Generalized Riemann Problem on the Decay of a Discontinuity with Additional Conditions at the Boundary and Its Application for Constructing Computational Algorithms

We construct an approximation of the fundamental solution of a problem for a hyperbolic system of first-order linear differential equations with constant coefficients. We propose an algorithm for an approximate solution of the generalized Riemann problem on the decay of a discontinuity under additio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical sciences (New York, N.Y.) Vol. 263; no. 4; pp. 498 - 510
Main Authors: Skalko, Yu. I., Gridnev, S. Yu
Format: Journal Article
Language:English
Published: New York Springer US 09.05.2022
Springer
Springer Nature B.V
Subjects:
ISSN:1072-3374, 1573-8795
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We construct an approximation of the fundamental solution of a problem for a hyperbolic system of first-order linear differential equations with constant coefficients. We propose an algorithm for an approximate solution of the generalized Riemann problem on the decay of a discontinuity under additional conditions at the boundaries, which allows one to reduce the problem of finding the values of variables on both sides of the discontinuity surface of the initial data to the solution of a system of algebraic equations. We construct a computational algorithm for an approximate solution of the initial-boundary-value problem for a hyperbolic system of first-order linear differential equations. The algorithm is implemented for a system of equations of elastic dynamics; it is used for solving some applied problems associated with oil production.
AbstractList We construct an approximation of the fundamental solution of a problem for a hyperbolic system of first-order linear differential equations with constant coefficients. We propose an algorithm for an approximate solution of the generalized Riemann problem on the decay of a discontinuity under additional conditions at the boundaries, which allows one to reduce the problem of finding the values of variables on both sides of the discontinuity surface of the initial data to the solution of a system of algebraic equations. We construct a computational algorithm for an approximate solution of the initial-boundary-value problem for a hyperbolic system of first-order linear differential equations. The algorithm is implemented for a system of equations of elastic dynamics; it is used for solving some applied problems associated with oil production.
We construct an approximation of the fundamental solution of a problem for a hyperbolic system of first-order linear differential equations with constant coefficients. We propose an algorithm for an approximate solution of the generalized Riemann problem on the decay of a discontinuity under additional conditions at the boundaries, which allows one to reduce the problem of finding the values of variables on both sides of the discontinuity surface of the initial data to the solution of a system of algebraic equations. We construct a computational algorithm for an approximate solution of the initial-boundary-value problem for a hyperbolic system of first-order linear differential equations. The algorithm is implemented for a system of equations of elastic dynamics; it is used for solving some applied problems associated with oil production. Keywords and phrases: decay of a discontinuity, conjugation condition, hyperbolic system, generalized function, Cauchy problem, Green matrix-function, characteristic, Riemann invariant, equation of elastic dynamics. AMS Subject Classification: 35L40, 35L67, 35L45, 35L50
Audience Academic
Author Skalko, Yu. I.
Gridnev, S. Yu
Author_xml – sequence: 1
  givenname: Yu. I.
  surname: Skalko
  fullname: Skalko, Yu. I.
  email: skalko@mail.mipt.ru
  organization: Moscow Institute of Physics and Technology
– sequence: 2
  givenname: S. Yu
  surname: Gridnev
  fullname: Gridnev, S. Yu
  organization: Voronezh State Technical University
BookMark eNp9ksFq3DAQQE1JoUnaH-hJ0FMPTmXJsuWju2nThUBL2p6FLI0dBVtyJZl0-z350GjjQFhYig4aifdGYmbOshPrLGTZ-wJfFBjXn0KBG8ZzTEiOWVOynLzKTgtW05zXDTtJMa5JTmldvsnOQrjDSao4Pc0ersCCl6P5BxrdGJikteiHd90IE3IWxVtAl6DkDrkeSXRpgnI2GruYuEP3Jt6iVmsTjbNyRBtn1zggGZ_Uz26xWvodklajbQyonefRKLmHUO_8XgnRLyqlHNJhmpcon7O14-B8emEKb7PXvRwDvHvez7PfX7_82nzLr79fbTftda5oxUnO6gKYBllzXfKu4V2pVVk1IHssm76vaAMd6SRlCioli4YSBkBIQbHGUENBz7MPa97Zuz8LhCju3OLTX4IgFce8YnXFXqhBjiCM7V30Uk2pMqKtE8erivBE5UeoYa12al5v0vUBf3GET0vDZNRR4eOBsO8L_I2DXEIQ2583hyxZWeVdCB56MXszpb6IAov9AIl1gEQaIPE0QIIkia5SSLAdwL9U4z_WI6tny4A
Cites_doi 10.20537/2076-7633-2014-6-3-347-356
10.1017/CBO9780511791253
10.1111/j.1365-246X.2006.03051.x
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2022
COPYRIGHT 2022 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: COPYRIGHT 2022 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10958-022-05945-2
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList





DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 510
ExternalDocumentID A726886628
10_1007_s10958_022_05945_2
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c3682-571e5dea78d48b98b4dc469eaf0a9ff639eb2ba35ce6ca19325ee22130d0e7e13
IEDL.DBID RSV
ISSN 1072-3374
IngestDate Wed Sep 17 23:59:47 EDT 2025
Sat Nov 29 14:02:15 EST 2025
Mon Nov 24 15:48:54 EST 2025
Sat Nov 29 10:36:56 EST 2025
Mon Nov 24 14:34:19 EST 2025
Sat Nov 29 02:57:32 EST 2025
Fri Feb 21 02:45:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords generalized function
35L40
35L50
35L67
35L45
characteristic
Cauchy problem
decay of a discontinuity
conjugation condition
equation of elastic dynamics
Riemann invariant
Green matrix-function
hyperbolic system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3682-571e5dea78d48b98b4dc469eaf0a9ff639eb2ba35ce6ca19325ee22130d0e7e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10958-022-05945-2.pdf
PQID 2680865765
PQPubID 2043545
PageCount 13
ParticipantIDs proquest_journals_2680865765
gale_infotracmisc_A726886628
gale_infotracgeneralonefile_A726886628
gale_infotracacademiconefile_A726886628
gale_incontextgauss_ISR_A726886628
crossref_primary_10_1007_s10958_022_05945_2
springer_journals_10_1007_s10958_022_05945_2
PublicationCentury 2000
PublicationDate 20220509
PublicationDateYYYYMMDD 2022-05-09
PublicationDate_xml – month: 05
  year: 2022
  text: 20220509
  day: 09
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References GelfandIMShilovGESome Problems of the Theory of Differential Equations1958MoscowGIFML[in Russian]
KaserMDumbserMAn arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes. I. The two-dimensional isotropic case with external source termsGeophys. J. Int.200616685587710.1111/j.1365-246X.2006.03051.x
GelfandIMShilovGEGeneralized Functions. I. Properties and Operations1964New York–LondonAcademic Press
KulikovskyAGPogorelovNVSemenovAYMathematical Problems in Numerical Simulation of Hyperbolic Systems2001MoscowFizmatlit[in Russian]
SkalkoYIRiemann problem of a discontinuity decay in the case of several spatial variablesTr. Mosk. Fiz.-Tekh. Inst.201684169182
SkalkoYICorrect conditions on the boundary separating subdomainsComput. Issled. Model.20146334735610.20537/2076-7633-2014-6-3-347-356
VladimirovVSEquations of Mathematical Physics1981MoscowNauka[in Russian]
LeVequeRLFinite Volume Methods for Hyperbolic Problems2002CambridgeCambridge Univ. Press10.1017/CBO9780511791253
GelfandIMShilovGEGeneralized Functions. II. Spaces of Fundamental and Generalized Functions1968New York–LondonAcademic Press
IM Gelfand (5945_CR3) 1968
M Kaser (5945_CR4) 2006; 166
RL LeVeque (5945_CR6) 2002
YI Skalko (5945_CR7) 2016; 8
YI Skalko (5945_CR8) 2014; 6
VS Vladimirov (5945_CR9) 1981
AG Kulikovsky (5945_CR5) 2001
IM Gelfand (5945_CR1) 1958
IM Gelfand (5945_CR2) 1964
References_xml – reference: SkalkoYIRiemann problem of a discontinuity decay in the case of several spatial variablesTr. Mosk. Fiz.-Tekh. Inst.201684169182
– reference: GelfandIMShilovGEGeneralized Functions. I. Properties and Operations1964New York–LondonAcademic Press
– reference: KaserMDumbserMAn arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes. I. The two-dimensional isotropic case with external source termsGeophys. J. Int.200616685587710.1111/j.1365-246X.2006.03051.x
– reference: SkalkoYICorrect conditions on the boundary separating subdomainsComput. Issled. Model.20146334735610.20537/2076-7633-2014-6-3-347-356
– reference: VladimirovVSEquations of Mathematical Physics1981MoscowNauka[in Russian]
– reference: GelfandIMShilovGEGeneralized Functions. II. Spaces of Fundamental and Generalized Functions1968New York–LondonAcademic Press
– reference: LeVequeRLFinite Volume Methods for Hyperbolic Problems2002CambridgeCambridge Univ. Press10.1017/CBO9780511791253
– reference: GelfandIMShilovGESome Problems of the Theory of Differential Equations1958MoscowGIFML[in Russian]
– reference: KulikovskyAGPogorelovNVSemenovAYMathematical Problems in Numerical Simulation of Hyperbolic Systems2001MoscowFizmatlit[in Russian]
– volume-title: Equations of Mathematical Physics
  year: 1981
  ident: 5945_CR9
– volume-title: Some Problems of the Theory of Differential Equations
  year: 1958
  ident: 5945_CR1
– volume-title: Generalized Functions. I. Properties and Operations
  year: 1964
  ident: 5945_CR2
– volume: 6
  start-page: 347
  issue: 3
  year: 2014
  ident: 5945_CR8
  publication-title: Comput. Issled. Model.
  doi: 10.20537/2076-7633-2014-6-3-347-356
– volume-title: Mathematical Problems in Numerical Simulation of Hyperbolic Systems
  year: 2001
  ident: 5945_CR5
– volume-title: Finite Volume Methods for Hyperbolic Problems
  year: 2002
  ident: 5945_CR6
  doi: 10.1017/CBO9780511791253
– volume: 8
  start-page: 169
  issue: 4
  year: 2016
  ident: 5945_CR7
  publication-title: Tr. Mosk. Fiz.-Tekh. Inst.
– volume-title: Generalized Functions. II. Spaces of Fundamental and Generalized Functions
  year: 1968
  ident: 5945_CR3
– volume: 166
  start-page: 855
  year: 2006
  ident: 5945_CR4
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2006.03051.x
SSID ssj0007683
Score 2.2431674
Snippet We construct an approximation of the fundamental solution of a problem for a hyperbolic system of first-order linear differential equations with constant...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 498
SubjectTerms Algorithms
Boundary value problems
Cauchy problems
Decay
Differential equations
Discontinuity
Hyperbolic systems
Mathematics
Mathematics and Statistics
Title Generalized Riemann Problem on the Decay of a Discontinuity with Additional Conditions at the Boundary and Its Application for Constructing Computational Algorithms
URI https://link.springer.com/article/10.1007/s10958-022-05945-2
https://www.proquest.com/docview/2680865765
Volume 263
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary Journals
  customDbUrl:
  eissn: 1573-8795
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007683
  issn: 1072-3374
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQ4QAH3qhbChohBAeItJvYjnMMLRWVoKq2gHqzHD9WkcBB622l8nv4oYwTp8tCOcAtsseJ4xmPx_bMN4Q8b1RTMeV4pkvOM5pbl1UoNpmwojCVVdS4HjL_fXl0JE5Pq-MUFBZGb_fxSrLX1L8Eu1VMZNH7PGKMsAwV73Vc7kRM2DA_-Xypf9GAHtzqyzwripKmUJmr37GxHP2ulP-4He0XnYM7_9fdu-R2MjKhHqTiHrlm_X1y68MlQmt4QH4kvOn2uzUwb7HcezgesstA5wFJYd9qdQGdAwX7bYhO7a0_Q6sd4uEt1Ma0w0Ei7HV-eA6gVn3TN322puUFKG_gcBWgXl-UA9rJsUmCrvULGFJLpGNJqL8suiV-4Wt4SD4dvP249y5LGRsyXXA01Vk5s8xYVQpDRVOJhhqN-2-r3FRVzqE1hBv5RhVMW65VtB2ZtXmO66iZ2tLOikdky3febhMoZw1aWpw5bSylulCsMFpRjSWFoNRNyKuRcfLbAMwh1xDMcewljr3sx17mE_Is8lZGxAsfXWoW6iwEeXgyl3WZcyE4z8WEvExErlstlVYpQgE7FEGyNihfbFAuBpZdRbi7QYhzV29Wj7Imk-4IMo_ZUDjuA9mEvB5la13995_c-Tfyx-RmPohnNq12yRYy3T4hN_T5qg3Lp_2c-gnO3R5M
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQQQIOvBELBSyE4ACWdhPbcY6hpeqK7araFtSb5fixikSdarNFKr-HH8o4cboEygFukT1OHHs8M7ZnvkHodanKnCnHic44JzSxjuTANkRYkZrcKmpcC5k_y-ZzcXKSH8agsKb3du-vJFtJ_UuwW84ECd7nAWOEERC81ylorICYvzj6cil_wYDu3OqzhKRpRmOozNXvGKij34XyH7ejrdLZu_t_3b2H7kQjExcdV9xH16x_gG4fXCK0Ng_Rj4g3XX23Bi8qKPceH3bZZXDtMZDiXavVBa4dVni3aoJTe-XPwWrH4fAWF8ZU3UEi3ql999xgtW6bfmizNa0usPIGT9cNLjYX5Rjs5NAkQtf6Je5SS8RjSVx8XdYr-MJp8wh93vt4vLNPYsYGolMOpjrLJpYZqzJhqChzUVKjYf9tlRur3DmwhmAjX6qUacu1CrYjszZJQI-asc3sJH2Mtnzt7ROEs0kJlhZnThtLqU4VS41WVENJKih1I_Sunzh51gFzyA0Ecxh7CWMv27GXyQi9CnMrA-KFDy41S3XeNHJ6tJBFlnAhOE_ECL2NRK5er5RWMUIBOhRAsgaUbwaUy27KriLcHhDC2tXD6p7XZJQdjUxCNhQO-0A2Qu973tpU__0nn_4b-Ut0c__4YCZn0_mnZ-hW0rEqGefbaAsYwD5HN_S3ddWsXrTr6yc-GCEw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfQQAge-J4oDLAQggew1ia24zyGlYqKUVUboL1Zjj-qSJszNRnS-Hv4QznH6brCeEC8RfY5cXxn-86--x1Cr0pV5kw5TnTGOaGJdSQHsSHCitTkVlHjOsj8_Ww2E0dH-fxSFH_n7b66kowxDQGlybe7p8btXgp8y5kgwRM94I0wAovwdRoc6YO9fvjtYi0GZTq62GcJSdOM9mEzV79jY2v6fYH-46a024Amd_-_6_fQnV75xEWUlvvomvUP0O3PF8itzUP0s8ehrn5Ygw8qKPcez2PWGVx7DKR4bLU6x7XDCo-rJny-8megzeNwqIsLY6p4wIj3ah-fG6zarun7LovT8hwrb_C0bXCxvkDHoD-HJj2krV_gmHKiP67ExfGiXsIXTppH6Ovkw5e9j6TP5EB0ykGFZ9nIMmNVJgwVZS5KajTY5Va5ocqdAy0JDPxSpUxbrlXQKZm1SQL7qxnazI7SbbTla28fI5yNStDAOHPaWEp1qlhqtKIaSlJBqRugtysmytMI2CHX0Mxh7CWMvezGXiYD9DLwWQYkDB9cbRbqrGnk9PBAFlnCheA8EQP0pidydbtUWvWRC9ChAJ61Qfl6g3IRWXYV4c4GIcxpvVm9kjvZrymNTEKWFA72IRugdys5W1f__Sef_Bv5C3RzPp7I_ens01N0K4mSSob5DtoC_ttn6Ib-3lbN8nk31X4BFfoqFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GENERALIZED+RIEMANN+PROBLEM+ON+THE+DECAY+OF+A+DISCONTINUITY+WITH+ADDITIONAL+CONDITIONS+AT+THE+BOUNDARY+AND+ITS+APPLICATION+FOR+CONSTRUCTING+COMPUTATIONAL+ALGORITHMS&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Skalko%2C+Yu.+I&rft.au=Gridnev%2C+S.+Yu&rft.date=2022-05-09&rft.pub=Springer&rft.issn=1072-3374&rft.volume=263&rft.issue=4&rft.spage=498&rft_id=info:doi/10.1007%2Fs10958-022-05945-2&rft.externalDocID=A726886628
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon