A novel finite element time domain method for nonlinear Maxwell's equations based on the parametric quadratic programming method

ABSTRACT A finite‐element time‐domain method is developed for Maxwell's equations with nonlinear media. Compared with conventional nonlinear numerical methods, the proposed scheme is not based on iterations, but using the quadratic programming method. The nonlinear constitutive relations are tr...

Full description

Saved in:
Bibliographic Details
Published in:Microwave and optical technology letters Vol. 57; no. 7; pp. 1640 - 1645
Main Authors: Zhu, Bao, Yang, Hongwei, Chen, Jiefu
Format: Journal Article
Language:English
Published: New York Blackwell Publishing Ltd 01.07.2015
Wiley Subscription Services, Inc
Subjects:
ISSN:0895-2477, 1098-2760
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT A finite‐element time‐domain method is developed for Maxwell's equations with nonlinear media. Compared with conventional nonlinear numerical methods, the proposed scheme is not based on iterations, but using the quadratic programming method. The nonlinear constitutive relations are treated as a series of linear complementary problems, thus, this scheme presents very good convergence behavior in computation. Numerical results demonstrate the validity of the proposed method. © 2015 Wiley Periodicals, Inc. Microwave Opt Technol Lett 57:1640–1645, 2015
AbstractList A finite‐element time‐domain method is developed for Maxwell's equations with nonlinear media. Compared with conventional nonlinear numerical methods, the proposed scheme is not based on iterations, but using the quadratic programming method. The nonlinear constitutive relations are treated as a series of linear complementary problems, thus, this scheme presents very good convergence behavior in computation. Numerical results demonstrate the validity of the proposed method. © 2015 Wiley Periodicals, Inc. Microwave Opt Technol Lett 57:1640–1645, 2015
ABSTRACT A finite‐element time‐domain method is developed for Maxwell's equations with nonlinear media. Compared with conventional nonlinear numerical methods, the proposed scheme is not based on iterations, but using the quadratic programming method. The nonlinear constitutive relations are treated as a series of linear complementary problems, thus, this scheme presents very good convergence behavior in computation. Numerical results demonstrate the validity of the proposed method. © 2015 Wiley Periodicals, Inc. Microwave Opt Technol Lett 57:1640–1645, 2015
A finite-element time-domain method is developed for Maxwell's equations with nonlinear media. Compared with conventional nonlinear numerical methods, the proposed scheme is not based on iterations, but using the quadratic programming method. The nonlinear constitutive relations are treated as a series of linear complementary problems, thus, this scheme presents very good convergence behavior in computation. Numerical results demonstrate the validity of the proposed method. copyright 2015 Wiley Periodicals, Inc. Microwave Opt Technol Lett 57:1640-1645, 2015
Author Chen, Jiefu
Zhu, Bao
Yang, Hongwei
Author_xml – sequence: 1
  givenname: Bao
  surname: Zhu
  fullname: Zhu, Bao
  organization: School of Materials Science and Engineering, Dalian University of Technology, Liaoning, 116023, Dalian, China
– sequence: 2
  givenname: Hongwei
  surname: Yang
  fullname: Yang, Hongwei
  organization: College of Applied Sciences, Beijing University of Technology, 100124, Beijing, China
– sequence: 3
  givenname: Jiefu
  surname: Chen
  fullname: Chen, Jiefu
  email: chenjiefu@gmail.com
  organization: Advantage R&D Center, Weatherford International, TX, 77060, Houston
BookMark eNp1kU9PHCEYh4mxiavtwW9A4qH1MPrOsMDM0RjdNtFqkzZ6I-zwotgZWIH1z60fvdRdezDtiYQ8z4_35bdNNn3wSMhuDQc1QHM4hsVB09USNsikhq6tGilgk0yg7XjVTKXcItsp3QEAk7KZkF9H1IcHHKh13mWkOOCIPtPsRqQmjNp5OmK-DYbaEAvrB-dRR3qunx5xGD4mivdLnV3wic51QkODp_kW6UJHXczoeloAEwvT00UMN-V6dP5mHfuevLN6SPhhfe6QH6cn348_V2cXsy_HR2dVz0QLFbd6Ko0xmlvou05aa3oDHQgDjawZA2vmgBItMuwETHXdNZLPhZSsWIBsh3xa5ZYR7peYshpd6ssG2mNYJlWLlreMc8ELuvcGvQvL6Mt0hZKiKc9yKNThiupjSCmiVb3LLx-Ro3aDqkH9aUSVRtRLI8XYf2Msoht1fP4nu05_dAM-_x9U5xeXr0a1MlzK-PTX0PGnEpJJrq6-zhRvZ9_E5fWVOmW_AaM6rnA
CODEN MOTLEO
CitedBy_id crossref_primary_10_1109_TAP_2018_2874798
crossref_primary_10_1109_JPHOT_2020_2977233
crossref_primary_10_1016_j_triboint_2019_03_060
Cites_doi 10.2528/PIER09082705
10.1007/BF01587074
10.1016/0024-3795(68)90052-9
10.1007/BF01268170
10.1137/1.9781611971453
10.1109/8.662652
10.1109/8.558652
10.1007/BF02579150
10.1137/0112033
10.1109/20.376343
10.1016/j.jcp.2007.01.031
10.1137/S0036144595285963
10.1016/j.cma.2005.01.002
10.1364/JOSAB.10.000186
10.1080/02331939208843795
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1002/mop.29170
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList CrossRef
Engineering Research Database

Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1098-2760
EndPage 1645
ExternalDocumentID 3667900231
10_1002_mop_29170
MOP29170
ark_67375_WNG_58GQ6PXW_F
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds of Beijing University of Technology
  funderid: 006000514313003
– fundername: National Natural Science Foundation of China
  funderid: 11172008; 11272020
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
ESX
RWI
UCJ
WRC
WWI
AAYXX
CITATION
O8X
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c3680-5fa47ddda5f0c997ffdcd0906d0271330fdb0e7efe3e9604a19275b6773ddd0e3
IEDL.DBID DRFUL
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000353984600029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0895-2477
IngestDate Fri Jul 11 12:08:03 EDT 2025
Fri Jul 25 12:14:21 EDT 2025
Sat Nov 29 01:56:26 EST 2025
Tue Nov 18 22:49:39 EST 2025
Wed Jan 22 17:11:03 EST 2025
Tue Nov 11 03:33:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3680-5fa47ddda5f0c997ffdcd0906d0271330fdb0e7efe3e9604a19275b6773ddd0e3
Notes istex:89377B73EBEB54D7A37CF8168A4DD0158EA3E1AA
Fundamental Research Funds of Beijing University of Technology - No. 006000514313003
National Natural Science Foundation of China - No. 11172008; No. 11272020
ark:/67375/WNG-58GQ6PXW-F
ArticleID:MOP29170
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1676209050
PQPubID 1006447
PageCount 6
ParticipantIDs proquest_miscellaneous_1685835565
proquest_journals_1676209050
crossref_citationtrail_10_1002_mop_29170
crossref_primary_10_1002_mop_29170
wiley_primary_10_1002_mop_29170_MOP29170
istex_primary_ark_67375_WNG_58GQ6PXW_F
PublicationCentury 2000
PublicationDate 2015-07
July 2015
2015-07-00
20150701
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Microwave and optical technology letters
PublicationTitleAlternate Microw. Opt. Technol. Lett
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References J. Chen, and Q.H. Liu, A non-spurious vector spectral element method for Maxwell's equations, Prog Electromagn Res 96 (2009), 205-215.
A. Fischer, A special Newton-type optimization method, Optimization 24 (1992), 269-284.
R.W. Cottle, J. Pang, and J.S. Pang, The linear complementarity problem, MA Academic Press, Boston, 1992.
S.J. Wright, Primal-dual interior-point methods, SIAM, Philadelphia, PA, 1997.
H.W. Zhang, S.Y. He, and X.S. Li, Two aggregate-function-based algorithms for analysis of 3D frictional contact by linear complementarity problem formulation, Comput Meth Appl Mech Eng 194 (2005), 5139-5158.
A.S. Nagra and R.A. York, FDTD analysis of wave propagation in nonlinear absorbing and gain media, IEEE Trans Antennas Propag 46 (1998), 334-340.
R.W. Cottle and G.B. Dantzig, Complementary pivot theory of mathematical programming, Linear Algebra App 1 (1982), 103-125.
R. Ziolkowski, Full-wave vector Maxwell equation modeling of the self-focusing of ultrashort optical pulses in a nonlinear kerr medium exhibiting a finite response time, J Opt Soc Am B 10 (1993), 186-198.
N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984), 373-395.
O.L. Mangasarian, Solution of symmetric linear complementarity problems by iterative methods, J Optim Theory Appl 22 (1977), 465-485.
A. Fisher, D. White, and G. Rodrigue, An efficient vector finite element method for nonlinear electromagnetic modeling, J Comput Phys 225 (2007), 1331-1346.
M. Wong, O. Picon, and V. Fouad Hanna, A finite element method based on Whitney forms to solve Maxwell equations in the time domain, IEEE Trans Magn 31 (1995), 1618-1621.
M. Kojima, S. Mizuno, and A. Yoshise, A polynomial-time algorithm for a class of linear complementarity problems, Math Program 44 (1989), 1-26.
K.G. Murty, Linear complementarity, linear and nonlinear programming, Helder mann Verlag, Berlin, 1988.
C.E. Lemke and J.T. Howson, Equilibrium points of bimatrix games, SIAM J Appl Math 12 (1964), 413-423.
M.C. Ferris and J.S. Pang, Engineering and economic applications of complementarity problems," SIAM Rev 39 (1997), 669-713.
R.M. Joseph and A. Taflove, FDTD Maxwell's equations models for nonlinear electrodynamics and optics, IEEE Trans Antennas Propag 45 (1997), 364-376.
1995; 31
2007; 225
2009; 96
1989; 44
2005; 194
1982; 1
1984; 4
1993; 10
1997; 45
1997
1997; 39
1977; 22
1992; 24
2005
1964; 12
1992
1988
1998; 46
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
Liu Q.H. (e_1_2_7_18_1) 2005
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
Murty K.G. (e_1_2_7_12_1) 1988
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_10_1
Cottle R.W. (e_1_2_7_11_1) 1992
References_xml – reference: R.W. Cottle, J. Pang, and J.S. Pang, The linear complementarity problem, MA Academic Press, Boston, 1992.
– reference: N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984), 373-395.
– reference: M. Kojima, S. Mizuno, and A. Yoshise, A polynomial-time algorithm for a class of linear complementarity problems, Math Program 44 (1989), 1-26.
– reference: C.E. Lemke and J.T. Howson, Equilibrium points of bimatrix games, SIAM J Appl Math 12 (1964), 413-423.
– reference: M.C. Ferris and J.S. Pang, Engineering and economic applications of complementarity problems," SIAM Rev 39 (1997), 669-713.
– reference: S.J. Wright, Primal-dual interior-point methods, SIAM, Philadelphia, PA, 1997.
– reference: O.L. Mangasarian, Solution of symmetric linear complementarity problems by iterative methods, J Optim Theory Appl 22 (1977), 465-485.
– reference: A. Fischer, A special Newton-type optimization method, Optimization 24 (1992), 269-284.
– reference: R. Ziolkowski, Full-wave vector Maxwell equation modeling of the self-focusing of ultrashort optical pulses in a nonlinear kerr medium exhibiting a finite response time, J Opt Soc Am B 10 (1993), 186-198.
– reference: A.S. Nagra and R.A. York, FDTD analysis of wave propagation in nonlinear absorbing and gain media, IEEE Trans Antennas Propag 46 (1998), 334-340.
– reference: J. Chen, and Q.H. Liu, A non-spurious vector spectral element method for Maxwell's equations, Prog Electromagn Res 96 (2009), 205-215.
– reference: R.M. Joseph and A. Taflove, FDTD Maxwell's equations models for nonlinear electrodynamics and optics, IEEE Trans Antennas Propag 45 (1997), 364-376.
– reference: H.W. Zhang, S.Y. He, and X.S. Li, Two aggregate-function-based algorithms for analysis of 3D frictional contact by linear complementarity problem formulation, Comput Meth Appl Mech Eng 194 (2005), 5139-5158.
– reference: A. Fisher, D. White, and G. Rodrigue, An efficient vector finite element method for nonlinear electromagnetic modeling, J Comput Phys 225 (2007), 1331-1346.
– reference: M. Wong, O. Picon, and V. Fouad Hanna, A finite element method based on Whitney forms to solve Maxwell equations in the time domain, IEEE Trans Magn 31 (1995), 1618-1621.
– reference: R.W. Cottle and G.B. Dantzig, Complementary pivot theory of mathematical programming, Linear Algebra App 1 (1982), 103-125.
– reference: K.G. Murty, Linear complementarity, linear and nonlinear programming, Helder mann Verlag, Berlin, 1988.
– volume: 12
  start-page: 413
  year: 1964
  end-page: 423
  article-title: , Equilibrium points of bimatrix games
  publication-title: SIAM J Appl Math
– volume: 22
  start-page: 465
  year: 1977
  end-page: 485
  article-title: , Solution of symmetric linear complementarity problems by iterative methods
  publication-title: J Optim Theory Appl
– volume: 225
  start-page: 1331
  year: 2007
  end-page: 1346
  article-title: , An efficient vector finite element method for nonlinear electromagnetic modeling
  publication-title: J Comput Phys
– volume: 46
  start-page: 334
  year: 1998
  end-page: 340
  article-title: FDTD analysis of wave propagation in nonlinear absorbing and gain media
  publication-title: IEEE Trans Antennas Propag
– volume: 39
  start-page: 669
  year: 1997
  end-page: 713
  article-title: , Engineering and economic applications of complementarity problems,”
  publication-title: SIAM Rev
– volume: 45
  start-page: 364
  year: 1997
  end-page: 376
  article-title: FDTD Maxwell's equations models for nonlinear electrodynamics and optics
  publication-title: IEEE Trans Antennas Propag
– volume: 10
  start-page: 186
  year: 1993
  end-page: 198
  article-title: Full‐wave vector Maxwell equation modeling of the self‐focusing of ultrashort optical pulses in a nonlinear kerr medium exhibiting a finite response time
  publication-title: J Opt Soc Am B
– year: 2005
– volume: 31
  start-page: 1618
  year: 1995
  end-page: 1621
  article-title: , A finite element method based on Whitney forms to solve Maxwell equations in the time domain
  publication-title: IEEE Trans Magn
– year: 1988
– year: 1997
– volume: 4
  start-page: 373
  year: 1984
  end-page: 395
  article-title: , A new polynomial‐time algorithm for linear programming
  publication-title: Combinatorica
– volume: 194
  start-page: 5139
  year: 2005
  end-page: 5158
  article-title: Two aggregate‐function‐based algorithms for analysis of 3D frictional contact by linear complementarity problem formulation
  publication-title: Comput Meth Appl Mech Eng
– volume: 96
  start-page: 205
  year: 2009
  end-page: 215
  article-title: , A non‐spurious vector spectral element method for Maxwell's equations
  publication-title: Prog Electromagn Res
– volume: 1
  start-page: 103
  year: 1982
  end-page: 125
  article-title: , Complementary pivot theory of mathematical programming
  publication-title: Linear Algebra App
– year: 1992
– volume: 44
  start-page: 1
  year: 1989
  end-page: 26
  article-title: , A polynomial‐time algorithm for a class of linear complementarity problems
  publication-title: Math Program
– volume: 24
  start-page: 269
  year: 1992
  end-page: 284
  article-title: A special Newton‐type optimization method
  publication-title: Optimization
– ident: e_1_2_7_5_1
  doi: 10.2528/PIER09082705
– ident: e_1_2_7_15_1
  doi: 10.1007/BF01587074
– ident: e_1_2_7_7_1
  doi: 10.1016/0024-3795(68)90052-9
– ident: e_1_2_7_9_1
  doi: 10.1007/BF01268170
– volume-title: The linear complementarity problem
  year: 1992
  ident: e_1_2_7_11_1
– ident: e_1_2_7_14_1
  doi: 10.1137/1.9781611971453
– ident: e_1_2_7_19_1
  doi: 10.1109/8.662652
– ident: e_1_2_7_2_1
  doi: 10.1109/8.558652
– ident: e_1_2_7_13_1
  doi: 10.1007/BF02579150
– ident: e_1_2_7_8_1
  doi: 10.1137/0112033
– volume-title: Linear complementarity, linear and nonlinear programming
  year: 1988
  ident: e_1_2_7_12_1
– ident: e_1_2_7_4_1
  doi: 10.1109/20.376343
– ident: e_1_2_7_6_1
  doi: 10.1016/j.jcp.2007.01.031
– ident: e_1_2_7_10_1
  doi: 10.1137/S0036144595285963
– ident: e_1_2_7_17_1
  doi: 10.1016/j.cma.2005.01.002
– volume-title: Computational electromagnetics: The finite‐difference time‐domain method
  year: 2005
  ident: e_1_2_7_18_1
– ident: e_1_2_7_3_1
  doi: 10.1364/JOSAB.10.000186
– ident: e_1_2_7_16_1
  doi: 10.1080/02331939208843795
SSID ssj0003772
Score 2.116106
Snippet ABSTRACT A finite‐element time‐domain method is developed for Maxwell's equations with nonlinear media. Compared with conventional nonlinear numerical methods,...
A finite‐element time‐domain method is developed for Maxwell's equations with nonlinear media. Compared with conventional nonlinear numerical methods, the...
A finite-element time-domain method is developed for Maxwell's equations with nonlinear media. Compared with conventional nonlinear numerical methods, the...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1640
SubjectTerms Convergence
Finite element method
finite-element time-domain method
linear complementarity problem
Mathematical analysis
Mathematical models
Maxwell's equations
Microwaves
nonlinear electromagnetism
Nonlinearity
parametric variational principle
Quadratic programming
Title A novel finite element time domain method for nonlinear Maxwell's equations based on the parametric quadratic programming method
URI https://api.istex.fr/ark:/67375/WNG-58GQ6PXW-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmop.29170
https://www.proquest.com/docview/1676209050
https://www.proquest.com/docview/1685835565
Volume 57
WOSCitedRecordID wos000353984600029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1098-2760
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003772
  issn: 0895-2477
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_KnYI--FEVz1ZZRdSX2L0km03wqbRefbDnKZbe27LZDzjsJfXSlj72T3dmk4stKAi-BTK7THZnMr_ZTH4D8Doty4KYuCIrdRmlQmdRngsTBWPIUoTQxoZmE3I6zefzYrYBH9b_wrT8EP2BG3lGeF-Tg-uy2flNGrqsT9_HmGxgvj6M0W7FAIb73yZHn_sXcSJD7yaeFyKKUynXxEI83ukH3whHQ1rZyxtY8zpiDSFncv-_lH0A9zqkyXZb03gIG67ahLvX-Ac34Xao_zTNI7jaZVV94U6YXxAIZa6tKmfUep7ZeqkXFWubTTNEuSgbdNIrdqgv6fjvbcPcz5Y1vGEUGS2rK4bgkhG3-JLadhmGApYMzrCuKmyJWnTTPoajycfve5-irjlDZJIs55HwOpXWWi08N0UhvbfG8oJnFhNdTHy5tyV30nmXOCKA0QglpSgzKRMcxV3yBAaorHsKLPXS5ylmNmOdpHYsSmkQhWSGyAgLBLQjeLfeI2U65nJqoHGiWs7lWOHyqrC8I3jVi562dB1_EnoTNrqX0KsfVN8mhTqeHiiRH3zNZvNjNRnB9toSVOfajRpnGD_wQQXO87K_jU5JX1p05epzkskFQlsEy6h7sIu_a6MOv8zCxbN_F92COwjcRFs2vA2Ds9W5ew63zMXZolm96PzgF9HQDBg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5N6xDwMGCAVhhgEIK9hLmNHScSL9OgG6ItBW1a3yzHP6RqazKabdrj_nTOTho2CSQk3iLlbF3su9x3zuU7gLcszzPPxBUZofKIcZVEacp1FIwhYQihtQnNJsR4nE6n2WQFPi7_han5IdoDN-8Z4X3tHdwfSO_8Zg2dl2cf-phtYMLeYWhGaN-dTz8GR8P2TRyL0LyJphmP-kyIJbMQ7e-0g2_Fo45f2qtbYPMmZA0xZ_Dg_7R9COsN1iS7tXE8ghVbbMD9GwyEG3AnVIDq6jFc75KivLSnxM08DCW2risnvvk8MeVczQpSt5smiHNRNiilFmSkrvwB4PuK2J81b3hFfGw0pCwIwkvi2cXnvnGXJihgvMlp0tSFzVGLZtoncDT4fLh3EDXtGSIdJymNuFNMGGMUd1RnmXDOaEMzmhhMdTH1pc7k1ArrbGw9BYxCMCl4nggR4yhq46ewisraTSDMCZcyzG16Kmamx3OhEYck2tMRZghpu7C93CSpG-5y30LjVNasy32JyyvD8nbhTSt6VhN2_EnoXdjpVkItTnyFm-DyeLwvebr_PZlMj-WgC1tLU5CNc1eyl2AEwQflOM_r9ja6pf_WogpbXniZlCO4RbiMugfD-Ls2cvRtEi6e_bvoK7h7cDgayuGX8dfncA9hHK-LiLdg9XxxYV_Amr48n1WLl41T_ALT-BAI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_KnRZ98KNVPK26ilRfYnOXbDYBX4o1VWzPq1h6b8tmP-Cwl5yXtvTRP92ZTS62oCD4FsjsMtmdyfxmM_kNwKu4KDJi4gqMUEUQc5UEacp14I0hiRFCa-ObTYjxOJ1Os8kavFv9C9PwQ3QHbuQZ_n1NDm4Xxu38Zg2dV4u3I8w2MGHvx9REpgf9va_58UH3Jo6Eb94UphkPRrEQK2ahcLTTDb4Wj_q0tJfXwOZVyOpjTn73_7S9B3darMl2G-O4D2u23IDbVxgIN-CmrwDV9Sb83GVldWFPmZsRDGW2qStn1HyemWquZiVr2k0zxLko65VSS3aoLukA8HXN7I-GN7xmFBsNq0qG8JIRu_icGndphgKGTE6zti5sjlq00z6A4_zDt_cfg7Y9Q6CjJA0D7lQsjDGKu1BnmXDOaBNmYWIw1cXUN3SmCK2wzkaWKGAUgknBi0SICEeFNnoIPVTWPgIWO-FS3EMxVFFshrwQGnFIoomOMENIO4A3q02SuuUupxYap7JhXR5JXF7pl3cALzvRRUPY8Sehbb_TnYRafqcKN8HlyXhf8nT_KJlMT2Q-gK2VKcjWuWs5TDCC4INynOdFdxvdkr61qNJW5ySTcgS3CJdRd28Yf9dGHn6Z-IvH_y76HNYne7k8-DT-_ARuIYrjTQ3xFvTOluf2KdzQF2ezevms9YlfSA8Pgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+finite+element+time+domain+method+for+nonlinear+Maxwell%27s+equations+based+on+the+parametric+quadratic+programming+method&rft.jtitle=Microwave+and+optical+technology+letters&rft.au=Zhu%2C+Bao&rft.au=Yang%2C+Hongwei&rft.au=Chen%2C+Jiefu&rft.date=2015-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0895-2477&rft.eissn=1098-2760&rft.volume=57&rft.issue=7&rft.spage=1640&rft_id=info:doi/10.1002%2Fmop.29170&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3667900231
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-2477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-2477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-2477&client=summon