Generalized Riemann Problem on the Decay of a Discontinuity with Additional Conditions at the Boundary and Its Application for Constructing Computational Algorithms
We construct an approximation of the fundamental solution of a problem for a hyperbolic system of first-order linear differential equations with constant coefficients. We propose an algorithm for an approximate solution of the generalized Riemann problem on the decay of a discontinuity under additio...
Saved in:
| Published in: | Journal of mathematical sciences (New York, N.Y.) Vol. 263; no. 4; pp. 498 - 510 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
09.05.2022
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 1072-3374, 1573-8795 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We construct an approximation of the fundamental solution of a problem for a hyperbolic system of first-order linear differential equations with constant coefficients. We propose an algorithm for an approximate solution of the generalized Riemann problem on the decay of a discontinuity under additional conditions at the boundaries, which allows one to reduce the problem of finding the values of variables on both sides of the discontinuity surface of the initial data to the solution of a system of algebraic equations. We construct a computational algorithm for an approximate solution of the initial-boundary-value problem for a hyperbolic system of first-order linear differential equations. The algorithm is implemented for a system of equations of elastic dynamics; it is used for solving some applied problems associated with oil production. |
|---|---|
| AbstractList | We construct an approximation of the fundamental solution of a problem for a hyperbolic system of first-order linear differential equations with constant coefficients. We propose an algorithm for an approximate solution of the generalized Riemann problem on the decay of a discontinuity under additional conditions at the boundaries, which allows one to reduce the problem of finding the values of variables on both sides of the discontinuity surface of the initial data to the solution of a system of algebraic equations. We construct a computational algorithm for an approximate solution of the initial-boundary-value problem for a hyperbolic system of first-order linear differential equations. The algorithm is implemented for a system of equations of elastic dynamics; it is used for solving some applied problems associated with oil production. We construct an approximation of the fundamental solution of a problem for a hyperbolic system of first-order linear differential equations with constant coefficients. We propose an algorithm for an approximate solution of the generalized Riemann problem on the decay of a discontinuity under additional conditions at the boundaries, which allows one to reduce the problem of finding the values of variables on both sides of the discontinuity surface of the initial data to the solution of a system of algebraic equations. We construct a computational algorithm for an approximate solution of the initial-boundary-value problem for a hyperbolic system of first-order linear differential equations. The algorithm is implemented for a system of equations of elastic dynamics; it is used for solving some applied problems associated with oil production. Keywords and phrases: decay of a discontinuity, conjugation condition, hyperbolic system, generalized function, Cauchy problem, Green matrix-function, characteristic, Riemann invariant, equation of elastic dynamics. AMS Subject Classification: 35L40, 35L67, 35L45, 35L50 |
| Audience | Academic |
| Author | Skalko, Yu. I. Gridnev, S. Yu |
| Author_xml | – sequence: 1 givenname: Yu. I. surname: Skalko fullname: Skalko, Yu. I. email: skalko@mail.mipt.ru organization: Moscow Institute of Physics and Technology – sequence: 2 givenname: S. Yu surname: Gridnev fullname: Gridnev, S. Yu organization: Voronezh State Technical University |
| BookMark | eNp9ksFq3DAQQE1JoUnaH-hJ0FMPTmXJsuWju2nThUBL2p6FLI0dBVtyJZl0-z350GjjQFhYig4aifdGYmbOshPrLGTZ-wJfFBjXn0KBG8ZzTEiOWVOynLzKTgtW05zXDTtJMa5JTmldvsnOQrjDSao4Pc0ersCCl6P5BxrdGJikteiHd90IE3IWxVtAl6DkDrkeSXRpgnI2GruYuEP3Jt6iVmsTjbNyRBtn1zggGZ_Uz26xWvodklajbQyonefRKLmHUO_8XgnRLyqlHNJhmpcon7O14-B8emEKb7PXvRwDvHvez7PfX7_82nzLr79fbTftda5oxUnO6gKYBllzXfKu4V2pVVk1IHssm76vaAMd6SRlCioli4YSBkBIQbHGUENBz7MPa97Zuz8LhCju3OLTX4IgFce8YnXFXqhBjiCM7V30Uk2pMqKtE8erivBE5UeoYa12al5v0vUBf3GET0vDZNRR4eOBsO8L_I2DXEIQ2583hyxZWeVdCB56MXszpb6IAov9AIl1gEQaIPE0QIIkia5SSLAdwL9U4z_WI6tny4A |
| Cites_doi | 10.20537/2076-7633-2014-6-3-347-356 10.1017/CBO9780511791253 10.1111/j.1365-246X.2006.03051.x |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2022 COPYRIGHT 2022 Springer Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: COPYRIGHT 2022 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| DBID | AAYXX CITATION ISR |
| DOI | 10.1007/s10958-022-05945-2 |
| DatabaseName | CrossRef Gale In Context: Science |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1573-8795 |
| EndPage | 510 |
| ExternalDocumentID | A726886628 10_1007_s10958_022_05945_2 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IEA IHE IJ- IKXTQ IOF ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZWQNP ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c3682-571e5dea78d48b98b4dc469eaf0a9ff639eb2ba35ce6ca19325ee22130d0e7e13 |
| IEDL.DBID | RSV |
| ISSN | 1072-3374 |
| IngestDate | Wed Sep 17 23:59:47 EDT 2025 Sat Nov 29 14:02:15 EST 2025 Mon Nov 24 15:48:54 EST 2025 Sat Nov 29 10:36:56 EST 2025 Mon Nov 24 14:34:19 EST 2025 Sat Nov 29 02:57:32 EST 2025 Fri Feb 21 02:45:51 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | generalized function 35L40 35L50 35L67 35L45 characteristic Cauchy problem decay of a discontinuity conjugation condition equation of elastic dynamics Riemann invariant Green matrix-function hyperbolic system |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3682-571e5dea78d48b98b4dc469eaf0a9ff639eb2ba35ce6ca19325ee22130d0e7e13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10958-022-05945-2.pdf |
| PQID | 2680865765 |
| PQPubID | 2043545 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2680865765 gale_infotracmisc_A726886628 gale_infotracgeneralonefile_A726886628 gale_infotracacademiconefile_A726886628 gale_incontextgauss_ISR_A726886628 crossref_primary_10_1007_s10958_022_05945_2 springer_journals_10_1007_s10958_022_05945_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20220509 |
| PublicationDateYYYYMMDD | 2022-05-09 |
| PublicationDate_xml | – month: 05 year: 2022 text: 20220509 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of mathematical sciences (New York, N.Y.) |
| PublicationTitleAbbrev | J Math Sci |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | GelfandIMShilovGESome Problems of the Theory of Differential Equations1958MoscowGIFML[in Russian] KaserMDumbserMAn arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes. I. The two-dimensional isotropic case with external source termsGeophys. J. Int.200616685587710.1111/j.1365-246X.2006.03051.x GelfandIMShilovGEGeneralized Functions. I. Properties and Operations1964New York–LondonAcademic Press KulikovskyAGPogorelovNVSemenovAYMathematical Problems in Numerical Simulation of Hyperbolic Systems2001MoscowFizmatlit[in Russian] SkalkoYIRiemann problem of a discontinuity decay in the case of several spatial variablesTr. Mosk. Fiz.-Tekh. Inst.201684169182 SkalkoYICorrect conditions on the boundary separating subdomainsComput. Issled. Model.20146334735610.20537/2076-7633-2014-6-3-347-356 VladimirovVSEquations of Mathematical Physics1981MoscowNauka[in Russian] LeVequeRLFinite Volume Methods for Hyperbolic Problems2002CambridgeCambridge Univ. Press10.1017/CBO9780511791253 GelfandIMShilovGEGeneralized Functions. II. Spaces of Fundamental and Generalized Functions1968New York–LondonAcademic Press IM Gelfand (5945_CR3) 1968 M Kaser (5945_CR4) 2006; 166 RL LeVeque (5945_CR6) 2002 YI Skalko (5945_CR7) 2016; 8 YI Skalko (5945_CR8) 2014; 6 VS Vladimirov (5945_CR9) 1981 AG Kulikovsky (5945_CR5) 2001 IM Gelfand (5945_CR1) 1958 IM Gelfand (5945_CR2) 1964 |
| References_xml | – reference: SkalkoYIRiemann problem of a discontinuity decay in the case of several spatial variablesTr. Mosk. Fiz.-Tekh. Inst.201684169182 – reference: GelfandIMShilovGEGeneralized Functions. I. Properties and Operations1964New York–LondonAcademic Press – reference: KaserMDumbserMAn arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes. I. The two-dimensional isotropic case with external source termsGeophys. J. Int.200616685587710.1111/j.1365-246X.2006.03051.x – reference: SkalkoYICorrect conditions on the boundary separating subdomainsComput. Issled. Model.20146334735610.20537/2076-7633-2014-6-3-347-356 – reference: VladimirovVSEquations of Mathematical Physics1981MoscowNauka[in Russian] – reference: GelfandIMShilovGEGeneralized Functions. II. Spaces of Fundamental and Generalized Functions1968New York–LondonAcademic Press – reference: LeVequeRLFinite Volume Methods for Hyperbolic Problems2002CambridgeCambridge Univ. Press10.1017/CBO9780511791253 – reference: GelfandIMShilovGESome Problems of the Theory of Differential Equations1958MoscowGIFML[in Russian] – reference: KulikovskyAGPogorelovNVSemenovAYMathematical Problems in Numerical Simulation of Hyperbolic Systems2001MoscowFizmatlit[in Russian] – volume-title: Equations of Mathematical Physics year: 1981 ident: 5945_CR9 – volume-title: Some Problems of the Theory of Differential Equations year: 1958 ident: 5945_CR1 – volume-title: Generalized Functions. I. Properties and Operations year: 1964 ident: 5945_CR2 – volume: 6 start-page: 347 issue: 3 year: 2014 ident: 5945_CR8 publication-title: Comput. Issled. Model. doi: 10.20537/2076-7633-2014-6-3-347-356 – volume-title: Mathematical Problems in Numerical Simulation of Hyperbolic Systems year: 2001 ident: 5945_CR5 – volume-title: Finite Volume Methods for Hyperbolic Problems year: 2002 ident: 5945_CR6 doi: 10.1017/CBO9780511791253 – volume: 8 start-page: 169 issue: 4 year: 2016 ident: 5945_CR7 publication-title: Tr. Mosk. Fiz.-Tekh. Inst. – volume-title: Generalized Functions. II. Spaces of Fundamental and Generalized Functions year: 1968 ident: 5945_CR3 – volume: 166 start-page: 855 year: 2006 ident: 5945_CR4 publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2006.03051.x |
| SSID | ssj0007683 |
| Score | 2.2430675 |
| Snippet | We construct an approximation of the fundamental solution of a problem for a hyperbolic system of first-order linear differential equations with constant... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 498 |
| SubjectTerms | Algorithms Boundary value problems Cauchy problems Decay Differential equations Discontinuity Hyperbolic systems Mathematics Mathematics and Statistics |
| Title | Generalized Riemann Problem on the Decay of a Discontinuity with Additional Conditions at the Boundary and Its Application for Constructing Computational Algorithms |
| URI | https://link.springer.com/article/10.1007/s10958-022-05945-2 https://www.proquest.com/docview/2680865765 |
| Volume | 263 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-8795 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007683 issn: 1072-3374 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQ4QAH_hFLCxohBAeIlHXi2D6mLRU9UFVbQL1ZjuOsIoGD1luk8jx90I4Tp0ugHOAWxWPH8Yxnxvb4G0JeWWlyYzNclmhTJLlIWSJZahPb5MZwoQO4dZ9sgh8didNTeRwvhfkx2n08kuw19S-X3SQTSYg-DxgjLEHFexPNnQgJGxYnX670LzrQQ1g9p0mW8Txelbm-jYk5-l0p_3E62hudg3v_19375G50MqEcpOIBuWHdQ3Ln4xVCq39ELiLedPvT1rBo8b1zcDxkl4HOAZLCvjX6HLoGNOy3PgS1t-4MvXYIm7dQ1nU7bCTCXueGZw963Vfd7bM1rc5BuxoO1x7KzUE5oJ8cqkToWreEIbVE3JaE8uuyW-EXvvnH5PPB-097H5KYsSExWYGuOuNzy2qruahzUUlR5bXB9bfVTapl06A3hAv5SmfM2MLo4DsyaylFO1qnltt59oRsuc7ZpwQMxxY1pSZIk2SVlrmcI01V8RwbrGbk7cg49X0A5lAbCOYw9grHXvVjr-iMvAy8VQHxwoWQmqU-814dnixUyWkhRFFQMSNvIlHTrVfa6HhDATsUQLImlK8nlMuBZdcR7kwIce6aafEoayrqDq9oyIZS4DqQzci7UbY2xX__yWf_Rr5NbtNBPJNU7pAtZLp9Tm6ZH-vWr170c-oSL6IeRg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQQQIO_CMWCowQggNEyjpxbB9DS9UV7araFtSb5TjOKhI4aLNFKs_DgzJOnC6BcoBbFI8dxx6PZ-yZbwh5aaVJjU3QLNEmi1IRs0iy2Ea2So3hQntw6y7ZBJ_PxempPApBYe3g7T5cSXaS-pdgN8lE5L3PPcYIi1DwXk1xx_KI-YvjTxfyFxXo3q2e0yhJeBpCZS5vY7Qd_S6U_7gd7Tadvdv_19075FZQMiHvueIuuWLdPXLz8AKhtb1PfgS86fq7LWFR43vn4KjPLgONAySFXWv0OTQVaNitW-_UXrsz1NrBH95CXpZ1f5AIO43rn1vQ667quy5b0-octCthtm4h31yUA-rJvkqArnVL6FNLhGNJyD8vmxV-4Uv7gHzce3-ysx-FjA2RSTJU1RmfWlZazUWZikKKIi0N2t9WV7GWVYXaEBryhU6YsZnRXndk1lKK-2gZW26nyUOy5RpnHxEwHFvUlBrPTZIVWqZyijRFwVNssJiQN8PEqa89MIfaQDD7sVc49qobe0Un5IWfW-URL5x3qVnqs7ZVs-OFyjnNhMgyKibkdSCqmvVKGx0iFLBDHiRrRPlqRLnsp-wywu0RIa5dMy4eeE0F2dEq6rOhZGgHsgl5O_DWpvjvP_n438ifk-v7J4cH6mA2__CE3KA9q0ax3CZbyAD2Kblmvq3rdvWsW18_AZ6GISo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfQQAge-EYUBpwQggeIljpxbD-GlYoKqKoN0N4sx3GqSOBMTYY0_h7-UM5xuq4wHhBvUXL-iO9s39l3vyPkuZUmNTZBs0SbLEpFzCLJYhvZKjWGC-3BrftkE3w-F0dHcnEuir_3dl9fSYaYBo_S5Lq947LaOxf4JpmIvCe6xxthES7Cl1PvSO_t9cMvZ2sxKtPBxZ7TKEl4OoTNXFzH1tb0-wL9x01pvwFNb_5_12-RG4PyCXmQltvkknV3yPWPZ8it7V3yc8Chrn_YEg5qfO8cLELWGWgcIClMrNGn0FSgYVK3vvnanaA2D_5QF_KyrMMBI-w3Ljy3oLu-6Js-i9PqFLQrYda1kG8u0AH1Z19kgLR1SwgpJ4bjSsi_LpsVtvCtvUc-T99-2n8XDZkcIpNkqMIzPrastJqLMhWFFEVaGrTLra5iLasKtSQ08AudMGMzo71OyaylFPfXMrbcjpP7ZMc1zj4gYDjWqCk1XsokK7RM5RhpioKnWGExIq_WTFTHAbBDbaCZ_dgrHHvVj72iI_LM81l5JAznXW2W-qRt1ezwQOWcZkJkGRUj8nIgqppupY0eIhewQx48a4vyxRblMrDsIsLdLUKc02b781ru1LCmtIr6LCkZ2odsRF6v5Wzz-e8_-fDfyJ-Sq4vJVH2Yzd8_ItdokNQolrtkB_lvH5Mr5ntXt6sn_VT7BXBWKg4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GENERALIZED+RIEMANN+PROBLEM+ON+THE+DECAY+OF+A+DISCONTINUITY+WITH+ADDITIONAL+CONDITIONS+AT+THE+BOUNDARY+AND+ITS+APPLICATION+FOR+CONSTRUCTING+COMPUTATIONAL+ALGORITHMS&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Skalko%2C+Yu.+I&rft.au=Gridnev%2C+S.+Yu&rft.date=2022-05-09&rft.pub=Springer&rft.issn=1072-3374&rft.volume=263&rft.issue=4&rft.spage=498&rft_id=info:doi/10.1007%2Fs10958-022-05945-2&rft.externalDocID=A726886628 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon |