Dynamic predictions with time‐dependent covariates in survival analysis using joint modeling and landmarking

A key question in clinical practice is accurate prediction of patient prognosis. To this end, nowadays, physicians have at their disposal a variety of tests and biomarkers to aid them in optimizing medical care. These tests are often performed on a regular basis in order to closely follow the progre...

Full description

Saved in:
Bibliographic Details
Published in:Biometrical journal Vol. 59; no. 6; pp. 1261 - 1276
Main Authors: Rizopoulos, Dimitris, Molenberghs, Geert, Lesaffre, Emmanuel M.E.H.
Format: Journal Article
Language:English
Published: Germany Wiley - VCH Verlag GmbH & Co. KGaA 01.11.2017
Subjects:
ISSN:0323-3847, 1521-4036, 1521-4036
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A key question in clinical practice is accurate prediction of patient prognosis. To this end, nowadays, physicians have at their disposal a variety of tests and biomarkers to aid them in optimizing medical care. These tests are often performed on a regular basis in order to closely follow the progression of the disease. In this setting, it is of interest to optimally utilize the recorded information and provide medically relevant summary measures, such as survival probabilities, which will aid in decision making. In this work, we present and compare two statistical techniques that provide dynamically updated estimates of survival probabilities, namely landmark analysis and joint models for longitudinal and time‐to‐event data. Special attention is given to the functional form linking the longitudinal and event time processes, and to measures of discrimination and calibration in the context of dynamic prediction.
AbstractList A key question in clinical practice is accurate prediction of patient prognosis. To this end, nowadays, physicians have at their disposal a variety of tests and biomarkers to aid them in optimizing medical care. These tests are often performed on a regular basis in order to closely follow the progression of the disease. In this setting, it is of interest to optimally utilize the recorded information and provide medically relevant summary measures, such as survival probabilities, which will aid in decision making. In this work, we present and compare two statistical techniques that provide dynamically updated estimates of survival probabilities, namely landmark analysis and joint models for longitudinal and time‐to‐event data. Special attention is given to the functional form linking the longitudinal and event time processes, and to measures of discrimination and calibration in the context of dynamic prediction.
A key question in clinical practice is accurate prediction of patient prognosis. To this end, nowadays, physicians have at their disposal a variety of tests and biomarkers to aid them in optimizing medical care. These tests are often performed on a regular basis in order to closely follow the progression of the disease. In this setting, it is of interest to optimally utilize the recorded information and provide medically relevant summary measures, such as survival probabilities, which will aid in decision making. In this work, we present and compare two statistical techniques that provide dynamically updated estimates of survival probabilities, namely landmark analysis and joint models for longitudinal and time-to-event data. Special attention is given to the functional form linking the longitudinal and event time processes, and to measures of discrimination and calibration in the context of dynamic prediction.A key question in clinical practice is accurate prediction of patient prognosis. To this end, nowadays, physicians have at their disposal a variety of tests and biomarkers to aid them in optimizing medical care. These tests are often performed on a regular basis in order to closely follow the progression of the disease. In this setting, it is of interest to optimally utilize the recorded information and provide medically relevant summary measures, such as survival probabilities, which will aid in decision making. In this work, we present and compare two statistical techniques that provide dynamically updated estimates of survival probabilities, namely landmark analysis and joint models for longitudinal and time-to-event data. Special attention is given to the functional form linking the longitudinal and event time processes, and to measures of discrimination and calibration in the context of dynamic prediction.
Author Molenberghs, Geert
Rizopoulos, Dimitris
Lesaffre, Emmanuel M.E.H.
Author_xml – sequence: 1
  givenname: Dimitris
  orcidid: 0000-0001-9397-0900
  surname: Rizopoulos
  fullname: Rizopoulos, Dimitris
  email: d.rizopoulos@erasmusmc.nl
  organization: Erasmus Medical Center
– sequence: 2
  givenname: Geert
  surname: Molenberghs
  fullname: Molenberghs, Geert
  organization: Interuniversity Institute for Biostatistics and Statistical Bioinformatics, KU Leuven & Universiteit Hasselt
– sequence: 3
  givenname: Emmanuel M.E.H.
  surname: Lesaffre
  fullname: Lesaffre, Emmanuel M.E.H.
  organization: Interuniversity Institute for Biostatistics and Statistical Bioinformatics, KU Leuven & Universiteit Hasselt
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28792080$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi1URLcLV47IEhcuWcZ24thHaIEWFXGBs-XYDnhJ7MVOttobj8Az8iQ46raHSoiLR7_0_eOZ-c_QSYjBIfScwIYA0NedH7cbCoQXwcQjtCINJVUNjJ-gFTDKKibq9hSd5bwFAAk1fYJOqWglBQErFC4OQY_e4F1y1pvJx5DxjZ--48mP7s-v39btXLAuTNjEvU5eTy5jH3Ce097v9YB10MMh-4zn7MM3vI2-sGO0blikDhYP5Rl1-lH0U_S410N2z451jb6-f_fl_LK6_vzh6vzNdWUYF1C1RvTApZSMtR3jPZjeGmqlYZIRQfuO16RrLdCmrhsqZc-d6GvedMZ0jsmWrdGr2767FH_OLk9q9Nm4oYzi4pwVkbRtJBN0QV8-QLdxTmWpheJM8KYtc6zRiyM1d6Ozapd8Wemg7i5ZgPoWMCnmnFyvjJ_0cs8paT8oAmoJTC2BqfvAim3zwHbX-Z-G4z83fnCH_9Dq7dWnj0QQYH8BRsGpXA
CitedBy_id crossref_primary_10_1097_EDE_0000000000000920
crossref_primary_10_1111_jcpe_13888
crossref_primary_10_1016_j_ijrobp_2023_02_022
crossref_primary_10_1016_j_ijcard_2023_131268
crossref_primary_10_1007_s10614_024_10782_3
crossref_primary_10_1016_j_jclinepi_2023_111239
crossref_primary_10_1038_s41391_022_00529_2
crossref_primary_10_1080_02664763_2024_2313459
crossref_primary_10_1186_s41512_020_00078_z
crossref_primary_10_1080_02664763_2021_1897971
crossref_primary_10_1111_bju_15136
crossref_primary_10_1111_biom_12940
crossref_primary_10_1186_s12874_022_01718_2
crossref_primary_10_1002_sim_9102
crossref_primary_10_1519_JSC_0000000000003910
crossref_primary_10_3389_fneur_2025_1504535
crossref_primary_10_1002_sim_9347
crossref_primary_10_1016_j_jclinane_2021_110596
crossref_primary_10_1177_0962280218811837
crossref_primary_10_1177_09622802251374288
crossref_primary_10_1186_s12874_019_0863_0
crossref_primary_10_1016_j_ejor_2023_03_012
crossref_primary_10_1080_10543406_2023_2187413
crossref_primary_10_1007_s11222_020_09927_9
crossref_primary_10_1016_j_jclinepi_2021_08_026
crossref_primary_10_1002_sim_10340
crossref_primary_10_1017_cts_2022_465
crossref_primary_10_1093_jamia_ocac003
crossref_primary_10_1109_TBME_2019_2909027
crossref_primary_10_1186_s12874_022_01828_x
crossref_primary_10_1007_s10985_024_09622_1
crossref_primary_10_1080_02664763_2019_1617253
crossref_primary_10_1002_sta4_649
crossref_primary_10_1186_s12916_020_01894_2
crossref_primary_10_1016_j_annepidem_2023_03_007
crossref_primary_10_1002_sim_70047
crossref_primary_10_1002_sim_8387
crossref_primary_10_1016_j_ccell_2023_08_010
crossref_primary_10_1177_0962280219863076
crossref_primary_10_1177_0272989X19861963
crossref_primary_10_1002_sim_9713
crossref_primary_10_1007_s10985_018_9444_5
crossref_primary_10_1002_sim_8787
crossref_primary_10_1002_bimj_201900112
crossref_primary_10_1016_j_ajp_2023_103468
crossref_primary_10_1002_asmb_2829
crossref_primary_10_1080_17474086_2022_2042248
crossref_primary_10_1002_bimj_70043
crossref_primary_10_1007_s11912_023_01368_7
crossref_primary_10_1002_sim_70240
crossref_primary_10_1186_s12874_023_01845_4
crossref_primary_10_1111_rssa_12611
crossref_primary_10_1186_s12874_021_01375_x
crossref_primary_10_1146_annurev_statistics_030718_105048
crossref_primary_10_1080_00401706_2020_1832582
crossref_primary_10_1002_qre_3673
crossref_primary_10_1016_j_ejor_2022_10_022
crossref_primary_10_1371_journal_pone_0293796
crossref_primary_10_6339_25_JDS1173
crossref_primary_10_1002_sta4_356
crossref_primary_10_1097_MD_0000000000040181
crossref_primary_10_1093_ije_dyab047
crossref_primary_10_1016_j_sciaf_2022_e01519
crossref_primary_10_1186_s12874_025_02516_2
crossref_primary_10_1038_s41467_021_27022_z
crossref_primary_10_1093_biostatistics_kxz049
crossref_primary_10_1002_sim_8113
crossref_primary_10_1001_jamanetworkopen_2025_12681
crossref_primary_10_1016_j_jacc_2021_11_023
crossref_primary_10_1080_03610918_2020_1804579
crossref_primary_10_1007_s10985_025_09664_z
crossref_primary_10_1111_dom_70124
crossref_primary_10_1177_09622802241275382
crossref_primary_10_1080_00401706_2024_2421763
crossref_primary_10_1136_bmjopen_2024_092110
crossref_primary_10_1038_s41598_020_71277_3
crossref_primary_10_3389_fmed_2024_1428073
crossref_primary_10_1002_sim_10128
crossref_primary_10_1080_03610918_2020_1855449
crossref_primary_10_1186_s41512_020_00088_x
crossref_primary_10_1007_s44163_025_00429_z
crossref_primary_10_1186_s12859_021_04052_4
crossref_primary_10_1093_cid_ciz262
crossref_primary_10_1186_s12874_022_01709_3
crossref_primary_10_1080_03610918_2025_2499059
crossref_primary_10_1161_CIRCOUTCOMES_120_007593
crossref_primary_10_1002_bimj_201800248
crossref_primary_10_1002_sim_9336
crossref_primary_10_1007_s42081_021_00133_z
crossref_primary_10_7326_M22_0844
crossref_primary_10_1080_10618600_2024_2374576
crossref_primary_10_1002_bimj_202300081
Cites_doi 10.1111/j.1467-9469.2006.00529.x
10.1201/b12208
10.1198/016214507000000149
10.1200/JCO.1983.1.11.710
10.1002/sim.5665
10.1002/9781118032985
10.1111/j.0006-341X.2000.00249.x
10.1093/biostatistics/1.4.465
10.1093/biostatistics/3.1.33
10.1002/bimj.200610301
10.1007/978-1-4757-3447-8
10.18637/jss.v072.i07
10.1002/sim.2929
10.1093/biostatistics/kxp009
10.1111/j.1541-0420.2010.01546.x
10.1198/016214507000000400
10.1080/01621459.2012.721281
10.18637/jss.v035.i09
10.1111/j.1541-0420.2005.00323.x
10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
10.1177/0962280213495994
10.1016/j.ejcts.2010.11.025
10.1111/biom.12232
10.1080/01621459.2014.931236
10.1093/biomet/80.1.153
10.1002/sim.7027
10.1002/bimj.201000145
10.1002/sim.5776
10.1201/b11311
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
DOI 10.1002/bimj.201600238
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-4036
EndPage 1276
ExternalDocumentID 28792080
10_1002_bimj_201600238
BIMJ1810
Genre article
Journal Article
GrantInformation_xml – fundername: the Netherlands Organisation for Scientific Research
  funderid: VIDI grant nr. 016.146.301.
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
3-9
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AI.
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M67
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
Y6R
YHZ
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3680-7c8f06999337b36f0cfdc2d9c393182fb641b7d025445299f6e8f465bccbe3973
IEDL.DBID DRFUL
ISICitedReferencesCount 107
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418746100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0323-3847
1521-4036
IngestDate Sun Nov 09 13:53:32 EST 2025
Tue Oct 07 05:41:12 EDT 2025
Mon Jul 21 05:42:05 EDT 2025
Tue Nov 18 22:18:58 EST 2025
Sat Nov 29 06:28:47 EST 2025
Sun Sep 21 06:28:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Random effects
Risk prediction
Discrimination
Calibration
Prognostic modeling
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3680-7c8f06999337b36f0cfdc2d9c393182fb641b7d025445299f6e8f465bccbe3973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9397-0900
PMID 28792080
PQID 1963865799
PQPubID 105592
PageCount 16
ParticipantIDs proquest_miscellaneous_1927593827
proquest_journals_1963865799
pubmed_primary_28792080
crossref_citationtrail_10_1002_bimj_201600238
crossref_primary_10_1002_bimj_201600238
wiley_primary_10_1002_bimj_201600238_BIMJ1810
PublicationCentury 2000
PublicationDate November 2017
2017-11-00
2017-Nov
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Biometrical journal
PublicationTitleAlternate Biom J
PublicationYear 2017
Publisher Wiley - VCH Verlag GmbH & Co. KGaA
Publisher_xml – name: Wiley - VCH Verlag GmbH & Co. KGaA
References 2007; 102
2010; 35
2015; 71
2012
2011
1983; 1
2011; 40
2011; 53
2002; 3
2016; 72
2000; 1
2008; 103
2002
2005; 61
1996; 15
2007; 34
2012; 107
2016; 35
2009; 10
2014; 109
2001
2013; 32
2000; 56
2004; 14
2008; 27
2006; 48
1993; 80
2015
2011; 67
2016; 25
e_1_2_9_30_1
Andrinopoulou E. (e_1_2_9_4_1) 2015
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
Tsiatis A. (e_1_2_9_27_1) 2004; 14
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_29_1
References_xml – year: 2011
– volume: 35
  start-page: 4813
  year: 2016
  end-page: 4823
  article-title: Bayesian shrinkage approach for a joint model of longitudinal and survival outcomes assuming different association structures
  publication-title: Statistics in Medicine
– volume: 53
  start-page: 275
  year: 2011
  end-page: 293
  article-title: Measures of prediction error for survival data with longitudinal covariates
  publication-title: Biometrical Journal
– volume: 48
  start-page: 1029
  year: 2006
  end-page: 1040
  article-title: Consistent estimation of the expected Brier score in general survival models with right‐censored event times
  publication-title: Biometrical Journal
– volume: 15
  start-page: 361
  year: 1996
  end-page: 387
  article-title: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
  publication-title: Statistics in Medicine
– volume: 67
  start-page: 819
  year: 2011
  end-page: 829
  article-title: Dynamic predictions and prospective accuracy in joint models for longitudinal and time‐to‐event data
  publication-title: Biometrics
– volume: 25
  start-page: 1661
  year: 2016
  end-page: 1676
  article-title: A flexible joint modelling framework for longitudinal and time‐to‐event data with overdispersion
  publication-title: Statistical Methods in Medical Research
– year: 2001
– volume: 61
  start-page: 379
  year: 2005
  end-page: 391
  article-title: Partly conditional survival models for longitudinal data
  publication-title: Biometrics
– volume: 109
  start-page: 1385
  year: 2014
  end-page: 1397
  article-title: Combining dynamic predictions from joint models for longitudinal and time‐to‐event data using Bayesian model averaging
  publication-title: Journal of the American Statistical Association
– volume: 107
  start-page: 1492
  year: 2012
  end-page: 1501
  article-title: Landmark prediction of long term survival incorporating short term event time information
  publication-title: Journal of the American Statistical Association
– volume: 10
  start-page: 535
  year: 2009
  end-page: 549
  article-title: Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach
  publication-title: Biostatistics
– volume: 71
  start-page: 102
  year: 2015
  end-page: 113
  article-title: Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time‐to‐event in presence of censoring and competing risks
  publication-title: Biometrics
– volume: 40
  start-page: 35
  year: 2011
  end-page: 42
  article-title: Re‐operations for aortic allograft root failure: Experience from a 21‐year single‐center prospective follow‐up study
  publication-title: European Journal of Cardio‐Thoracic Surgery
– volume: 35
  start-page: 1
  issue: 9
  year: 2010
  end-page: 33
  article-title: JM: An R package for the joint modelling of longitudinal and time‐to‐event data
  publication-title: Journal of Statistical Software
– volume: 32
  start-page: 2031
  year: 2013
  end-page: 2047
  article-title: Dynamic prediction by landmarking in competing risks
  publication-title: Statistics in Medicine
– volume: 14
  start-page: 809
  year: 2004
  end-page: 834
  article-title: Joint modeling of longitudinal and time‐to‐event data: An overview
  publication-title: Statistica Sinica
– year: 2015
  article-title: Combined dynamic predictions using joint models of two longitudinal outcomes and competing risk data
  publication-title: Statistical Methods in Medical Research
– year: 2012
– volume: 1
  start-page: 465
  year: 2000
  end-page: 480
  article-title: Joint modelling of longitudinal measurements and event time data
  publication-title: Biostatistics
– volume: 80
  start-page: 153
  year: 1993
  end-page: 164
  article-title: A framework for consistent prediction rules based on markers
  publication-title: Biometrika
– volume: 27
  start-page: 157
  year: 2008
  end-page: 172
  article-title: Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond
  publication-title: Statistics in Medicine
– volume: 32
  start-page: 3459
  year: 2013
  end-page: 3471
  article-title: Landmark risk prediction of residual life for breast cancer survival
  publication-title: Statistics in Medicine
– year: 2002
– volume: 3
  start-page: 33
  year: 2002
  end-page: 50
  article-title: Identification and efficacy of longitudinal markers for survival
  publication-title: Biostatistics
– volume: 34
  start-page: 70
  year: 2007
  end-page: 85
  article-title: Dynamic prediction by landmarking in event history analysis
  publication-title: Scandinavian Journal of Statistics
– volume: 103
  start-page: 178
  year: 2008
  end-page: 187
  article-title: Individualized prediction in prostate cancer studies using a joint longitudinal‐survival‐cure model
  publication-title: Journal of the American Statistical Association
– volume: 1
  start-page: 710
  year: 1983
  end-page: 719
  article-title: Analysis of survival by tumor response
  publication-title: Journal of Clinical Oncology
– volume: 56
  start-page: 249
  year: 2000
  end-page: 255
  article-title: Predictive accuracy and explained variation in Cox regression
  publication-title: Biometrics
– volume: 72
  start-page: 1
  issue: 7
  year: 2016
  end-page: 45
  article-title: The R package JMbayes for fitting joint models for longitudinal and time‐to‐event data using MCMC
  publication-title: Journal of Statistical Software
– volume: 102
  start-page: 527
  year: 2007
  end-page: 537
  article-title: Evaluating prediction rules for t‐year survivors with censored regression models
  publication-title: Journal of the American Statistical Association
– ident: e_1_2_9_29_1
  doi: 10.1111/j.1467-9469.2006.00529.x
– ident: e_1_2_9_22_1
  doi: 10.1201/b12208
– ident: e_1_2_9_28_1
  doi: 10.1198/016214507000000149
– ident: e_1_2_9_2_1
  doi: 10.1200/JCO.1983.1.11.710
– ident: e_1_2_9_14_1
  doi: 10.1002/sim.5665
– ident: e_1_2_9_13_1
  doi: 10.1002/9781118032985
– ident: e_1_2_9_25_1
  doi: 10.1111/j.0006-341X.2000.00249.x
– ident: e_1_2_9_9_1
  doi: 10.1093/biostatistics/1.4.465
– volume: 14
  start-page: 809
  year: 2004
  ident: e_1_2_9_27_1
  article-title: Joint modeling of longitudinal and time‐to‐event data: An overview
  publication-title: Statistica Sinica
– ident: e_1_2_9_10_1
  doi: 10.1093/biostatistics/3.1.33
– ident: e_1_2_9_7_1
  doi: 10.1002/bimj.200610301
– ident: e_1_2_9_11_1
  doi: 10.1007/978-1-4757-3447-8
– year: 2015
  ident: e_1_2_9_4_1
  article-title: Combined dynamic predictions using joint models of two longitudinal outcomes and competing risk data
  publication-title: Statistical Methods in Medical Research
– ident: e_1_2_9_23_1
  doi: 10.18637/jss.v072.i07
– ident: e_1_2_9_18_1
  doi: 10.1002/sim.2929
– ident: e_1_2_9_19_1
  doi: 10.1093/biostatistics/kxp009
– ident: e_1_2_9_21_1
  doi: 10.1111/j.1541-0420.2010.01546.x
– ident: e_1_2_9_31_1
  doi: 10.1198/016214507000000400
– ident: e_1_2_9_17_1
  doi: 10.1080/01621459.2012.721281
– ident: e_1_2_9_20_1
  doi: 10.18637/jss.v035.i09
– ident: e_1_2_9_32_1
  doi: 10.1111/j.1541-0420.2005.00323.x
– ident: e_1_2_9_8_1
  doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
– ident: e_1_2_9_15_1
  doi: 10.1177/0962280213495994
– ident: e_1_2_9_5_1
  doi: 10.1016/j.ejcts.2010.11.025
– ident: e_1_2_9_6_1
  doi: 10.1111/biom.12232
– ident: e_1_2_9_24_1
  doi: 10.1080/01621459.2014.931236
– ident: e_1_2_9_12_1
  doi: 10.1093/biomet/80.1.153
– ident: e_1_2_9_3_1
  doi: 10.1002/sim.7027
– ident: e_1_2_9_26_1
  doi: 10.1002/bimj.201000145
– ident: e_1_2_9_16_1
  doi: 10.1002/sim.5776
– ident: e_1_2_9_30_1
  doi: 10.1201/b11311
SSID ssj0009042
Score 2.4972346
Snippet A key question in clinical practice is accurate prediction of patient prognosis. To this end, nowadays, physicians have at their disposal a variety of tests...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1261
SubjectTerms Aortic Valve - surgery
Biomarkers
Biometry - methods
Calibration
Decision making
Discrimination
Economic models
Female
Heuristics
Humans
Information processing
Male
Mathematical models
Medical prognosis
Models, Statistical
Optimization
Physicians
Probability
Prognostic modeling
Random effects
Reoperation
Risk prediction
Statistical analysis
Survival
Survival Analysis
Time Factors
Title Dynamic predictions with time‐dependent covariates in survival analysis using joint modeling and landmarking
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.201600238
https://www.ncbi.nlm.nih.gov/pubmed/28792080
https://www.proquest.com/docview/1963865799
https://www.proquest.com/docview/1927593827
Volume 59
WOSCitedRecordID wos000418746100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-4036
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009042
  issn: 0323-3847
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD7YrYIv3i-rtUQQfAqdSWZyeVTroqJFxMK-DblMyhY7W_ZS8M2f4G_0l3iSzE5dRER8HOaQCZNz-XL7PoBnPASjtZO0rZSjVa1aGu9PUiwFzGjLvOAmiU3IoyM1neqPv9ziz_wQw4JbjIyUr2OAG7s8uCQNtbOz03g0S6SyswO7DJ23HsHu4afJ8ftL4t2iyjsJjFOOqXhD3Fiwg-0WtgvTb2hzG7ym6jO5-f_9vgU3euRJXmRXuQ1X2u4OXMtalF_vQneYtenJ-SLu3SR3JHGVlkT5-R_fvm_kclfEzS9whh1BKpl1ZLnGbIP-SkzPb0LiWfoTcjqfoW1S2omPpvMknqI8M2l1_h4cT15_fvWG9mIM1HGhCiqdCoVAOMm5tFyEwgXvmNeOa0wLLFhRlVb6THmGNS6IVoVK1NY52yLo4fdh1M279iEQ49sacSSCm-Cr0kmDjZQqAsnSlt6bMdDNSDSuZyqPghlfmsyxzJr4D5vhH47h-WB_njk6_mi5txnYpo_VZZNykKil1mN4OrzGKItbJ6Zr5-tow2StuWJyDA-yQwyfwjmnZgi8sdtp3P_Sh-bl2w_vEFcVj_7R_jFcZxFTpIuQezBaLdbtE7jqLlaz5WIfduRU7ffe_xOmiwam
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA7aKvpS77q1agTBp9CZZCaZPFbr0up2EWmhb0MmF9liZ8teCr75E_yN_pKek8xOWURE8HGYQyZMzuXLycl3CHkjQjBaW8V8UVlWlJVneH-SQSjgRjfcSWFiswk1Hlenp_pzV02Id2ESP0SfcEPLiP4aDRwT0rvXrKHN5PwMa7NkjDs3yWYBugRKvrn_ZXgyumbezYp0lMAFE-CLV8yNGd9dH2E9Mv0GN9fRaww_w3v_YeL3yVaHPeleUpYH5IZvH5LbqRvl90ek3U_d6enFDE9vokJSzNNSbED_68fPVcPcBbXTS9hjI0ylk5bOl-BvQGOp6RhOKFbTf6Vn0wnIxl47-GhaR7GO8tzE_PxjcjL8cPz-gHXtGJgVssqYslXIJABKIVQjZMhscJY7bYUGx8BDI4u8US6RnkGUC9JXoZBlY23jAfaIJ2Sjnbb-GaHG-RKQJMCb4IrcKgOD5BVCybzJnTMDwlZLUduOqxxbZnyrE8syr_Ef1v0_HJC3vfxFYun4o-TOamXrzlrndfRCslRaD8jr_jXYGR6emNZPlyjDValFxdWAPE0a0X8Kdp2aA_SGaceF_8sc6neHRx8BWWXb_yj_itw5OD4a1aPD8afn5C5HhBGvRe6QjcVs6V-QW_ZyMZnPXnZGcAUs-Qmu
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFD7orC6-eHcdXTWC4FPYNmmT5lEdB1fXYREX9q2kucgsbmeYy4Jv_gR_o7_EnKTTZRARwcfSQxqac_ly-z6AF9x7rZSR1BWVoUVZOYr3J2koBUyrhlnBdRSbkJNJdXqqjrvThHgXJvFD9AtuGBkxX2OAu7n1B5esoc30_AzPZolYd67CToFKMgPYGX0anxxdMu9mRdpKYJzykIs3zI0ZO9huYbsy_QY3t9FrLD_jW_-h47fhZoc9yavkLHfgimvvwvWkRvntHrSjpE5P5gvcvYkOSXCdlqAA_c_vPzaCuStiZhdhjo0wlUxbslyHfBM8luiO4YTgafov5Gw2DbZRawcfdWsJnqM813F9_j6cjN9-fvOOdnIM1HBRZVSaymciAErOZcOFz4y3hllluAqJgflGFHkjbSI9C1XOC1f5QpSNMY0LsIc_gEE7a91DINq6MiDJAG-8LXIjdWgkrxBK5k1urR4C3QxFbTqucpTM-FonlmVW4z-s-384hJe9_TyxdPzRcn8zsnUXrcs6ZiFRSqWG8Lx_HeIMN09062ZrtGGyVLxicgh7ySP6T4VZp2IBeodux4H_Sx_q14cf3wdklT36R_tnsHs8GtdHh5MPj-EGQ4ARb0Xuw2C1WLsncM1crKbLxdMuBn4BqfwJKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+predictions+with+time-dependent+covariates+in+survival+analysis+using+joint+modeling+and+landmarking&rft.jtitle=Biometrical+journal&rft.au=Rizopoulos%2C+Dimitris&rft.au=Molenberghs%2C+Geert&rft.au=Lesaffre%2C+Emmanuel+M+E+H&rft.date=2017-11-01&rft.eissn=1521-4036&rft.volume=59&rft.issue=6&rft.spage=1261&rft_id=info:doi/10.1002%2Fbimj.201600238&rft_id=info%3Apmid%2F28792080&rft.externalDocID=28792080
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon