐Muscle EMG Time‐Series
  publication-title: Journal of Electromyography and Kinesiology
– volume: 34
  start-page: 201
  issue: 4
  year: 2010
  end-page: 222
  article-title: Bayes Linear Spaces
  publication-title: SORT: Statistics and Operations Research Transactions
– volume: 50
  start-page: 53
  year: 2021
  end-page: 64
  article-title: Two‐Sample Tests for Functional Data Using Characteristic Functions
  publication-title: Austrian Journal of Statistics
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 14
  article-title: Functional Random Forests for Curve Response
  publication-title: Scientific Reports
– volume: 29
  start-page: 1165
  year: 2001
  end-page: 1188
  article-title: The Control of the False Discovery Rate in Multiple Testing Under Dependency
  publication-title: The Annals of Statistics
– volume: 10
  start-page: 547
  year: 2023
  end-page: 572
  article-title: Second‐Generation Functional Data
  publication-title: Annual Review of Statistics and Its Application
– volume: 4
  start-page: 212
  issue: 1
  year: 2015
  end-page: 226
  article-title: Longitudinal Functional Data Analysis
  publication-title: Stat
– volume: 49
  start-page: 1468
  issue: 9
  year: 2016
  end-page: 1476
  article-title: The Probability of False Positives in Zero‐Dimensional Analyses of One‐Dimensional Kinematic, Force and EMG Trajectories
  publication-title: Journal of Biomechanics
– volume: 73
  start-page: 3
  year: 2011
  end-page: 36
  article-title: Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
– volume: 11
  start-page: 1351
  issue: 1
  year: 2017
  end-page: 1389
  article-title: The Function‐on‐Scalar LASSO With Applications to Longitudinal GWAS
  publication-title: Electronic Journal of Statistics
– volume: 15
  start-page: 115
  issue: 2
  year: 1988
  end-page: 122
  article-title: Directional Data Analysis: An Overview
  publication-title: Journal of Applied Statistics
– volume: 199
  year: 2024
  article-title: Tests for Equality of Several Covariance Matrix Functions for Multivariate Functional Data
  publication-title: Journal of Multivariate Analysis
– volume: 21
  start-page: 224
  issue: 3‐4
  year: 2010
  end-page: 239
  article-title: Statistics for Spatial Functional Data: Some Recent Contributions
  publication-title: Environmetrics
– volume: 4
  start-page: 1022
  year: 2010
  end-page: 1054
  article-title: Longitudinal Functional Principal Component Analysis
  publication-title: Electronic Journal of Statistics
– volume: 35
  start-page: 1052
  issue: 3
  year: 2007
  end-page: 1079
  article-title: Statistical Inferences for Functional Data
  publication-title: The Annals of Statistics
– year: 2020
– volume: 7
  start-page: 1444
  year: 2016
  article-title: A Tutorial on Hunting Statistical Significance by Chasing n
  publication-title: Frontiers in Psychology
– volume: 41
  start-page: 51
  year: 2014
  end-page: 71
  article-title: One‐way ANOVA for Functional Data via Globalizing the Pointwise F‐Test
  publication-title: Scandinavian Journal of Statistics
– volume: 61
  start-page: 99
  year: 2019
  end-page: 110
  article-title: Linear Hypothesis Testing With Functional Data
  publication-title: Technometrics
– year: 2011
– volume: 15
  start-page: 279
  issue: 3
  year: 2015
  end-page: 300
  article-title: The Functional Linear Array Model
  publication-title: Statistical Modelling
– year: 2005
– volume: 10
  start-page: 340
  year: 2006
  end-page: 355
  article-title: Nearest Neighbor Classification in Infinite Dimension
  publication-title: ESAIM: Probability and Statistics
– volume: 59
  start-page: 153
  year: 2018
  end-page: 182
  article-title: Selected Statistical Methods of Data Analysis for Multivariate Functional Data
  publication-title: Statistical Papers
– volume: 22
  start-page: 1359
  year: 2011
  end-page: 1366
  article-title: False‐Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant
  publication-title: Psychological Science
– volume: 14
  start-page: 1239
  year: 2004
  end-page: 1257
  article-title: An F Test for Linear Models With Functional Responses
  publication-title: Statistica Sinica
– volume: 29
  start-page: 629
  issue: 3
  year: 2020
  end-page: 638
  article-title: Bayesian Function‐on‐Scalars Regression for High‐Dimensional Data
  publication-title: Journal of Computational and Graphical Statistics
– volume: 76
  start-page: 146
  year: 2020
  end-page: 150
  article-title: Classifying Neck Pain Status Using Scalar and Functional Biomechanical Variables–Development of a Method Using Functional Data Boosting
  publication-title: Gait & Posture
– volume: 56
  start-page: 483
  issue: 4
  year: 2014
  end-page: 493
  article-title: Restricted Likelihood Ratio Tests for Functional Effects in the Functional Linear Model
  publication-title: Technometrics
– volume: 2
  start-page: 86
  issue: 1
  year: 2012
  end-page: 97
  article-title: Algorithms for Hierarchical Clustering: An Overview
  publication-title: WIREs Data Mining and Knowledge Discovery
– volume: 35
  start-page: 1101
  issue: 3
  year: 2020
  end-page: 1131
  article-title: Clustering Multivariate Functional Data in Group‐Specific Functional Subspaces
  publication-title: Computational Statistics
– volume: 23
  start-page: 46
  issue: 1
  year: 2014
  end-page: 64
  article-title: Smooth Scalar‐on‐Image Regression via Spatial Bayesian Variable Selection
  publication-title: Journal of Computational and Graphical Statistics
– volume: 79
  start-page: 2103
  year: 2023a
  end-page: 2115
  article-title: Elastic Analysis of Irregularly or Sparsely Sampled Curves
  publication-title: Biometrics
– volume: 73
  start-page: 551
  issue: 2
  year: 2017
  end-page: 561
  article-title: Hypothesis Testing in Functional Linear Models
  publication-title: Biometrics
– volume: 100
  start-page: 577
  issue: 470
  year: 2005
  end-page: 590
  article-title: Functional Data Analysis for Sparse Longitudinal Data
  publication-title: Journal of the American Statistical Association
– volume: 25
  start-page: 997
  issue: 5
  year: 2015
  end-page: 1008
  article-title: Restricted Likelihood Ratio Tests for Linearity in Scalar‐on‐Function Regression
  publication-title: Statistics and Computing
– volume: 17
  start-page: 91
  issue: 7
  year: 2023
  article-title: Review of Clustering Methods for Functional Data
  publication-title: ACM Transactions on Knowledge Discovery From Data
– volume: 32
  start-page: 1248
  issue: 4
  year: 2023
  end-page: 1257
  article-title: Nonlinear Functional Modeling Using Neural Networks
  publication-title: Journal of Computational and Graphical Statistics
– volume: 53
  start-page: 233
  issue: 1
  year: 1991
  end-page: 243
  article-title: Estimating the Mean and Covariance Structure Nonparametrically When the Data are Curves
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
– volume: 190
  year: 2022
  article-title: Graph‐Valued Regression: Prediction of Unlabelled Networks in a Non‐Euclidean Graph Space
  publication-title: Journal of Multivariate Analysis
– start-page: 666
  year: 2021
  end-page: 674
  article-title: Functional Autoencoders for Functional Data Representation Learning
– year: 2022
– volume: 997
  year: 2015
– volume: 2012
  year: 2012
  article-title: Dependent Functional Data
  publication-title: International Scholarly Research Network, ISRN Probability and Statistics
– volume: 1
  start-page: 281
  year: 1967
  end-page: 297
  article-title: Some Methods for Classification and Analysis of Multivariate Observations
– volume: 60
  start-page: 351
  issue: 2
  year: 1998
  end-page: 363
  article-title: Curve Registration
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
– volume: 114
  start-page: 1251
  year: 2019
  end-page: 1263
  article-title: New Tests for Equality of Several Covariance Functions for Functional Data
  publication-title: Journal of the American Statistical Association
– volume: 74
  start-page: 321
  issue: 2
  year: 2022
  end-page: 339
  article-title: Variable Selection for Functional Linear Models With Strong Heredity Constraint
  publication-title: Annals of the Institute of Statistical Mathematics
– volume: 5
  year: 2017
  article-title: A Public Dataset of Running Biomechanics and the Effects of Running Speed on Lower Extremity Kinematics and Kinetics
  publication-title: PeerJ
– volume: 124
  start-page: 15
  year: 2018
  end-page: 26
  article-title: Testing the Equality of Several Covariance Functions for Functional Data: A Supremum‐Norm Based Test
  publication-title: Computational Statistics & Data Analysis
– volume: 23
  start-page: 761
  issue: 3
  year: 2014
  end-page: 778
  article-title: A Goodness‐of‐Fit Test for the Functional Linear Model With Scalar Response
  publication-title: Journal of Computational and Graphical Statistics
– volume: 2
  start-page: 86
  issue: 1
  year: 2013
  end-page: 101
  article-title: Variable Selection in Generalized Functional Linear Models
  publication-title: Stat
– volume: 129
  year: 2021
  article-title: Comparing Shallow, Deep, and Transfer Learning in Predicting Joint Moments in Running
  publication-title: Journal of Biomechanics
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  end-page: 366
  article-title: Multilayer Feedforward Networks are Universal Approximators
  publication-title: Neural Networks
– volume: 70
  start-page: 516
  issue: 3
  year: 2014
  end-page: 525
  article-title: Optimally Weighted L2 Distance for Functional Data
  publication-title: Biometrics
– volume: 12
  start-page: 136
  issue: 1
  year: 1982
  end-page: 154
  article-title: Asymptotic Theory for the Principal Component Analysis of a Vector Random Function: Some Applications to Statistical Inference
  publication-title: Journal of Multivariate Analysis
– volume: 351
  start-page: 139
  year: 2013
  end-page: 141
  article-title: Remark on the Finite‐Dimensional Character of Certain Results of Functional Statistics
  publication-title: Comptes Rendus de l'Académie des Sciences ‐ Series I ‐ Mathematics
– volume: 34
  start-page: 571
  issue: 2
  year: 2019
  end-page: 597
  article-title: fdANOVA: An R Software Package for Analysis of Variance for Univariate and Multivariate Functional Data
  publication-title: Computational Statistics
– volume: 10
  start-page: 1455
  year: 2016
  end-page: 1492
  article-title: Generalized Functional Additive Mixed Models
  publication-title: Electronic Journal of Statistics
– volume: 15
  start-page: 603
  issue: 4
  year: 2014
  end-page: 619
  article-title: Shape Outlier Detection and Visualization for Functional Data: The Outliergram
  publication-title: Biostatistics
– volume: 66
  start-page: 303
  year: 2014
  end-page: 324
  article-title: On Data Depth in Infinite Dimensional Spaces
  publication-title: Annals of the Institute of Statistical Mathematics
– volume: 188
  start-page: 67
  year: 2017
  end-page: 81
  article-title: Simultaneous Confidence Bands for Functional Regression Models
  publication-title: Journal of Statistical Planning and Inference
– volume: 103
  start-page: 727
  year: 2016
  end-page: 733
  article-title: Bootstrap‐Based Testing of Equality of Mean Functions or Equality of Covariance Operators for Functional Data
  publication-title: Biometrika
– volume: 111
  start-page: 147
  issue: 1
  year: 2024
  end-page: 170
  article-title: Populations of Unlabelled Networks: Graph Space Geometry and Generalized Geodesic Principal Components
  publication-title: Biometrika
– volume: 5
  start-page: 88
  issue: 1
  year: 2016
  end-page: 101
  article-title: Variable Selection in Function‐on‐Scalar Regression
  publication-title: Stat
– volume: 48
  start-page: 1277
  issue: 7
  year: 2015
  end-page: 1285
  article-title: Zero‐vs. One‐Dimensional, Parametric vs. Non‐Parametric, and Confidence Interval vs. Hypothesis Testing Procedures in One‐Dimensional Biomechanical Trajectory Analysis
  publication-title: Journal of Biomechanics
– year: 2016
– volume: 37
  start-page: 1
  year: 2009
  end-page: 34
  article-title: Common Functional Principal Components
  publication-title: The Annals of Statistics
– volume: 38
  start-page: 199
  year: 2009
  end-page: 211
  article-title: Forecasting Functional Time Series
  publication-title: Journal of the Korean Statistical Society
– volume: 65
  start-page: 395
  issue: 3
  year: 2016
  end-page: 414
  article-title: A Two‐Sample Distribution‐Free Test for Functional Data With Application to a Diffusion Tensor Imaging Study of Multiple Sclerosis
  publication-title: Journal of the Royal Statistical Society Series C: Applied Statistics
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  end-page: 14
  article-title: Functional Random Forest With Applications in Dose‐Response Predictions
  publication-title: Scientific Reports
– volume: 9
  year: 2022
  article-title: Supervised Learning for Analysing Movement Patterns in a Virtual Reality Experiment
  publication-title: Royal Society Open Science
– volume: 68
  start-page: 179
  issue: 2
  year: 2006
  end-page: 199
  article-title: Wavelet‐Based Functional Mixed Models
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
– volume: 132
  start-page: 3
  year: 2019
  end-page: 17
  article-title: A New Test for Functional One‐Way ANOVA With Applications to Ischemic Heart Screening
  publication-title: Computational Statistics & Data Analysis
– volume: 11
  issue: 1
  year: 2022
  article-title: F‐Type Testing in Functional Linear Models
  publication-title: Stat
– volume: 56
  start-page: 732
  issue: 5
  year: 2014
  end-page: 753
  article-title: Overview of Object Oriented Data Analysis
  publication-title: Biometrical Journal
– volume: 27
  start-page: 923
  issue: 4
  year: 2018
  end-page: 934
  article-title: Multivariate Functional Data Visualization and Outlier Detection
  publication-title: Journal of Computational and Graphical Statistics
– volume: 123
  start-page: 2779
  issue: 7
  year: 2013
  end-page: 2807
  article-title: Cramér–Karhunen–Loève Representation and Harmonic Principal Component Analysis of Functional Time Series
  publication-title: Stochastic Processes and Their Applications
– volume: 107
  start-page: 1599
  issue: 500
  year: 2012
  end-page: 1609
  article-title: Modeling Repeated Functional Observations
  publication-title: Journal of the American Statistical Association
– volume: 16
  start-page: 6232
  issue: 2
  year: 2022
  end-page: 6266
  article-title: Preprocessing Noisy Functional Data: A Multivariate Perspective
  publication-title: Electronic Journal of Statistics
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  end-page: 108
  article-title: Algorithm AS 136: A k‐Means Clustering Algorithm
  publication-title: Journal of the Royal Statistical Society Series C: Applied Statistics
– volume: 43
  start-page: 1976
  issue: 10
  year: 2010
  end-page: 1982
  article-title: Generalized N‐Dimensional Biomechanical Field Analysis Using Statistical Parametric Mapping
  publication-title: Journal of Biomechanics
– volume: 33
  start-page: 6247
  issue: 11
  year: 2021
  end-page: 6306
  article-title: Automatic Clustering Algorithms: A Systematic Review and Bibliometric Analysis of Relevant Literature
  publication-title: Neural Computing and Applications
– volume: 37
  start-page: 349
  issue: 3
  year: 1975
  end-page: 371
  article-title: Statistics of Directional Data
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
– volume: 47
  start-page: 111
  year: 2004
  end-page: 122
  article-title: An ANOVA Test for Functional Data
  publication-title: Computational Statistics & Data Analysis
– volume: 30
  start-page: 715
  issue: 12
  year: 2016
  end-page: 725
  article-title: Random Forests for Functional Covariates
  publication-title: Journal of Chemometrics
– volume: 16
  year: 2023
  article-title: Review on Functional Data Classification
  publication-title: WIREs Computational Statistics
– volume: 995
  year: 2016
– volume: 30
  start-page: 987
  year: 2015
  end-page: 1010
  article-title: A Comparison of Tests for the One‐Way ANOVA Problem for Functional Data
  publication-title: Computational Statistics
– start-page: 74
  year: 2013
  end-page: 85
  article-title: Tree‐Space Statistics and Approximations for Large‐Scale Analysis of Anatomical Trees
– volume: 69
  start-page: 41
  issue: 1
  year: 2013
  end-page: 51
  article-title: Corrected Confidence Bands for Functional Data Using Principal Components
  publication-title: Biometrics
– year: 2024
– volume: 47
  start-page: 1784
  issue: 8
  year: 2014
  end-page: 1791
  article-title: Strain Energy in the Femoral Neck During Exercise
  publication-title: Journal of Biomechanics
– volume: 3
  start-page: 458
  issue: 1
  year: 2009
  end-page: 488
  article-title: Multilevel Functional Principal Component Analysis
  publication-title: The Annals of Applied Statistics
– year: 2018
– volume: 40
  start-page: 138
  year: 2013
  end-page: 152
  article-title: Testing the Equality of Covariance Operators in Functional Samples
  publication-title: Scandinavian Journal of Statistics
– volume: 23
  start-page: 25
  issue: 1
  year: 2013
  end-page: 50
  article-title: Functional Linear Model With Zero‐Value Coefficient Function at Sub‐Regions
  publication-title: Statistica Sinica
– volume: 24
  start-page: 1571
  year: 2014
  end-page: 1596
  article-title: Multivariate Functional Principal Component Analysis: A Normalization Approach
  publication-title: Statistica Sinica
– volume: 20
  start-page: 316
  issue: 2
  year: 2011
  end-page: 334
  article-title: Functional Boxplots
  publication-title: Journal of Computational and Graphical Statistics
– volume: 37
  start-page: 4771
  issue: 30
  year: 2018
  end-page: 4788
  article-title: Nonlinear Association Structures in Flexible Bayesian Additive Joint Models
  publication-title: Statistics in Medicine
– start-page: 1244
  year: 2021
  end-page: 1254
  article-title: Joint Classification and Trajectory Regression of Online Handwriting Using a Multi‐Task Learning Approach
– volume: 8
  issue: 1
  year: 2019
  article-title: A General Framework for Multivariate Functional Principal Component Analysis of Amplitude and Phase Variation
  publication-title: Stat
– volume: 481
  start-page: 445
  year: 2019
  end-page: 462
  article-title: Variable Selection in Classification for Multivariate Functional Data
  publication-title: Information Sciences
– volume: 27
  start-page: 913
  issue: 4
  year: 2017
  end-page: 926
  article-title: Boosting Flexible Functional Regression Models With a High Number of Functional Historical Effects
  publication-title: Statistics and Computing
– volume: 220
  start-page: 380
  year: 1945
  article-title: Fonctions Aléatoires du Second Ordre
  publication-title: Comptes Rendus Académie des Sciences
– volume: 78
  start-page: 176
  year: 2014
  end-page: 185
  article-title: Variable and Boundary Selection for Functional Data via Multiclass Logistic Regression Modeling
  publication-title: Computational Statistics & Data Analysis
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  end-page: 1359
  article-title: A Survey on Transfer Learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 75
  start-page: 103
  year: 2013
  end-page: 122
  article-title: Estimation of the Mean of Functional Time Series and a Two‐Sample Problem
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
– volume: 146
  start-page: 301
  year: 2016
  end-page: 312
  article-title: Multivariate Functional Linear Regression and Prediction
  publication-title: Journal of Multivariate Analysis
– volume: 209
  start-page: 415
  issue: 441–458
  year: 1909
  end-page: 446
  article-title: Functions of Positive and Negative Type, and Their Connection With the Theory of Integral Equations
  publication-title: Philosophical Transactions of the Royal Society of London. Series A
– volume: 103
  start-page: 411
  issue: 3
  year: 2019
  end-page: 436
  article-title: A Comparison of Testing Methods in Scalar‐on‐Function Regression
  publication-title: AStA Advances in Statistical Analysis
– volume: 13
  start-page: 43
  year: 2013
  article-title: Applications of Functional Data Analysis: A Systematic Review
  publication-title: BMC Medical Research Methodology
– volume: 5
  start-page: 281
  issue: 4
  year: 2011
  end-page: 300
  article-title: Model‐Based Clustering of Time Series in Group‐Specific Functional Subspaces
  publication-title: Advances in Data Analysis and Classification
– volume: 44
  start-page: 2172
  year: 2017
  end-page: 2189
  article-title: Multivariate Analysis of Variance for Functional Data
  publication-title: Journal of Applied Statistics
– year: 2012
– volume: 32
  start-page: 593
  issue: 4
  year: 2009
  end-page: 603
  article-title: Intrinsic MANOVA for Riemannian Manifolds With an Application to Kendall's Space of Planar Shapes
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 67
  start-page: 621
  issue: 3
  year: 2018
  end-page: 642
  article-title: Boosting Factor‐Specific Functional Historical Models for the Detection of Synchronization in Bioelectrical Signals
  publication-title: Journal of the Royal Statistical Society Series C: Applied Statistics
– year: 2006
– volume: 12
  start-page: 4602
  issue: 2
  year: 2018
  end-page: 4639
  article-title: Simultaneous Variable Selection and Smoothing for High‐Dimensional Function‐on‐Scalar Regression
  publication-title: Electronic Journal of Statistics
– year: 2023
– volume: 81
  start-page: 172
  year: 2019
  end-page: 213
  article-title: Procrustes Metrics on Covariance Operators and Optimal Transportation of Gaussian Processes
  publication-title: Sankhya A
– start-page: 1
  year: 2019
  end-page: 10
  article-title: Multilayer Perceptron for Sparse Functional Data
– volume: 21
  start-page: 1431
  year: 2011
  end-page: 1451
  article-title: Statistical Inferences for Linear Models With Functional Responses
  publication-title: Statistica Sinica
– volume: 110
  start-page: 378
  issue: 509
  year: 2015
  end-page: 392
  article-title: On the Prediction of Stationary Functional Time Series
  publication-title: Journal of the American Statistical Association
– year: 2017
– volume: 105
  start-page: 46
  year: 2017
  end-page: 52
  article-title: A Note on Modeling Sparse Exponential‐Family Functional Response Curves
  publication-title: Computational Statistics & Data Analysis
– volume: 149
  year: 2000
– volume: 48
  start-page: 1277
  issue: 7
  year: 2015
  ident: e_1_2_11_166_1
  article-title: Zero‐vs. One‐Dimensional, Parametric vs. Non‐Parametric, and Confidence Interval vs. Hypothesis Testing Procedures in One‐Dimensional Biomechanical Trajectory Analysis
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2015.02.051
– volume: 13
  year: 2021
  ident: e_1_2_11_129_1
  article-title: On Semiparametric Regression in Functional Data Analysis
  publication-title: WIREs Computational Statistics
  doi: 10.1002/wics.1538
– volume: 81
  start-page: 172
  year: 2019
  ident: e_1_2_11_142_1
  article-title: Procrustes Metrics on Covariance Operators and Optimal Transportation of Gaussian Processes
  publication-title: Sankhya A
  doi: 10.1007/s13171-018-0130-1
– volume: 73
  start-page: 551
  issue: 2
  year: 2017
  ident: e_1_2_11_213_1
  article-title: Hypothesis Testing in Functional Linear Models
  publication-title: Biometrics
  doi: 10.1111/biom.12624
– ident: e_1_2_11_55_1
  doi: 10.1007/978-3-642-38868-2_7
– volume: 11
  issue: 1
  year: 2022
  ident: e_1_2_11_241_1
  article-title: F‐Type Testing in Functional Linear Models
  publication-title: Stat
  doi: 10.1002/sta4.420
– volume: 165
  year: 2024
  ident: e_1_2_11_127_1
  article-title: Strategies to Optimise Machine Learning Classification Performance When Using Biomechanical Features
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2024.111998
– volume: 65
  start-page: 395
  issue: 3
  year: 2016
  ident: e_1_2_11_172_1
  article-title: A Two‐Sample Distribution‐Free Test for Functional Data With Application to a Diffusion Tensor Imaging Study of Multiple Sclerosis
  publication-title: Journal of the Royal Statistical Society Series C: Applied Statistics
  doi: 10.1111/rssc.12130
– volume: 108
  start-page: 1216
  year: 2013
  ident: e_1_2_11_27_1
  article-title: A Marginal Approach to Reduced‐Rank Penalized Spline Smoothing With Application to Multi‐Level Functional Data
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2013.826134
– volume: 44
  start-page: 771
  year: 2016
  ident: e_1_2_11_160_1
  article-title: Amplitude and Phase Variation of Point Processes
  publication-title: Annals of Statistics
  doi: 10.1214/15-AOS1387
– volume: 123
  start-page: 2779
  issue: 7
  year: 2013
  ident: e_1_2_11_159_1
  article-title: Cramér–Karhunen–Loève Representation and Harmonic Principal Component Analysis of Functional Time Series
  publication-title: Stochastic Processes and Their Applications
  doi: 10.1016/j.spa.2013.03.015
– volume: 4
  start-page: 571
  year: 2010
  ident: e_1_2_11_246_1
  article-title: On the Two‐Sample Behrens‐Fisher Problem for Functional Data
  publication-title: Journal of Statistical Theory and Practice
  doi: 10.1080/15598608.2010.10412005
– ident: e_1_2_11_133_1
– volume: 19
  start-page: 537
  year: 2010
  ident: e_1_2_11_35_1
  article-title: A Simple Multiway ANOVA for Functional Data
  publication-title: Test
  doi: 10.1007/s11749-010-0185-3
– volume: 23
  start-page: 761
  issue: 3
  year: 2014
  ident: e_1_2_11_63_1
  article-title: A Goodness‐of‐Fit Test for the Functional Linear Model With Scalar Response
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2013.812519
– ident: e_1_2_11_135_1
– ident: e_1_2_11_232_1
  doi: 10.1109/IJCNN.2019.8851700
– volume: 27
  start-page: 913
  issue: 4
  year: 2017
  ident: e_1_2_11_16_1
  article-title: Boosting Flexible Functional Regression Models With a High Number of Functional Historical Effects
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-016-9662-1
– volume: 5
  start-page: 88
  issue: 1
  year: 2016
  ident: e_1_2_11_30_1
  article-title: Variable Selection in Function‐on‐Scalar Regression
  publication-title: Stat
  doi: 10.1002/sta4.106
– volume-title: Statistical Shape Analysis: With Applications in R
  year: 2016
  ident: e_1_2_11_48_1
  doi: 10.1002/9781119072492
– volume: 2
  start-page: 86
  issue: 1
  year: 2012
  ident: e_1_2_11_153_1
  article-title: Algorithms for Hierarchical Clustering: An Overview
  publication-title: WIREs Data Mining and Knowledge Discovery
  doi: 10.1002/widm.53
– volume: 129
  year: 2021
  ident: e_1_2_11_126_1
  article-title: Comparing Shallow, Deep, and Transfer Learning in Predicting Joint Moments in Running
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2021.110820
– volume: 32
  start-page: 1600
  year: 2023
  ident: e_1_2_11_212_1
  article-title: Functional Additive Models on Manifolds of Planar Shapes and Forms
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2023.2175687
– volume: 10
  start-page: 1455
  year: 2016
  ident: e_1_2_11_191_1
  article-title: Generalized Functional Additive Mixed Models
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/16-EJS1145
– ident: e_1_2_11_11_1
– volume: 8
  issue: 1
  year: 2019
  ident: e_1_2_11_87_1
  article-title: A General Framework for Multivariate Functional Principal Component Analysis of Amplitude and Phase Variation
  publication-title: Stat
  doi: 10.1002/sta4.220
– volume: 15
  start-page: 603
  issue: 4
  year: 2014
  ident: e_1_2_11_3_1
  article-title: Shape Outlier Detection and Visualization for Functional Data: The Outliergram
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxu006
– volume: 70
  start-page: 516
  issue: 3
  year: 2014
  ident: e_1_2_11_28_1
  article-title: Optimally Weighted L2 Distance for Functional Data
  publication-title: Biometrics
  doi: 10.1111/biom.12161
– volume: 37
  start-page: 1
  year: 2009
  ident: e_1_2_11_8_1
  article-title: Common Functional Principal Components
  publication-title: The Annals of Statistics
  doi: 10.1214/07-AOS516
– ident: e_1_2_11_201_1
– volume: 27
  start-page: 3104
  year: 2014
  ident: e_1_2_11_215_1
  article-title: Sequence to Sequence Learning With Neural Networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 37
  start-page: 349
  issue: 3
  year: 1975
  ident: e_1_2_11_137_1
  article-title: Statistics of Directional Data
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
  doi: 10.1111/j.2517-6161.1975.tb01550.x
– ident: e_1_2_11_186_1
  doi: 10.1109/IJCNN.2002.1007599
– volume: 40
  start-page: 138
  year: 2013
  ident: e_1_2_11_59_1
  article-title: Testing the Equality of Covariance Operators in Functional Samples
  publication-title: Scandinavian Journal of Statistics
  doi: 10.1111/j.1467-9469.2012.00796.x
– volume: 56
  start-page: 171
  issue: 2
  year: 2014
  ident: e_1_2_11_228_1
  article-title: Bayes Hilbert Spaces
  publication-title: Australian & New Zealand Journal of Statistics
  doi: 10.1111/anzs.12074
– volume: 23
  start-page: 3159
  issue: 1
  year: 2022
  ident: e_1_2_11_238_1
  article-title: A Kernel Two‐Sample Test for Functional Data
  publication-title: The Journal of Machine Learning Research
– ident: e_1_2_11_176_1
  doi: 10.1109/ICTAI56018.2022.00038
– volume: 79
  start-page: 2103
  year: 2023
  ident: e_1_2_11_209_1
  article-title: Elastic Analysis of Irregularly or Sparsely Sampled Curves
  publication-title: Biometrics
  doi: 10.1111/biom.13706
– volume: 103
  start-page: 1534
  year: 2008
  ident: e_1_2_11_155_1
  article-title: Functional Additive Models
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214508000000751
– volume: 23
  start-page: 46
  issue: 1
  year: 2014
  ident: e_1_2_11_72_1
  article-title: Smooth Scalar‐on‐Image Regression via Spatial Bayesian Variable Selection
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2012.743437
– volume: 29
  start-page: 629
  issue: 3
  year: 2020
  ident: e_1_2_11_116_1
  article-title: Bayesian Function‐on‐Scalars Regression for High‐Dimensional Data
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2019.1710837
– volume: 62
  start-page: 401
  issue: 3
  year: 2013
  ident: e_1_2_11_100_1
  article-title: Multivariate Functional Clustering for the Morphological Analysis of Electrocardiograph Curves
  publication-title: Journal of the Royal Statistical Society Series C: Applied Statistics
  doi: 10.1111/j.1467-9876.2012.01062.x
– volume: 17
  start-page: 91
  issue: 7
  year: 2023
  ident: e_1_2_11_248_1
  article-title: Review of Clustering Methods for Functional Data
  publication-title: ACM Transactions on Knowledge Discovery From Data
  doi: 10.1145/3581789
– volume: 32
  start-page: 171
  issue: 1
  year: 2023
  ident: e_1_2_11_221_1
  article-title: Deep Learning With Functional Inputs
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2022.2097914
– volume: 23
  start-page: 25
  issue: 1
  year: 2013
  ident: e_1_2_11_249_1
  article-title: Functional Linear Model With Zero‐Value Coefficient Function at Sub‐Regions
  publication-title: Statistica Sinica
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  ident: e_1_2_11_89_1
  article-title: Algorithm AS 136: A k‐Means Clustering Algorithm
  publication-title: Journal of the Royal Statistical Society Series C: Applied Statistics
– volume: 78
  start-page: 176
  year: 2014
  ident: e_1_2_11_143_1
  article-title: Variable and Boundary Selection for Functional Data via Multiclass Logistic Regression Modeling
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2014.04.015
– ident: e_1_2_11_152_1
– volume: 35
  start-page: 1052
  issue: 3
  year: 2007
  ident: e_1_2_11_244_1
  article-title: Statistical Inferences for Functional Data
  publication-title: The Annals of Statistics
– volume: 41
  start-page: 51
  year: 2014
  ident: e_1_2_11_245_1
  article-title: One‐way ANOVA for Functional Data via Globalizing the Pointwise F‐Test
  publication-title: Scandinavian Journal of Statistics
  doi: 10.1111/sjos.12025
– volume: 66
  start-page: 303
  year: 2014
  ident: e_1_2_11_24_1
  article-title: On Data Depth in Infinite Dimensional Spaces
  publication-title: Annals of the Institute of Statistical Mathematics
  doi: 10.1007/s10463-013-0416-y
– volume: 12
  start-page: 136
  issue: 1
  year: 1982
  ident: e_1_2_11_40_1
  article-title: Asymptotic Theory for the Principal Component Analysis of a Vector Random Function: Some Applications to Statistical Inference
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/0047-259X(82)90088-4
– volume-title: Practical Smoothing: The Joys of P‐Splines
  year: 2021
  ident: e_1_2_11_50_1
  doi: 10.1017/9781108610247
– ident: e_1_2_11_157_1
  doi: 10.1109/WACV51458.2022.00131
– volume: 98
  start-page: 397
  issue: 462
  year: 2003
  ident: e_1_2_11_104_1
  article-title: Clustering for Sparsely Sampled Functional Data
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214503000189
– ident: e_1_2_11_171_1
– volume: 12
  start-page: 1385
  issue: 3
  year: 2018
  ident: e_1_2_11_49_1
  article-title: Statistical Shape Analysis of Simplified Neuronal Trees
  publication-title: The Annals of Applied Statistics
  doi: 10.1214/17-AOAS1107
– volume: 33
  start-page: 774
  year: 2005
  ident: e_1_2_11_154_1
  article-title: Generalized Functional Linear Models
  publication-title: The Annals of Statistics
– volume: 105
  start-page: 46
  year: 2017
  ident: e_1_2_11_67_1
  article-title: A Note on Modeling Sparse Exponential‐Family Functional Response Curves
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2016.07.010
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2023
  ident: e_1_2_11_174_1
– volume: 47
  start-page: 238
  issue: 2
  year: 1985
  ident: e_1_2_11_64_1
  article-title: Kernels for Nonparametric Curve Estimation
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
  doi: 10.1111/j.2517-6161.1985.tb01350.x
– volume: 70
  start-page: 703
  year: 2008
  ident: e_1_2_11_85_1
  article-title: Modelling Sparse Generalized Longitudinal Observations With Latent Gaussian Processes
  publication-title: Journal of the Royal Statistical Society, Series B Statistical Methodology
  doi: 10.1111/j.1467-9868.2008.00656.x
– volume: 38
  start-page: 199
  year: 2009
  ident: e_1_2_11_98_1
  article-title: Forecasting Functional Time Series
  publication-title: Journal of the Korean Statistical Society
  doi: 10.1016/j.jkss.2009.06.002
– volume: 35
  start-page: 1101
  issue: 3
  year: 2020
  ident: e_1_2_11_192_1
  article-title: Clustering Multivariate Functional Data in Group‐Specific Functional Subspaces
  publication-title: Computational Statistics
  doi: 10.1007/s00180-020-00958-4
– volume: 103
  start-page: 727
  year: 2016
  ident: e_1_2_11_162_1
  article-title: Bootstrap‐Based Testing of Equality of Mean Functions or Equality of Covariance Operators for Functional Data
  publication-title: Biometrika
  doi: 10.1093/biomet/asw033
– volume: 30
  start-page: 129
  issue: 1
  year: 2020
  ident: e_1_2_11_31_1
  article-title: Nonlinear Mixed‐Effects Scalar‐on‐Function Models and Variable Selection
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-019-09871-3
– volume: 199
  year: 2024
  ident: e_1_2_11_173_1
  article-title: Tests for Equality of Several Covariance Matrix Functions for Multivariate Functional Data
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2023.105243
– volume: 59
  start-page: 153
  year: 2018
  ident: e_1_2_11_75_1
  article-title: Selected Statistical Methods of Data Analysis for Multivariate Functional Data
  publication-title: Statistical Papers
  doi: 10.1007/s00362-016-0757-8
– volume: 85
  start-page: 842
  issue: 3
  year: 2023
  ident: e_1_2_11_122_1
  article-title: Fast and Fair Simultaneous Confidence Bands for Functional Parameters
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
  doi: 10.1093/jrsssb/qkad026
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: e_1_2_11_92_1
  article-title: Multilayer Feedforward Networks are Universal Approximators
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90020-8
– volume: 30
  start-page: 468
  issue: 4
  year: 2015
  ident: e_1_2_11_139_1
  article-title: Functional Data Analysis of Amplitude and Phase Variation
  publication-title: Statistical Science
  doi: 10.1214/15-STS524
– volume: 11
  start-page: 1351
  issue: 1
  year: 2017
  ident: e_1_2_11_6_1
  article-title: The Function‐on‐Scalar LASSO With Applications to Longitudinal GWAS
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/17-EJS1260
– volume: 30
  start-page: 715
  issue: 12
  year: 2016
  ident: e_1_2_11_149_1
  article-title: Random Forests for Functional Covariates
  publication-title: Journal of Chemometrics
  doi: 10.1002/cem.2849
– volume: 34
  start-page: 201
  issue: 4
  year: 2010
  ident: e_1_2_11_227_1
  article-title: Bayes Linear Spaces
  publication-title: SORT: Statistics and Operations Research Transactions
– volume-title: Applied Compositional Data Analysis—With Worked Examples in R
  year: 2018
  ident: e_1_2_11_58_1
  doi: 10.1007/978-3-319-96422-5
– volume: 120
  start-page: 25
  year: 2018
  ident: e_1_2_11_22_1
  article-title: Fast Symmetric Additive Covariance Smoothing
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2017.11.002
– volume: 103
  start-page: 411
  issue: 3
  year: 2019
  ident: e_1_2_11_220_1
  article-title: A Comparison of Testing Methods in Scalar‐on‐Function Regression
  publication-title: AStA Advances in Statistical Analysis
  doi: 10.1007/s10182-018-00337-x
– volume: 113
  start-page: 1210
  year: 2018
  ident: e_1_2_11_10_1
  article-title: On the Use of Reproducing Kernel Hilbert Spaces in Functional Classification
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2017.1320287
– ident: e_1_2_11_80_1
– volume: 37
  start-page: 4771
  issue: 30
  year: 2018
  ident: e_1_2_11_110_1
  article-title: Nonlinear Association Structures in Flexible Bayesian Additive Joint Models
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.7967
– volume: 94
  start-page: 1
  issue: 10
  year: 2020
  ident: e_1_2_11_17_1
  article-title: Boosting Functional Regression Models With Fdboost
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v094.i10
– volume: 32
  start-page: 630
  issue: 4
  year: 2017
  ident: e_1_2_11_69_1
  article-title: On a General Definition of Depth for Functional Data
  publication-title: Statistical Science
  doi: 10.1214/17-STS625
– ident: e_1_2_11_156_1
– ident: e_1_2_11_211_1
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: e_1_2_11_60_1
  article-title: Functional Random Forests for Curve Response
  publication-title: Scientific Reports
– volume: 34
  start-page: 571
  issue: 2
  year: 2019
  ident: e_1_2_11_83_1
  article-title: fdANOVA: An R Software Package for Analysis of Variance for Univariate and Multivariate Functional Data
  publication-title: Computational Statistics
  doi: 10.1007/s00180-018-0842-7
– volume: 111
  start-page: 147
  issue: 1
  year: 2024
  ident: e_1_2_11_20_1
  article-title: Populations of Unlabelled Networks: Graph Space Geometry and Generalized Geodesic Principal Components
  publication-title: Biometrika
  doi: 10.1093/biomet/asad024
– ident: e_1_2_11_26_1
  doi: 10.1109/CVPRW53098.2021.00503
– ident: e_1_2_11_95_1
  doi: 10.1137/1.9781611976700.75
– volume: 19
  start-page: 29
  issue: 1
  year: 2010
  ident: e_1_2_11_99_1
  article-title: Rainbow Plots, Bagplots, and Boxplots for Functional Data
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/jcgs.2009.08158
– volume: 97
  start-page: 807
  issue: 4
  year: 2010
  ident: e_1_2_11_57_1
  article-title: Most‐Predictive Design Points for Functional Data Predictors
  publication-title: Biometrika
  doi: 10.1093/biomet/asq058
– volume: 8
  start-page: 289
  issue: 1
  year: 2016
  ident: e_1_2_11_195_1
  article-title: Mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models
  publication-title: The R Journal
  doi: 10.32614/RJ-2016-021
– volume: 26
  start-page: 894
  issue: 4
  year: 2017
  ident: e_1_2_11_132_1
  article-title: Bayesian Registration of Functions With a Gaussian Process Prior
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2017.1336444
– volume: 17
  start-page: 1
  issue: 1
  year: 2017
  ident: e_1_2_11_76_1
  article-title: A General Framework for Functional Regression Modelling
  publication-title: Statistical Modelling
  doi: 10.1177/1471082X16681317
– volume: 41
  start-page: 1
  issue: 1
  year: 1999
  ident: e_1_2_11_141_1
  article-title: Generalized Linear Regression on Sampled Signals and Curves: A p‐spline Approach
  publication-title: Technometrics
  doi: 10.1080/00401706.1999.10485591
– volume: 43
  start-page: 1976
  issue: 10
  year: 2010
  ident: e_1_2_11_165_1
  article-title: Generalized N‐Dimensional Biomechanical Field Analysis Using Statistical Parametric Mapping
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2010.03.008
– volume: 37
  start-page: 1
  year: 1947
  ident: e_1_2_11_107_1
  article-title: Über Lineare Methoden in der Wahrscheinlichkeitsrechnung
  publication-title: Annales Academiae Scientiarum Fennicae
– ident: e_1_2_11_210_1
– volume: 75
  start-page: 577
  issue: 3
  year: 2013
  ident: e_1_2_11_239_1
  article-title: Fast Bivariate P‐Splines: The Sandwich Smoother
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
  doi: 10.1111/rssb.12007
– volume: 29
  start-page: 1165
  year: 2001
  ident: e_1_2_11_7_1
  article-title: The Control of the False Discovery Rate in Multiple Testing Under Dependency
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1013699998
– volume: 22
  start-page: 1359
  year: 2011
  ident: e_1_2_11_204_1
  article-title: False‐Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant
  publication-title: Psychological Science
  doi: 10.1177/0956797611417632
– volume-title: Functional Data Analysis With R and MATLAB
  year: 2009
  ident: e_1_2_11_179_1
  doi: 10.1007/978-0-387-98185-7
– volume: 1
  start-page: 167
  year: 2017
  ident: e_1_2_11_53_1
  article-title: High‐Dimensional Adaptive Function‐on‐Scalar Regression
  publication-title: Econometrics and Statistics
  doi: 10.1016/j.ecosta.2016.08.001
– volume: 180
  start-page: 49
  year: 2017
  ident: e_1_2_11_68_1
  article-title: Statistical Inference for Stochastic Processes: Two‐Sample Hypothesis Tests
  publication-title: Journal of Statistical Planning and Inference
  doi: 10.1016/j.jspi.2016.08.004
– volume: 112
  start-page: 164
  year: 2013
  ident: e_1_2_11_101_1
  article-title: Funclust: A Curves Clustering Method Using Functional Random Variables Density Approximation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.042
– volume: 99
  start-page: 813
  year: 2012
  ident: e_1_2_11_117_1
  article-title: Dispersion Operators and Resistant Second‐Order Analysis of Functional Data
  publication-title: Biometrika
  doi: 10.1093/biomet/ass037
– volume: 20
  start-page: 316
  issue: 2
  year: 2011
  ident: e_1_2_11_214_1
  article-title: Functional Boxplots
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/jcgs.2011.09224
– volume-title: Introduction to Functional Data Analysis
  year: 2017
  ident: e_1_2_11_112_1
  doi: 10.1201/9781315117416
– ident: e_1_2_11_108_1
– volume: 19
  start-page: 18
  issue: 1
  year: 2013
  ident: e_1_2_11_21_1
  article-title: Efficient and Fast Estimation of the Geometric Median in Hilbert Spaces With an Averaged Stochastic Gradient Algorithm
  publication-title: Bernoulli
  doi: 10.3150/11-BEJ390
– volume: 68
  start-page: 179
  issue: 2
  year: 2006
  ident: e_1_2_11_151_1
  article-title: Wavelet‐Based Functional Mixed Models
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
  doi: 10.1111/j.1467-9868.2006.00539.x
– volume: 32
  start-page: 593
  issue: 4
  year: 2009
  ident: e_1_2_11_97_1
  article-title: Intrinsic MANOVA for Riemannian Manifolds With an Application to Kendall's Space of Planar Shapes
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2009.117
– volume: 105
  start-page: 171
  year: 2013
  ident: e_1_2_11_222_1
  article-title: Geodesic Regression and the Theory of Least Squares on Riemannian Manifolds
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-012-0591-y
– volume: 101
  start-page: 18
  issue: 473
  year: 2006
  ident: e_1_2_11_90_1
  article-title: A Quantitative Study of Gene Regulation Involved in the Immune Response of Anopheline Mosquitoes
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214505000000187
– volume: 32
  start-page: 5222
  issue: 30
  year: 2013
  ident: e_1_2_11_218_1
  article-title: An Introduction With Medical Applications to Functional Data Analysis
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.5989
– volume: 80
  start-page: 239
  year: 2018
  ident: e_1_2_11_34_1
  article-title: A Geometric Approach to Confidence Regions and Bands for Functional Parameters
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
  doi: 10.1111/rssb.12239
– volume: 67
  start-page: 621
  issue: 3
  year: 2018
  ident: e_1_2_11_187_1
  article-title: Boosting Factor‐Specific Functional Historical Models for the Detection of Synchronization in Bioelectrical Signals
  publication-title: Journal of the Royal Statistical Society Series C: Applied Statistics
  doi: 10.1111/rssc.12241
– ident: e_1_2_11_88_1
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: e_1_2_11_158_1
  article-title: A Survey on Transfer Learning
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2009.191
– volume: 9
  year: 2022
  ident: e_1_2_11_229_1
  article-title: Supervised Learning for Analysing Movement Patterns in a Virtual Reality Experiment
  publication-title: Royal Society Open Science
  doi: 10.1098/rsos.211594
– volume: 188
  year: 2022
  ident: e_1_2_11_2_1
  article-title: Variable Selection in Functional Regression Models: A Review
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2021.104871
– volume-title: Analysis of Variance for Functional Data
  year: 2013
  ident: e_1_2_11_243_1
  doi: 10.1201/b15005
– volume: 49
  start-page: 1468
  issue: 9
  year: 2016
  ident: e_1_2_11_167_1
  article-title: The Probability of False Positives in Zero‐Dimensional Analyses of One‐Dimensional Kinematic, Force and EMG Trajectories
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2016.03.032
– volume: 110
  start-page: 378
  issue: 509
  year: 2015
  ident: e_1_2_11_4_1
  article-title: On the Prediction of Stationary Functional Time Series
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2014.909317
– volume: 33
  start-page: 6247
  issue: 11
  year: 2021
  ident: e_1_2_11_51_1
  article-title: Automatic Clustering Algorithms: A Systematic Review and Bibliometric Analysis of Relevant Literature
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-020-05395-4
– volume: 20
  start-page: 93
  issue: 1
  year: 2003
  ident: e_1_2_11_219_1
  article-title: Clustering Functional Data
  publication-title: Journal of Classification
  doi: 10.1007/s00357-003-0007-3
– volume: 25
  start-page: 997
  issue: 5
  year: 2015
  ident: e_1_2_11_147_1
  article-title: Restricted Likelihood Ratio Tests for Linearity in Scalar‐on‐Function Regression
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-014-9473-1
– ident: e_1_2_11_23_1
  doi: 10.32614/CRAN.package.slasso
– volume: 59
  start-page: 1144
  issue: 6
  year: 2017
  ident: e_1_2_11_109_1
  article-title: Flexible Bayesian Additive Joint Models With an Application to Type 1 Diabetes Research
  publication-title: Biometrical Journal
  doi: 10.1002/bimj.201600224
– volume-title: Functional and Shape Data Analysis
  year: 2016
  ident: e_1_2_11_206_1
  doi: 10.1007/978-1-4939-4020-2
– volume: 7
  start-page: 1444
  year: 2016
  ident: e_1_2_11_217_1
  article-title: A Tutorial on Hunting Statistical Significance by Chasing n
  publication-title: Frontiers in Psychology
  doi: 10.3389/fpsyg.2016.01444
– volume: 10
  start-page: 340
  year: 2006
  ident: e_1_2_11_38_1
  article-title: Nearest Neighbor Classification in Infinite Dimension
  publication-title: ESAIM: Probability and Statistics
  doi: 10.1051/ps:2006014
– volume: 74
  start-page: 267
  year: 2012
  ident: e_1_2_11_42_1
  article-title: Achieving Near Perfect Classification for Functional Data
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
  doi: 10.1111/j.1467-9868.2011.01003.x
– volume-title: An Invitation to Statistics in Wasserstein Space
  year: 2020
  ident: e_1_2_11_161_1
  doi: 10.1007/978-3-030-38438-8
– volume: 129
  year: 2021
  ident: e_1_2_11_150_1
  article-title: Pedobarographic Statistical Parametric Mapping of Plantar Pressure Data in New and Confident Walking Infants: A Preliminary Analysis
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2021.110757
– ident: e_1_2_11_250_1
– volume: 124
  start-page: 15
  year: 2018
  ident: e_1_2_11_78_1
  article-title: Testing the Equality of Several Covariance Functions for Functional Data: A Supremum‐Norm Based Test
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2018.02.002
– volume: 113
  start-page: 649
  issue: 522
  year: 2018
  ident: e_1_2_11_86_1
  article-title: Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2016.1273115
– volume: 19
  start-page: 154
  issue: 1
  year: 2010
  ident: e_1_2_11_224_1
  article-title: Feature Extraction in Signal Regression: A Boosting Technique for Functional Data Regression
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/jcgs.2009.07176
– volume-title: Inference for Functional Data With Applications
  year: 2012
  ident: e_1_2_11_93_1
  doi: 10.1007/978-1-4614-3655-3
– volume: 24
  start-page: 477
  issue: 2
  year: 2015
  ident: e_1_2_11_190_1
  article-title: Functional Additive Mixed Models
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2014.901914
– volume: 21
  start-page: 1100
  issue: 10
  year: 2018
  ident: e_1_2_11_234_1
  article-title: A Force Profile Analysis Comparison Between Functional Data Analysis, Statistical Parametric Mapping and Statistical Non‐Parametric Mapping in On‐Water Single Sculling
  publication-title: Journal of Science and Medicine in Sport
  doi: 10.1016/j.jsams.2018.03.009
– volume: 351
  start-page: 139
  year: 2013
  ident: e_1_2_11_5_1
  article-title: Remark on the Finite‐Dimensional Character of Certain Results of Functional Statistics
  publication-title: Comptes Rendus de l'Académie des Sciences ‐ Series I ‐ Mathematics
– ident: e_1_2_11_134_1
– volume: 188
  year: 2022
  ident: e_1_2_11_120_1
  article-title: From Multivariate to Functional Data Analysis: Fundamentals, Recent Developments, and Emerging Areas
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2021.104806
– volume: 73
  start-page: 3
  year: 2011
  ident: e_1_2_11_235_1
  article-title: Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
  doi: 10.1111/j.1467-9868.2010.00749.x
– volume: 72
  start-page: 835
  year: 2016
  ident: e_1_2_11_170_1
  article-title: The Interval Testing Procedure: A General Framework for Inference in Functional Data Analysis
  publication-title: Biometrics
  doi: 10.1111/biom.12476
– ident: e_1_2_11_202_1
– ident: e_1_2_11_180_1
– volume: 61
  start-page: 99
  year: 2019
  ident: e_1_2_11_205_1
  article-title: Linear Hypothesis Testing With Functional Data
  publication-title: Technometrics
  doi: 10.1080/00401706.2018.1456976
– ident: e_1_2_11_194_1
– volume: 43
  start-page: 2296
  year: 2015
  ident: e_1_2_11_52_1
  article-title: Functional Additive Regression
  publication-title: The Annals of Statistics
– volume: 481
  start-page: 445
  year: 2019
  ident: e_1_2_11_12_1
  article-title: Variable Selection in Classification for Multivariate Functional Data
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.12.060
– volume: 21
  start-page: 224
  issue: 3
  year: 2010
  ident: e_1_2_11_43_1
  article-title: Statistics for Spatial Functional Data: Some Recent Contributions
  publication-title: Environmetrics
  doi: 10.1002/env.1003
– volume: 4
  start-page: 212
  issue: 1
  year: 2015
  ident: e_1_2_11_163_1
  article-title: Longitudinal Functional Data Analysis
  publication-title: Stat
  doi: 10.1002/sta4.89
– volume-title: Theoretical Foundations of functional Data analysis, With an Introduction to Linear Operators
  year: 2015
  ident: e_1_2_11_96_1
  doi: 10.1002/9781118762547
– volume: 107
  start-page: 1599
  issue: 500
  year: 2012
  ident: e_1_2_11_29_1
  article-title: Modeling Repeated Functional Observations
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2012.734196
– volume: 53
  start-page: 233
  issue: 1
  year: 1991
  ident: e_1_2_11_183_1
  article-title: Estimating the Mean and Covariance Structure Nonparametrically When the Data are Curves
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
  doi: 10.1111/j.2517-6161.1991.tb01821.x
– volume: 56
  start-page: 732
  issue: 5
  year: 2014
  ident: e_1_2_11_138_1
  article-title: Overview of Object Oriented Data Analysis
  publication-title: Biometrical Journal
  doi: 10.1002/bimj.201300072
– volume: 20
  start-page: 353
  year: 2015
  ident: e_1_2_11_66_1
  article-title: Marginal Functional Regression Models for Analyzing the Feeding Behavior of Pigs
  publication-title: Journal of Agricultural, Biological and Environmental Statistics
  doi: 10.1007/s13253-015-0212-7
– volume: 55
  start-page: 3304
  issue: 12
  year: 2011
  ident: e_1_2_11_144_1
  article-title: Variable Selection for Functional Regression Models via the l1 Regularization
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2011.06.016
– ident: e_1_2_11_231_1
– volume: 12
  start-page: 4602
  issue: 2
  year: 2018
  ident: e_1_2_11_164_1
  article-title: Simultaneous Variable Selection and Smoothing for High‐Dimensional Function‐on‐Scalar Regression
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/18-EJS1509
– volume-title: Analyzing Compositional Data With R
  year: 2013
  ident: e_1_2_11_226_1
  doi: 10.1007/978-3-642-36809-7
– ident: e_1_2_11_146_1
– volume: 69
  start-page: 730
  issue: 7
  year: 2006
  ident: e_1_2_11_185_1
  article-title: Support Vector Machine for Functional Data Classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.010
– volume: 71
  start-page: 92
  year: 2014
  ident: e_1_2_11_103_1
  article-title: Model‐Based Clustering for Multivariate Functional Data
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2012.12.004
– volume: 47
  start-page: 1784
  issue: 8
  year: 2014
  ident: e_1_2_11_140_1
  article-title: Strain Energy in the Femoral Neck During Exercise
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2014.03.036
– volume: 10
  start-page: 547
  year: 2023
  ident: e_1_2_11_113_1
  article-title: Second‐Generation Functional Data
  publication-title: Annual Review of Statistics and Its Application
  doi: 10.1146/annurev-statistics-032921-033726
– volume: 8
  start-page: 231
  issue: 3
  year: 2014
  ident: e_1_2_11_102_1
  article-title: Functional Data Clustering: A Survey
  publication-title: Advances in Data Analysis and Classification
  doi: 10.1007/s11634-013-0158-y
– volume: 71
  start-page: 247
  issue: 1
  year: 2015
  ident: e_1_2_11_203_1
  article-title: Structured Functional Principal Component Analysis
  publication-title: Biometrics
  doi: 10.1111/biom.12236
– ident: e_1_2_11_74_1
– volume: 146
  start-page: 186
  year: 2015
  ident: e_1_2_11_61_1
  article-title: Nearest Neighbor Ensembles for Functional Data With Interpretable Feature Selection
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2015.04.019
– volume: 14
  start-page: 1239
  year: 2004
  ident: e_1_2_11_199_1
  article-title: An F Test for Linear Models With Functional Responses
  publication-title: Statistica Sinica
– volume: 28
  start-page: 813
  year: 2016
  ident: e_1_2_11_114_1
  article-title: Classical Testing in Functional Linear Models
  publication-title: Journal of Nonparametric Statistics
  doi: 10.1080/10485252.2016.1231806
– volume: 55
  start-page: 2619
  issue: 9
  year: 2011
  ident: e_1_2_11_9_1
  article-title: Principal Components for Multivariate Functional Data
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2011.03.011
– volume: 114
  start-page: 1251
  year: 2019
  ident: e_1_2_11_79_1
  article-title: New Tests for Equality of Several Covariance Functions for Functional Data
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2018.1483827
– volume: 8
  start-page: 1797
  issue: 2
  year: 2014
  ident: e_1_2_11_84_1
  article-title: Analysis of Spike Train Data: A Multivariate Mixed Effects Model for Phase and Amplitude
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/14-EJS865E
– volume: 69
  start-page: 41
  issue: 1
  year: 2013
  ident: e_1_2_11_71_1
  article-title: Corrected Confidence Bands for Functional Data Using Principal Components
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2012.01808.x
– volume: 74
  start-page: 321
  issue: 2
  year: 2022
  ident: e_1_2_11_54_1
  article-title: Variable Selection for Functional Linear Models With Strong Heredity Constraint
  publication-title: Annals of the Institute of Statistical Mathematics
  doi: 10.1007/s10463-021-00798-z
– volume: 5
  start-page: 281
  issue: 4
  year: 2011
  ident: e_1_2_11_14_1
  article-title: Model‐Based Clustering of Time Series in Group‐Specific Functional Subspaces
  publication-title: Advances in Data Analysis and Classification
  doi: 10.1007/s11634-011-0095-6
– volume: 110
  start-page: 361
  issue: 2
  year: 2023
  ident: e_1_2_11_128_1
  article-title: Additive Models for Symmetric Positive‐Definite Matrices and Lie Groups
  publication-title: Biometrika
  doi: 10.1093/biomet/asac055
– volume: 75
  start-page: 103
  year: 2013
  ident: e_1_2_11_94_1
  article-title: Estimation of the Mean of Functional Time Series and a Two‐Sample Problem
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
  doi: 10.1111/j.1467-9868.2012.01032.x
– volume: 117
  start-page: 1964
  issue: 540
  year: 2022
  ident: e_1_2_11_145_1
  article-title: Bayesian Framework for Simultaneous Registration and Estimation of Noisy, Sparse, and Fragmented Functional Data
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2021.1893179
– volume-title: Gaussian Process Regression Analysis for Functional Data
  year: 2011
  ident: e_1_2_11_200_1
  doi: 10.1201/b11038
– volume: 209
  start-page: 415
  issue: 441
  year: 1909
  ident: e_1_2_11_148_1
  article-title: Functions of Positive and Negative Type, and Their Connection With the Theory of Integral Equations
  publication-title: Philosophical Transactions of the Royal Society of London. Series A
– volume: 33
  start-page: 1415
  issue: 7
  year: 2010
  ident: e_1_2_11_207_1
  article-title: Shape Analysis of Elastic Curves in Euclidean Spaces
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2010.184
– volume: 15
  start-page: 279
  issue: 3
  year: 2015
  ident: e_1_2_11_15_1
  article-title: The Functional Linear Array Model
  publication-title: Statistical Modelling
  doi: 10.1177/1471082X14566913
– volume: 25
  start-page: 14
  issue: 1
  year: 2015
  ident: e_1_2_11_184_1
  article-title: Statistical Parametric Mapping (spm) for Alpha‐Based Statistical Analyses of Multi‐Muscle EMG Time‐Series
  publication-title: Journal of Electromyography and Kinesiology
  doi: 10.1016/j.jelekin.2014.10.018
– volume: 50
  start-page: 53
  year: 2021
  ident: e_1_2_11_118_1
  article-title: Two‐Sample Tests for Functional Data Using Characteristic Functions
  publication-title: Austrian Journal of Statistics
  doi: 10.17713/ajs.v50i4.1099
– volume: 16
  start-page: 6232
  issue: 2
  year: 2022
  ident: e_1_2_11_91_1
  article-title: Preprocessing Noisy Functional Data: A Multivariate Perspective
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/22-EJS2083
– volume: 20
  start-page: 830
  issue: 4
  year: 2011
  ident: e_1_2_11_70_1
  article-title: Penalized Functional Regression
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/jcgs.2010.10007
– volume: 27
  start-page: 923
  issue: 4
  year: 2018
  ident: e_1_2_11_39_1
  article-title: Multivariate Functional Data Visualization and Outlier Detection
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2018.1473781
– volume: 4
  start-page: 1022
  year: 2010
  ident: e_1_2_11_77_1
  article-title: Longitudinal Functional Principal Component Analysis
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/10-EJS575
– volume: 15
  start-page: 115
  issue: 2
  year: 1988
  ident: e_1_2_11_136_1
  article-title: Directional Data Analysis: An Overview
  publication-title: Journal of Applied Statistics
  doi: 10.1080/02664768800000018
– ident: e_1_2_11_208_1
– volume: 24
  start-page: 1571
  year: 2014
  ident: e_1_2_11_32_1
  article-title: Multivariate Functional Principal Component Analysis: A Normalization Approach
  publication-title: Statistica Sinica
– volume: 60
  start-page: 351
  issue: 2
  year: 1998
  ident: e_1_2_11_177_1
  article-title: Curve Registration
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
  doi: 10.1111/1467-9868.00129
– volume: 85
  start-page: 228
  issue: 2
  year: 2017
  ident: e_1_2_11_182_1
  article-title: Methods for Scalar‐on‐Function Regression
  publication-title: International Statistical Review
  doi: 10.1111/insr.12163
– volume: 17
  start-page: 1
  issue: 1
  year: 2016
  ident: e_1_2_11_123_1
  article-title: Effects of two Neuromuscular Training Programs on Running Biomechanics With Load Carriage: A Study Protocol for a Randomised Controlled Trial
  publication-title: BMC Musculoskeletal Disorders
– volume-title: Modeling and Analysis of Compositional Data
  year: 2015
  ident: e_1_2_11_168_1
  doi: 10.1002/9781119003144
– volume: 23
  start-page: 51
  issue: 1
  year: 2013
  ident: e_1_2_11_121_1
  article-title: Shrinkage Estimation and Selection for Multiple Functional Regression
  publication-title: Statistica Sinica
– volume: 100
  start-page: 577
  issue: 470
  year: 2005
  ident: e_1_2_11_240_1
  article-title: Functional Data Analysis for Sparse Longitudinal Data
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214504000001745
– volume: 16
  year: 2023
  ident: e_1_2_11_233_1
  article-title: Review on Functional Data Classification
  publication-title: WIREs Computational Statistics
  doi: 10.1002/wics.1638
– volume: 56
  start-page: 483
  issue: 4
  year: 2014
  ident: e_1_2_11_216_1
  article-title: Restricted Likelihood Ratio Tests for Functional Effects in the Functional Linear Model
  publication-title: Technometrics
  doi: 10.1080/00401706.2013.863163
– volume: 5
  year: 2017
  ident: e_1_2_11_62_1
  article-title: A Public Dataset of Running Biomechanics and the Effects of Running Speed on Lower Extremity Kinematics and Kinetics
  publication-title: PeerJ
  doi: 10.7717/peerj.3298
– volume: 76
  start-page: 146
  year: 2020
  ident: e_1_2_11_125_1
  article-title: Classifying Neck Pain Status Using Scalar and Functional Biomechanical Variables–Development of a Method Using Functional Data Boosting
  publication-title: Gait & Posture
  doi: 10.1016/j.gaitpost.2019.12.008
– volume: 71
  start-page: 344
  issue: 2
  year: 2015
  ident: e_1_2_11_73_1
  article-title: Generalized Multilevel Function‐on‐Scalar Regression and Principal Component Analysis
  publication-title: Biometrics
  doi: 10.1111/biom.12278
– volume: 49
  start-page: 2611
  year: 2021
  ident: e_1_2_11_106_1
  article-title: Additive Regression for Non‐Euclidean Responses and Predictors
  publication-title: The Annals of Statistics
  doi: 10.1214/21-AOS2048
– volume: 84
  start-page: 1785
  issue: 5
  year: 2022
  ident: e_1_2_11_189_1
  article-title: Covnet: Covariance Networks for Functional Data on Multidimensional Domains
  publication-title: Journal of the Royal Statistical Society Series B: Statistical Methodology
  doi: 10.1111/rssb.12551
– volume: 49
  start-page: 3275
  issue: 14
  year: 2016
  ident: e_1_2_11_124_1
  article-title: The Effects of Load Carriage on Joint Work at Different Running Velocities
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2016.08.012
– volume-title: Functional Data Analysis
  year: 2005
  ident: e_1_2_11_178_1
  doi: 10.1007/b98888
– volume: 44
  start-page: 2172
  year: 2017
  ident: e_1_2_11_82_1
  article-title: Multivariate Analysis of Variance for Functional Data
  publication-title: Journal of Applied Statistics
  doi: 10.1080/02664763.2016.1247791
– volume: 2012
  year: 2012
  ident: e_1_2_11_111_1
  article-title: Dependent Functional Data
  publication-title: International Scholarly Research Network, ISRN Probability and Statistics
– volume: 3
  start-page: 458
  issue: 1
  year: 2009
  ident: e_1_2_11_45_1
  article-title: Multilevel Functional Principal Component Analysis
  publication-title: The Annals of Applied Statistics
– volume: 146
  start-page: 301
  year: 2016
  ident: e_1_2_11_33_1
  article-title: Multivariate Functional Linear Regression and Prediction
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2015.10.003
– volume: 132
  start-page: 3
  year: 2019
  ident: e_1_2_11_247_1
  article-title: A New Test for Functional One‐Way ANOVA With Applications to Ischemic Heart Screening
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2018.05.004
– ident: e_1_2_11_223_1
– volume: 147
  start-page: 1
  year: 2014
  ident: e_1_2_11_36_1
  article-title: A Partial Overview of the Theory of Statistics With Functional Data
  publication-title: Journal of Statistical Planning and Inference
  doi: 10.1016/j.jspi.2013.04.002
– volume-title: Generalized Additive Models: An Introduction With R
  year: 2017
  ident: e_1_2_11_237_1
  doi: 10.1201/9781315370279
– volume: 104
  start-page: 718
  issue: 486
  year: 2009
  ident: e_1_2_11_131_1
  article-title: On the Concept of Depth for Functional Data
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/jasa.2009.0108
– volume: 2
  start-page: 86
  issue: 1
  year: 2013
  ident: e_1_2_11_65_1
  article-title: Variable Selection in Generalized Functional Linear Models
  publication-title: Stat
  doi: 10.1002/sta4.20
– ident: e_1_2_11_198_1
– volume: 30
  start-page: 987
  year: 2015
  ident: e_1_2_11_81_1
  article-title: A Comparison of Tests for the One‐Way ANOVA Problem for Functional Data
  publication-title: Computational Statistics
  doi: 10.1007/s00180-015-0555-0
– ident: e_1_2_11_193_1
  doi: 10.1007/s00180-020-00958-4
– volume: 23
  start-page: 303
  issue: 4
  year: 2023
  ident: e_1_2_11_230_1
  article-title: Multivariate Functional Additive Mixed Models
  publication-title: Statistical Modelling
  doi: 10.1177/1471082X211056158
– volume: 220
  start-page: 380
  year: 1945
  ident: e_1_2_11_130_1
  article-title: Fonctions Aléatoires du Second Ordre
  publication-title: Comptes Rendus Académie des Sciences
– volume: 32
  start-page: 1248
  issue: 4
  year: 2023
  ident: e_1_2_11_181_1
  article-title: Nonlinear Functional Modeling Using Neural Networks
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2023.2165498
– ident: e_1_2_11_47_1
  doi: 10.32614/CRAN.package.multiFANOVA
– volume: 92
  start-page: 1494
  year: 1997
  ident: e_1_2_11_18_1
  article-title: Box‐Type Approximations in Nonparametric Factorial Designs
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1997.10473671
– ident: e_1_2_11_44_1
  doi: 10.1109/CVPR.2009.5206848
– volume: 17
  start-page: 519
  year: 2023
  ident: e_1_2_11_197_1
  article-title: Nonparametric Regression and Classification With Functional, Categorical, and Mixed Covariates
  publication-title: Advances in Data Analysis and Classification
  doi: 10.1007/s11634-022-00513-7
– volume-title: Nonparametric Functional Data Analysis
  year: 2006
  ident: e_1_2_11_56_1
– ident: e_1_2_11_188_1
– volume: 64
  start-page: 335
  issue: 3
  year: 2022
  ident: e_1_2_11_46_1
  article-title: Functional PCA With Covariate‐Dependent Mean and Covariance Structure
  publication-title: Technometrics
  doi: 10.1080/00401706.2021.2008502
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: e_1_2_11_175_1
  article-title: Functional Random Forest With Applications in Dose‐Response Predictions
  publication-title: Scientific Reports
– volume: 13
  start-page: 43
  year: 2013
  ident: e_1_2_11_225_1
  article-title: Applications of Functional Data Analysis: A Systematic Review
  publication-title: BMC Medical Research Methodology
  doi: 10.1186/1471-2288-13-43
– volume: 190
  year: 2022
  ident: e_1_2_11_19_1
  article-title: Graph‐Valued Regression: Prediction of Unlabelled Networks in a Non‐Euclidean Graph Space
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2022.104950
– ident: e_1_2_11_169_1
– volume: 37
  start-page: 2083
  issue: 5
  year: 2009
  ident: e_1_2_11_105_1
  article-title: Functional Linear Regression That's Interpretable
  publication-title: The Annals of Statistics
– volume: 47
  start-page: 111
  year: 2004
  ident: e_1_2_11_37_1
  article-title: An ANOVA Test for Functional Data
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2003.10.021
– volume: 111
  start-page: 1548
  year: 2016
  ident: e_1_2_11_236_1
  article-title: Smoothing Parameter and Model Selection for General Smooth Models
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2016.1180986
– volume: 21
  start-page: 1431
  year: 2011
  ident: e_1_2_11_242_1
  article-title: Statistical Inferences for Linear Models With Functional Responses
  publication-title: Statistica Sinica
  doi: 10.5705/ss.2009.302
– volume: 36
  start-page: 264
  year: 2024
  ident: e_1_2_11_196_1
  article-title: Uniform Convergence Rates and Automatic Variable Selection in Nonparametric Regression With Functional and Categorical Covariates
  publication-title: Journal of Nonparametric Statistics
  doi: 10.1080/10485252.2023.2207673
– volume: 21
  start-page: 1735
  year: 2011
  ident: e_1_2_11_41_1
  article-title: Simultaneous Confidence Bands for Nonparametric Regression With Functional Data
  publication-title: Statistica Sinica
  doi: 10.5705/ss.2009.207
– volume: 78
  start-page: 435
  issue: 2
  year: 2022
  ident: e_1_2_11_119_1
  article-title: Joint Model for Survival and Multivariate Sparse Functional Data With Application to a Study of Alzheimer's Disease
  publication-title: Biometrics
  doi: 10.1111/biom.13427
– ident: e_1_2_11_115_1
– volume-title: Linear Processes in Function Spaces: Theory and Applications
  year: 2000
  ident: e_1_2_11_13_1
  doi: 10.1007/978-1-4612-1154-9
– volume: 188
  start-page: 67
  year: 2017
  ident: e_1_2_11_25_1
  article-title: Simultaneous Confidence Bands for Functional Regression Models
  publication-title: Journal of Statistical Planning and Inference
  doi: 10.1016/j.jspi.2017.03.002
SSID ssj0009042
Score 2.507091
SecondaryResourceType review_article
Snippet ABSTRACT Functional data analysis (FDA) is a statistical framework that allows for the analysis of curves, images, or functions on higher dimensional domains....
Functional data analysis (FDA) is a statistical framework that allows for the analysis of curves, images, or functions on higher dimensional domains. The goals...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202300363
SubjectTerms Biometry - methods
Biophysics
Classification
Clustering
curve data
Data Analysis
Dimensional analysis
functional regression
Functionals
Human motion
Humans
image data
longitudinal data analysis
Machine Learning
Motor task performance
Multivariate analysis
object‐oriented data analysis
Outliers (statistics)
Phase variations
Principal Component Analysis
Principal components analysis
Software
Statistical analysis
Statistical inference
Title Functional Data Analysis: An Introduction and Recent Developments
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.202300363
https://www.ncbi.nlm.nih.gov/pubmed/39330918
https://www.proquest.com/docview/3116759705
https://www.proquest.com/docview/3110408047
Volume 66
WOSCitedRecordID wos001320349900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-4036
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009042
  issn: 0323-3847
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB48wRfvY3WVCoJP1TZJm9Q3r0VFRURh30qOFla0K7ur4L930nS7LiIivpTSDu2QZDLfTJJvAPY0yRHGU3s4hmubusl9IVTiy4jmITXo80NTFpvgt7ei3U7uvpzid_wQdcLNWkY5X1sDl6p_OCINVZ2XpwNb_NtSqtBJmLYnqzD8mj67bz1ej4h3A-ZWEgj1KU7FQ-LGgByOf2HcMX1Dm-PgtfQ-rYX_670I8xXy9I7dUFmCiaxYhllXi_JjBY5b6OFcYtA7kwPpDelKjvDOu7Qb2o1jmvVkYTyEm-iuvC97jvqr8Ng6fzi98Kv6Cr6mMQJrgcGFijFiUSSWgoXG8FwyqpiOKE8ymaD1c0JCZWLGI43IDd2cRKeqA5nHiaFrMFV0i2wDvDwkPKNBzrMoY0wpmUc6iSId6EQJanQD_GHjproiH7c1MJ5TR5tMUtssad0sDdiv5V8d7caPks1hX6WV-fVTaleXMFQKogbs1q_RcOxqiCyy7lspgxOYCBhvwLrr4_pX1KZ5klCg2mVX_qJDenJ5c2W52Db_KL8Fc_iQuc2BTZga9N6ybZjR74NOv7cDk4Td4ZW3xU41rD8BMZn0AA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7oVPTF-2VeKwg-VdskbVrf5mU43cYeFHwrubSgaBW3Cf57T5quOkRE8K3QUxqSnHxfTk6-A3CgSIY0nprLMVyZ0E3mRpGMXRHQzKcaMd_XRbEJ3u1Gd3dxr8wmNHdhrD5EFXAznlGs18bBTUD6-FM1VN4_PRyZ6t9GU4VOwhRDaDJZfYT1PnV3PWYPEgh1Ka7EI91GjxyPfz-OS9_I5jh3LcCnufAPzV6E-ZJ5Og07VZZgIs2XYcbWonxfgUYTEc4GBp1zMRDOSK7kBJ-clklo11Zp1hG5dpBuIlw5X3KO-qtw27y4Obt0y_oKrqIhEusINxcyxB2LJKGImK81zwSjkqmA8jgVMXo_J8SXOmQ8UMjcEOYEgqryRBbGmq5BLX_O0w1wMp_wlHoZT4OUMSlFFqg4CJSnYhlRrergjno3UaX4uKmB8ZhY2WSSmG5Jqm6pw2Fl_2JlN3603B4NVlK6Xz-h5nQJt0peUIf96jU6jjkNEXn6PCxscAGLPMbrsG4HufoVNWGe2I-w2cVY_tKG5LTVuTJabJt_tN-D2cubTjtpt7rXWzCHBswmCm5DbfA6THdgWr0N7vuvu8Ws_gDaA_SW
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS9xAFD6oVfGl9dZ2W6sRBJ-iyVwyiW-2dnG9LPug4FuYKyg1irsK_nvPZLLRRaQIvgVyQoaZOfN9c-bMdwC2NHFI46m_HCO0D924OM9VEUtOXUoNYn5q6mITot_PLy6KQZNN6O_CBH2INuDmPaNer72D21vjdp9VQ9Xl9dWOr_7tNVXoNHxiXNS-SdjgWXc3YeEggdCY4ko81m1MyO7k95O49IpsTnLXGny6Xz6g2YvwuWGe0X6YKkswZatlmAu1KB9XYL-LCBcCg9GBHMloLFeyh09Rzye0m6A0G8nKREg3Ea6iFzlHw1U47_49-3MYN_UVYk0zJNY5bi5UhjsWRTKZs9QY4SSjimlORWFlgd4vCEmVyZjgGpkbwpxEUNWJdFlh6FeYqW4q-x0ilxJhaeKE5ZYxpaTjuuBcJ7pQOTW6A_G4d0vdiI_7Ghj_yiCbTErfLWXbLR3Ybu1vg-zGm5Zr48EqG_cbltSfLuFWKeEd2Gxfo-P40xBZ2Zv72gYXsDxhogPfwiC3v6I-zFOkOTa7Hsv_tKH83Ts98lpsP95pvwHzg4NuedLrH_-EBXzPQp7gGsyM7u7tL5jVD6PL4d16PamfAHO79BE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+Data+Analysis%3A+An+Introduction+and+Recent+Developments&rft.jtitle=Biometrical+journal&rft.au=Gertheiss%2C+Jan&rft.au=R%C3%BCgamer%2C+David&rft.au=Liew%2C+Bernard+X+W&rft.au=Greven%2C+Sonja&rft.date=2024-10-01&rft.issn=1521-4036&rft.eissn=1521-4036&rft.volume=66&rft.issue=7&rft.spage=e202300363&rft_id=info:doi/10.1002%2Fbimj.202300363&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon