Dynamic predictions with time‐dependent covariates in survival analysis using joint modeling and landmarking
A key question in clinical practice is accurate prediction of patient prognosis. To this end, nowadays, physicians have at their disposal a variety of tests and biomarkers to aid them in optimizing medical care. These tests are often performed on a regular basis in order to closely follow the progre...
Saved in:
| Published in: | Biometrical journal Vol. 59; no. 6; pp. 1261 - 1276 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Wiley - VCH Verlag GmbH & Co. KGaA
01.11.2017
|
| Subjects: | |
| ISSN: | 0323-3847, 1521-4036, 1521-4036 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A key question in clinical practice is accurate prediction of patient prognosis. To this end, nowadays, physicians have at their disposal a variety of tests and biomarkers to aid them in optimizing medical care. These tests are often performed on a regular basis in order to closely follow the progression of the disease. In this setting, it is of interest to optimally utilize the recorded information and provide medically relevant summary measures, such as survival probabilities, which will aid in decision making. In this work, we present and compare two statistical techniques that provide dynamically updated estimates of survival probabilities, namely landmark analysis and joint models for longitudinal and time‐to‐event data. Special attention is given to the functional form linking the longitudinal and event time processes, and to measures of discrimination and calibration in the context of dynamic prediction. |
|---|---|
| AbstractList | A key question in clinical practice is accurate prediction of patient prognosis. To this end, nowadays, physicians have at their disposal a variety of tests and biomarkers to aid them in optimizing medical care. These tests are often performed on a regular basis in order to closely follow the progression of the disease. In this setting, it is of interest to optimally utilize the recorded information and provide medically relevant summary measures, such as survival probabilities, which will aid in decision making. In this work, we present and compare two statistical techniques that provide dynamically updated estimates of survival probabilities, namely landmark analysis and joint models for longitudinal and time‐to‐event data. Special attention is given to the functional form linking the longitudinal and event time processes, and to measures of discrimination and calibration in the context of dynamic prediction. A key question in clinical practice is accurate prediction of patient prognosis. To this end, nowadays, physicians have at their disposal a variety of tests and biomarkers to aid them in optimizing medical care. These tests are often performed on a regular basis in order to closely follow the progression of the disease. In this setting, it is of interest to optimally utilize the recorded information and provide medically relevant summary measures, such as survival probabilities, which will aid in decision making. In this work, we present and compare two statistical techniques that provide dynamically updated estimates of survival probabilities, namely landmark analysis and joint models for longitudinal and time-to-event data. Special attention is given to the functional form linking the longitudinal and event time processes, and to measures of discrimination and calibration in the context of dynamic prediction.A key question in clinical practice is accurate prediction of patient prognosis. To this end, nowadays, physicians have at their disposal a variety of tests and biomarkers to aid them in optimizing medical care. These tests are often performed on a regular basis in order to closely follow the progression of the disease. In this setting, it is of interest to optimally utilize the recorded information and provide medically relevant summary measures, such as survival probabilities, which will aid in decision making. In this work, we present and compare two statistical techniques that provide dynamically updated estimates of survival probabilities, namely landmark analysis and joint models for longitudinal and time-to-event data. Special attention is given to the functional form linking the longitudinal and event time processes, and to measures of discrimination and calibration in the context of dynamic prediction. |
| Author | Molenberghs, Geert Rizopoulos, Dimitris Lesaffre, Emmanuel M.E.H. |
| Author_xml | – sequence: 1 givenname: Dimitris orcidid: 0000-0001-9397-0900 surname: Rizopoulos fullname: Rizopoulos, Dimitris email: d.rizopoulos@erasmusmc.nl organization: Erasmus Medical Center – sequence: 2 givenname: Geert surname: Molenberghs fullname: Molenberghs, Geert organization: Interuniversity Institute for Biostatistics and Statistical Bioinformatics, KU Leuven & Universiteit Hasselt – sequence: 3 givenname: Emmanuel M.E.H. surname: Lesaffre fullname: Lesaffre, Emmanuel M.E.H. organization: Interuniversity Institute for Biostatistics and Statistical Bioinformatics, KU Leuven & Universiteit Hasselt |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28792080$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkcFu1DAQhi1URLcLV47IEhcuWcZ24thHaIEWFXGBs-XYDnhJ7MVOttobj8Az8iQ46raHSoiLR7_0_eOZ-c_QSYjBIfScwIYA0NedH7cbCoQXwcQjtCINJVUNjJ-gFTDKKibq9hSd5bwFAAk1fYJOqWglBQErFC4OQY_e4F1y1pvJx5DxjZ--48mP7s-v39btXLAuTNjEvU5eTy5jH3Ce097v9YB10MMh-4zn7MM3vI2-sGO0blikDhYP5Rl1-lH0U_S410N2z451jb6-f_fl_LK6_vzh6vzNdWUYF1C1RvTApZSMtR3jPZjeGmqlYZIRQfuO16RrLdCmrhsqZc-d6GvedMZ0jsmWrdGr2767FH_OLk9q9Nm4oYzi4pwVkbRtJBN0QV8-QLdxTmWpheJM8KYtc6zRiyM1d6Ozapd8Wemg7i5ZgPoWMCnmnFyvjJ_0cs8paT8oAmoJTC2BqfvAim3zwHbX-Z-G4z83fnCH_9Dq7dWnj0QQYH8BRsGpXA |
| CitedBy_id | crossref_primary_10_1097_EDE_0000000000000920 crossref_primary_10_1111_jcpe_13888 crossref_primary_10_1016_j_ijrobp_2023_02_022 crossref_primary_10_1016_j_ijcard_2023_131268 crossref_primary_10_1007_s10614_024_10782_3 crossref_primary_10_1016_j_jclinepi_2023_111239 crossref_primary_10_1038_s41391_022_00529_2 crossref_primary_10_1080_02664763_2024_2313459 crossref_primary_10_1186_s41512_020_00078_z crossref_primary_10_1080_02664763_2021_1897971 crossref_primary_10_1111_bju_15136 crossref_primary_10_1111_biom_12940 crossref_primary_10_1186_s12874_022_01718_2 crossref_primary_10_1002_sim_9102 crossref_primary_10_1519_JSC_0000000000003910 crossref_primary_10_3389_fneur_2025_1504535 crossref_primary_10_1002_sim_9347 crossref_primary_10_1016_j_jclinane_2021_110596 crossref_primary_10_1177_0962280218811837 crossref_primary_10_1177_09622802251374288 crossref_primary_10_1186_s12874_019_0863_0 crossref_primary_10_1016_j_ejor_2023_03_012 crossref_primary_10_1080_10543406_2023_2187413 crossref_primary_10_1007_s11222_020_09927_9 crossref_primary_10_1016_j_jclinepi_2021_08_026 crossref_primary_10_1002_sim_10340 crossref_primary_10_1017_cts_2022_465 crossref_primary_10_1093_jamia_ocac003 crossref_primary_10_1109_TBME_2019_2909027 crossref_primary_10_1186_s12874_022_01828_x crossref_primary_10_1007_s10985_024_09622_1 crossref_primary_10_1080_02664763_2019_1617253 crossref_primary_10_1002_sta4_649 crossref_primary_10_1186_s12916_020_01894_2 crossref_primary_10_1016_j_annepidem_2023_03_007 crossref_primary_10_1002_sim_70047 crossref_primary_10_1002_sim_8387 crossref_primary_10_1016_j_ccell_2023_08_010 crossref_primary_10_1177_0962280219863076 crossref_primary_10_1177_0272989X19861963 crossref_primary_10_1002_sim_9713 crossref_primary_10_1007_s10985_018_9444_5 crossref_primary_10_1002_sim_8787 crossref_primary_10_1002_bimj_201900112 crossref_primary_10_1016_j_ajp_2023_103468 crossref_primary_10_1002_asmb_2829 crossref_primary_10_1080_17474086_2022_2042248 crossref_primary_10_1002_bimj_70043 crossref_primary_10_1007_s11912_023_01368_7 crossref_primary_10_1002_sim_70240 crossref_primary_10_1186_s12874_023_01845_4 crossref_primary_10_1111_rssa_12611 crossref_primary_10_1186_s12874_021_01375_x crossref_primary_10_1146_annurev_statistics_030718_105048 crossref_primary_10_1080_00401706_2020_1832582 crossref_primary_10_1002_qre_3673 crossref_primary_10_1016_j_ejor_2022_10_022 crossref_primary_10_1371_journal_pone_0293796 crossref_primary_10_6339_25_JDS1173 crossref_primary_10_1002_sta4_356 crossref_primary_10_1097_MD_0000000000040181 crossref_primary_10_1093_ije_dyab047 crossref_primary_10_1016_j_sciaf_2022_e01519 crossref_primary_10_1186_s12874_025_02516_2 crossref_primary_10_1038_s41467_021_27022_z crossref_primary_10_1093_biostatistics_kxz049 crossref_primary_10_1002_sim_8113 crossref_primary_10_1001_jamanetworkopen_2025_12681 crossref_primary_10_1016_j_jacc_2021_11_023 crossref_primary_10_1080_03610918_2020_1804579 crossref_primary_10_1007_s10985_025_09664_z crossref_primary_10_1111_dom_70124 crossref_primary_10_1177_09622802241275382 crossref_primary_10_1080_00401706_2024_2421763 crossref_primary_10_1136_bmjopen_2024_092110 crossref_primary_10_1038_s41598_020_71277_3 crossref_primary_10_3389_fmed_2024_1428073 crossref_primary_10_1002_sim_10128 crossref_primary_10_1080_03610918_2020_1855449 crossref_primary_10_1186_s41512_020_00088_x crossref_primary_10_1007_s44163_025_00429_z crossref_primary_10_1186_s12859_021_04052_4 crossref_primary_10_1093_cid_ciz262 crossref_primary_10_1186_s12874_022_01709_3 crossref_primary_10_1080_03610918_2025_2499059 crossref_primary_10_1161_CIRCOUTCOMES_120_007593 crossref_primary_10_1002_bimj_201800248 crossref_primary_10_1002_sim_9336 crossref_primary_10_1007_s42081_021_00133_z crossref_primary_10_7326_M22_0844 crossref_primary_10_1080_10618600_2024_2374576 crossref_primary_10_1002_bimj_202300081 |
| Cites_doi | 10.1111/j.1467-9469.2006.00529.x 10.1201/b12208 10.1198/016214507000000149 10.1200/JCO.1983.1.11.710 10.1002/sim.5665 10.1002/9781118032985 10.1111/j.0006-341X.2000.00249.x 10.1093/biostatistics/1.4.465 10.1093/biostatistics/3.1.33 10.1002/bimj.200610301 10.1007/978-1-4757-3447-8 10.18637/jss.v072.i07 10.1002/sim.2929 10.1093/biostatistics/kxp009 10.1111/j.1541-0420.2010.01546.x 10.1198/016214507000000400 10.1080/01621459.2012.721281 10.18637/jss.v035.i09 10.1111/j.1541-0420.2005.00323.x 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 10.1177/0962280213495994 10.1016/j.ejcts.2010.11.025 10.1111/biom.12232 10.1080/01621459.2014.931236 10.1093/biomet/80.1.153 10.1002/sim.7027 10.1002/bimj.201000145 10.1002/sim.5776 10.1201/b11311 |
| ContentType | Journal Article |
| Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
| DOI | 10.1002/bimj.201600238 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1521-4036 |
| EndPage | 1276 |
| ExternalDocumentID | 28792080 10_1002_bimj_201600238 BIMJ1810 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: the Netherlands Organisation for Scientific Research funderid: VIDI grant nr. 016.146.301. |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 3-9 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AI. AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M67 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XBAML XG1 XPP XV2 Y6R YHZ ZZTAW ~IA ~WT AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
| ID | FETCH-LOGICAL-c3680-7c8f06999337b36f0cfdc2d9c393182fb641b7d025445299f6e8f465bccbe3973 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 107 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000418746100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0323-3847 1521-4036 |
| IngestDate | Sun Nov 09 13:53:32 EST 2025 Tue Oct 07 05:41:12 EDT 2025 Mon Jul 21 05:42:05 EDT 2025 Tue Nov 18 22:18:58 EST 2025 Sat Nov 29 06:28:47 EST 2025 Sun Sep 21 06:28:02 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Random effects Risk prediction Discrimination Calibration Prognostic modeling |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3680-7c8f06999337b36f0cfdc2d9c393182fb641b7d025445299f6e8f465bccbe3973 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9397-0900 |
| PMID | 28792080 |
| PQID | 1963865799 |
| PQPubID | 105592 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_1927593827 proquest_journals_1963865799 pubmed_primary_28792080 crossref_citationtrail_10_1002_bimj_201600238 crossref_primary_10_1002_bimj_201600238 wiley_primary_10_1002_bimj_201600238_BIMJ1810 |
| PublicationCentury | 2000 |
| PublicationDate | November 2017 2017-11-00 2017-Nov 20171101 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: November 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Biometrical journal |
| PublicationTitleAlternate | Biom J |
| PublicationYear | 2017 |
| Publisher | Wiley - VCH Verlag GmbH & Co. KGaA |
| Publisher_xml | – name: Wiley - VCH Verlag GmbH & Co. KGaA |
| References | 2007; 102 2010; 35 2015; 71 2012 2011 1983; 1 2011; 40 2011; 53 2002; 3 2016; 72 2000; 1 2008; 103 2002 2005; 61 1996; 15 2007; 34 2012; 107 2016; 35 2009; 10 2014; 109 2001 2013; 32 2000; 56 2004; 14 2008; 27 2006; 48 1993; 80 2015 2011; 67 2016; 25 e_1_2_9_30_1 Andrinopoulou E. (e_1_2_9_4_1) 2015 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 Tsiatis A. (e_1_2_9_27_1) 2004; 14 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_29_1 |
| References_xml | – year: 2011 – volume: 35 start-page: 4813 year: 2016 end-page: 4823 article-title: Bayesian shrinkage approach for a joint model of longitudinal and survival outcomes assuming different association structures publication-title: Statistics in Medicine – volume: 53 start-page: 275 year: 2011 end-page: 293 article-title: Measures of prediction error for survival data with longitudinal covariates publication-title: Biometrical Journal – volume: 48 start-page: 1029 year: 2006 end-page: 1040 article-title: Consistent estimation of the expected Brier score in general survival models with right‐censored event times publication-title: Biometrical Journal – volume: 15 start-page: 361 year: 1996 end-page: 387 article-title: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors publication-title: Statistics in Medicine – volume: 67 start-page: 819 year: 2011 end-page: 829 article-title: Dynamic predictions and prospective accuracy in joint models for longitudinal and time‐to‐event data publication-title: Biometrics – volume: 25 start-page: 1661 year: 2016 end-page: 1676 article-title: A flexible joint modelling framework for longitudinal and time‐to‐event data with overdispersion publication-title: Statistical Methods in Medical Research – year: 2001 – volume: 61 start-page: 379 year: 2005 end-page: 391 article-title: Partly conditional survival models for longitudinal data publication-title: Biometrics – volume: 109 start-page: 1385 year: 2014 end-page: 1397 article-title: Combining dynamic predictions from joint models for longitudinal and time‐to‐event data using Bayesian model averaging publication-title: Journal of the American Statistical Association – volume: 107 start-page: 1492 year: 2012 end-page: 1501 article-title: Landmark prediction of long term survival incorporating short term event time information publication-title: Journal of the American Statistical Association – volume: 10 start-page: 535 year: 2009 end-page: 549 article-title: Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of posttreatment PSA: A joint modeling approach publication-title: Biostatistics – volume: 71 start-page: 102 year: 2015 end-page: 113 article-title: Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time‐to‐event in presence of censoring and competing risks publication-title: Biometrics – volume: 40 start-page: 35 year: 2011 end-page: 42 article-title: Re‐operations for aortic allograft root failure: Experience from a 21‐year single‐center prospective follow‐up study publication-title: European Journal of Cardio‐Thoracic Surgery – volume: 35 start-page: 1 issue: 9 year: 2010 end-page: 33 article-title: JM: An R package for the joint modelling of longitudinal and time‐to‐event data publication-title: Journal of Statistical Software – volume: 32 start-page: 2031 year: 2013 end-page: 2047 article-title: Dynamic prediction by landmarking in competing risks publication-title: Statistics in Medicine – volume: 14 start-page: 809 year: 2004 end-page: 834 article-title: Joint modeling of longitudinal and time‐to‐event data: An overview publication-title: Statistica Sinica – year: 2015 article-title: Combined dynamic predictions using joint models of two longitudinal outcomes and competing risk data publication-title: Statistical Methods in Medical Research – year: 2012 – volume: 1 start-page: 465 year: 2000 end-page: 480 article-title: Joint modelling of longitudinal measurements and event time data publication-title: Biostatistics – volume: 80 start-page: 153 year: 1993 end-page: 164 article-title: A framework for consistent prediction rules based on markers publication-title: Biometrika – volume: 27 start-page: 157 year: 2008 end-page: 172 article-title: Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond publication-title: Statistics in Medicine – volume: 32 start-page: 3459 year: 2013 end-page: 3471 article-title: Landmark risk prediction of residual life for breast cancer survival publication-title: Statistics in Medicine – year: 2002 – volume: 3 start-page: 33 year: 2002 end-page: 50 article-title: Identification and efficacy of longitudinal markers for survival publication-title: Biostatistics – volume: 34 start-page: 70 year: 2007 end-page: 85 article-title: Dynamic prediction by landmarking in event history analysis publication-title: Scandinavian Journal of Statistics – volume: 103 start-page: 178 year: 2008 end-page: 187 article-title: Individualized prediction in prostate cancer studies using a joint longitudinal‐survival‐cure model publication-title: Journal of the American Statistical Association – volume: 1 start-page: 710 year: 1983 end-page: 719 article-title: Analysis of survival by tumor response publication-title: Journal of Clinical Oncology – volume: 56 start-page: 249 year: 2000 end-page: 255 article-title: Predictive accuracy and explained variation in Cox regression publication-title: Biometrics – volume: 72 start-page: 1 issue: 7 year: 2016 end-page: 45 article-title: The R package JMbayes for fitting joint models for longitudinal and time‐to‐event data using MCMC publication-title: Journal of Statistical Software – volume: 102 start-page: 527 year: 2007 end-page: 537 article-title: Evaluating prediction rules for t‐year survivors with censored regression models publication-title: Journal of the American Statistical Association – ident: e_1_2_9_29_1 doi: 10.1111/j.1467-9469.2006.00529.x – ident: e_1_2_9_22_1 doi: 10.1201/b12208 – ident: e_1_2_9_28_1 doi: 10.1198/016214507000000149 – ident: e_1_2_9_2_1 doi: 10.1200/JCO.1983.1.11.710 – ident: e_1_2_9_14_1 doi: 10.1002/sim.5665 – ident: e_1_2_9_13_1 doi: 10.1002/9781118032985 – ident: e_1_2_9_25_1 doi: 10.1111/j.0006-341X.2000.00249.x – ident: e_1_2_9_9_1 doi: 10.1093/biostatistics/1.4.465 – volume: 14 start-page: 809 year: 2004 ident: e_1_2_9_27_1 article-title: Joint modeling of longitudinal and time‐to‐event data: An overview publication-title: Statistica Sinica – ident: e_1_2_9_10_1 doi: 10.1093/biostatistics/3.1.33 – ident: e_1_2_9_7_1 doi: 10.1002/bimj.200610301 – ident: e_1_2_9_11_1 doi: 10.1007/978-1-4757-3447-8 – year: 2015 ident: e_1_2_9_4_1 article-title: Combined dynamic predictions using joint models of two longitudinal outcomes and competing risk data publication-title: Statistical Methods in Medical Research – ident: e_1_2_9_23_1 doi: 10.18637/jss.v072.i07 – ident: e_1_2_9_18_1 doi: 10.1002/sim.2929 – ident: e_1_2_9_19_1 doi: 10.1093/biostatistics/kxp009 – ident: e_1_2_9_21_1 doi: 10.1111/j.1541-0420.2010.01546.x – ident: e_1_2_9_31_1 doi: 10.1198/016214507000000400 – ident: e_1_2_9_17_1 doi: 10.1080/01621459.2012.721281 – ident: e_1_2_9_20_1 doi: 10.18637/jss.v035.i09 – ident: e_1_2_9_32_1 doi: 10.1111/j.1541-0420.2005.00323.x – ident: e_1_2_9_8_1 doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 – ident: e_1_2_9_15_1 doi: 10.1177/0962280213495994 – ident: e_1_2_9_5_1 doi: 10.1016/j.ejcts.2010.11.025 – ident: e_1_2_9_6_1 doi: 10.1111/biom.12232 – ident: e_1_2_9_24_1 doi: 10.1080/01621459.2014.931236 – ident: e_1_2_9_12_1 doi: 10.1093/biomet/80.1.153 – ident: e_1_2_9_3_1 doi: 10.1002/sim.7027 – ident: e_1_2_9_26_1 doi: 10.1002/bimj.201000145 – ident: e_1_2_9_16_1 doi: 10.1002/sim.5776 – ident: e_1_2_9_30_1 doi: 10.1201/b11311 |
| SSID | ssj0009042 |
| Score | 2.4972346 |
| Snippet | A key question in clinical practice is accurate prediction of patient prognosis. To this end, nowadays, physicians have at their disposal a variety of tests... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1261 |
| SubjectTerms | Aortic Valve - surgery Biomarkers Biometry - methods Calibration Decision making Discrimination Economic models Female Heuristics Humans Information processing Male Mathematical models Medical prognosis Models, Statistical Optimization Physicians Probability Prognostic modeling Random effects Reoperation Risk prediction Statistical analysis Survival Survival Analysis Time Factors |
| Title | Dynamic predictions with time‐dependent covariates in survival analysis using joint modeling and landmarking |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.201600238 https://www.ncbi.nlm.nih.gov/pubmed/28792080 https://www.proquest.com/docview/1963865799 https://www.proquest.com/docview/1927593827 |
| Volume | 59 |
| WOSCitedRecordID | wos000418746100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-4036 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009042 issn: 0323-3847 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFD7YrYIv3i-rtUQQfAqdSWZyeVTroqJFxMK-DblMyhY7W_ZS8M2f4G_0l3iSzE5dRER8HOaQCZNz-XL7PoBnPASjtZO0rZSjVa1aGu9PUiwFzGjLvOAmiU3IoyM1neqPv9ziz_wQw4JbjIyUr2OAG7s8uCQNtbOz03g0S6SyswO7DJ23HsHu4afJ8ftL4t2iyjsJjFOOqXhD3Fiwg-0WtgvTb2hzG7ym6jO5-f_9vgU3euRJXmRXuQ1X2u4OXMtalF_vQneYtenJ-SLu3SR3JHGVlkT5-R_fvm_kclfEzS9whh1BKpl1ZLnGbIP-SkzPb0LiWfoTcjqfoW1S2omPpvMknqI8M2l1_h4cT15_fvWG9mIM1HGhCiqdCoVAOMm5tFyEwgXvmNeOa0wLLFhRlVb6THmGNS6IVoVK1NY52yLo4fdh1M279iEQ49sacSSCm-Cr0kmDjZQqAsnSlt6bMdDNSDSuZyqPghlfmsyxzJr4D5vhH47h-WB_njk6_mi5txnYpo_VZZNykKil1mN4OrzGKItbJ6Zr5-tow2StuWJyDA-yQwyfwjmnZgi8sdtp3P_Sh-bl2w_vEFcVj_7R_jFcZxFTpIuQezBaLdbtE7jqLlaz5WIfduRU7ffe_xOmiwam |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA7aKvpS77q1agTBp9CZZCaZPFbr0up2EWmhb0MmF9liZ8teCr75E_yN_pKek8xOWURE8HGYQyZMzuXLycl3CHkjQjBaW8V8UVlWlJVneH-SQSjgRjfcSWFiswk1Hlenp_pzV02Id2ESP0SfcEPLiP4aDRwT0rvXrKHN5PwMa7NkjDs3yWYBugRKvrn_ZXgyumbezYp0lMAFE-CLV8yNGd9dH2E9Mv0GN9fRaww_w3v_YeL3yVaHPeleUpYH5IZvH5LbqRvl90ek3U_d6enFDE9vokJSzNNSbED_68fPVcPcBbXTS9hjI0ylk5bOl-BvQGOp6RhOKFbTf6Vn0wnIxl47-GhaR7GO8tzE_PxjcjL8cPz-gHXtGJgVssqYslXIJABKIVQjZMhscJY7bYUGx8BDI4u8US6RnkGUC9JXoZBlY23jAfaIJ2Sjnbb-GaHG-RKQJMCb4IrcKgOD5BVCybzJnTMDwlZLUduOqxxbZnyrE8syr_Ef1v0_HJC3vfxFYun4o-TOamXrzlrndfRCslRaD8jr_jXYGR6emNZPlyjDValFxdWAPE0a0X8Kdp2aA_SGaceF_8sc6neHRx8BWWXb_yj_itw5OD4a1aPD8afn5C5HhBGvRe6QjcVs6V-QW_ZyMZnPXnZGcAUs-Qmu |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFD7orC6-eHcdXTWC4FPYNmmT5lEdB1fXYREX9q2kucgsbmeYy4Jv_gR_o7_EnKTTZRARwcfSQxqac_ly-z6AF9x7rZSR1BWVoUVZOYr3J2koBUyrhlnBdRSbkJNJdXqqjrvThHgXJvFD9AtuGBkxX2OAu7n1B5esoc30_AzPZolYd67CToFKMgPYGX0anxxdMu9mRdpKYJzykIs3zI0ZO9huYbsy_QY3t9FrLD_jW_-h47fhZoc9yavkLHfgimvvwvWkRvntHrSjpE5P5gvcvYkOSXCdlqAA_c_vPzaCuStiZhdhjo0wlUxbslyHfBM8luiO4YTgafov5Gw2DbZRawcfdWsJnqM813F9_j6cjN9-fvOOdnIM1HBRZVSaymciAErOZcOFz4y3hllluAqJgflGFHkjbSI9C1XOC1f5QpSNMY0LsIc_gEE7a91DINq6MiDJAG-8LXIjdWgkrxBK5k1urR4C3QxFbTqucpTM-FonlmVW4z-s-384hJe9_TyxdPzRcn8zsnUXrcs6ZiFRSqWG8Lx_HeIMN09062ZrtGGyVLxicgh7ySP6T4VZp2IBeodux4H_Sx_q14cf3wdklT36R_tnsHs8GtdHh5MPj-EGQ4ARb0Xuw2C1WLsncM1crKbLxdMuBn4BqfwJKQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+predictions+with+time-dependent+covariates+in+survival+analysis+using+joint+modeling+and+landmarking&rft.jtitle=Biometrical+journal&rft.au=Rizopoulos%2C+Dimitris&rft.au=Molenberghs%2C+Geert&rft.au=Lesaffre%2C+Emmanuel+M+E+H&rft.date=2017-11-01&rft.eissn=1521-4036&rft.volume=59&rft.issue=6&rft.spage=1261&rft_id=info:doi/10.1002%2Fbimj.201600238&rft_id=info%3Apmid%2F28792080&rft.externalDocID=28792080 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon |