An algorithm for minimizing a linear objective function subject to the fuzzy relation inequalities with addition–min composition

In this paper, we study the optimal solution of minimizing a linear objective function subject to the fuzzy relation inequalities with addition–min composition. We first discuss some properties about the minimal solutions of fuzzy relation inequalities with addition–min composition, and define the p...

Full description

Saved in:
Bibliographic Details
Published in:Fuzzy sets and systems Vol. 255; pp. 41 - 51
Main Author: Yang, Shao-Jun
Format: Journal Article
Language:English
Published: Elsevier B.V 16.11.2014
Subjects:
ISSN:0165-0114, 1872-6801
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we study the optimal solution of minimizing a linear objective function subject to the fuzzy relation inequalities with addition–min composition. We first discuss some properties about the minimal solutions of fuzzy relation inequalities with addition–min composition, and define the pseudo-minimal indexes of this system. Next we give an algorithm to get the set of the pseudo-minimal indexes, which is called PMI algorithm. Finally, we obtain an algorithm for this optimization system by utilizing these concepts and results. The example is provided to show that our algorithm is simple and convenient.
AbstractList In this paper, we study the optimal solution of minimizing a linear objective function subject to the fuzzy relation inequalities with addition–min composition. We first discuss some properties about the minimal solutions of fuzzy relation inequalities with addition–min composition, and define the pseudo-minimal indexes of this system. Next we give an algorithm to get the set of the pseudo-minimal indexes, which is called PMI algorithm. Finally, we obtain an algorithm for this optimization system by utilizing these concepts and results. The example is provided to show that our algorithm is simple and convenient.
Author Yang, Shao-Jun
Author_xml – sequence: 1
  givenname: Shao-Jun
  surname: Yang
  fullname: Yang, Shao-Jun
  email: yangsj1986@126.com
  organization: Department of Mathematics, Beijing Institute of Technology, Beijing 100081, PR China
BookMark eNp9kM9KAzEQxoMo2KoP4C0vsDXZbDdbPJXiPyh40XPIJrM6ZTepybbSnsRX8A19EtPWkwdhYIZv5jeTfENy7LwDQi45G3HGy6vFqIlxlDNejFgKJo_IgFcyz8qK8WMySDPjjHFenJJhjAvGUl2yAfmcOqrbFx-wf-1o4wPt0GGHW3QvVNMWHehAfb0A0-MaaLNyqfCOxtVeo72n_etO3243NECr992Eva10iz1CpO9pN9XW4q71_fGVLlDju6WPe-WcnDS6jXDxm8_I8-3N0-w-mz_ePcym88yIUvZZwytb5lJOgOW6ySWfaAlG1AXkk7EQlbCsMlaYsbBVLeyENxJqaWqQRQFCa3FG5GGvCT7GAI0y2O-f2weNreJM7axUC5WsVDsrFUvBZCL5H3IZsNNh8y9zfWAgfWmNEFQ0CM6AxZB8U9bjP_QPcCqTzQ
CitedBy_id crossref_primary_10_1007_s40314_024_02945_7
crossref_primary_10_1016_j_fss_2019_04_029
crossref_primary_10_1109_TFUZZ_2022_3213884
crossref_primary_10_1109_TFUZZ_2021_3078529
crossref_primary_10_1016_j_jfranklin_2019_02_007
crossref_primary_10_1109_TFUZZ_2016_2598367
crossref_primary_10_1155_2019_8179763
crossref_primary_10_1016_j_fss_2024_109037
crossref_primary_10_1007_s00500_018_3236_4
crossref_primary_10_1109_TFUZZ_2020_3028641
crossref_primary_10_1016_j_fiae_2017_12_002
crossref_primary_10_1016_j_cie_2018_03_038
crossref_primary_10_1109_TFUZZ_2017_2771406
crossref_primary_10_1007_s40815_018_0530_3
crossref_primary_10_3233_JIFS_234499
crossref_primary_10_1007_s10700_019_09305_9
crossref_primary_10_1016_j_cie_2020_106644
crossref_primary_10_1016_j_fss_2023_108825
crossref_primary_10_1016_j_ins_2020_03_047
crossref_primary_10_1007_s00500_023_09376_2
crossref_primary_10_1109_TFUZZ_2023_3305641
crossref_primary_10_1109_TFUZZ_2017_2648864
crossref_primary_10_1109_TFUZZ_2023_3284392
crossref_primary_10_1016_j_fss_2025_109369
crossref_primary_10_1016_j_ins_2023_119696
crossref_primary_10_1016_j_asoc_2018_04_029
crossref_primary_10_1007_s13042_016_0527_x
crossref_primary_10_1016_j_fss_2025_109561
crossref_primary_10_1016_j_fss_2024_109067
crossref_primary_10_3233_JIFS_151820
crossref_primary_10_1016_j_ins_2016_04_014
crossref_primary_10_1007_s00500_025_10473_7
crossref_primary_10_3233_JIFS_202590
crossref_primary_10_1016_j_fss_2017_08_001
crossref_primary_10_1109_TFUZZ_2022_3201982
crossref_primary_10_1155_2019_4960638
crossref_primary_10_1109_ACCESS_2024_3467191
crossref_primary_10_1007_s10700_021_09377_6
crossref_primary_10_1016_j_ins_2021_03_021
crossref_primary_10_1109_ACCESS_2020_3034279
crossref_primary_10_1016_j_fss_2022_03_017
crossref_primary_10_1016_j_fss_2024_109011
crossref_primary_10_1109_TFUZZ_2016_2593496
crossref_primary_10_1109_TFUZZ_2020_2991304
crossref_primary_10_1109_TFUZZ_2020_3029633
crossref_primary_10_1109_ACCESS_2018_2834231
crossref_primary_10_1109_TFUZZ_2019_2920806
crossref_primary_10_1016_j_ins_2019_06_058
crossref_primary_10_1007_s10700_019_09306_8
crossref_primary_10_1007_s40815_022_01316_w
crossref_primary_10_3390_math12203183
crossref_primary_10_1007_s10700_021_09368_7
crossref_primary_10_3233_IFS_151546
crossref_primary_10_1155_2019_6901818
crossref_primary_10_1016_j_ins_2016_04_041
crossref_primary_10_1109_TFUZZ_2024_3514746
crossref_primary_10_1007_s10700_022_09390_3
crossref_primary_10_1016_j_fss_2021_08_007
crossref_primary_10_1016_j_fss_2022_02_005
crossref_primary_10_1109_TFUZZ_2015_2428716
crossref_primary_10_1016_j_ins_2017_07_032
crossref_primary_10_1016_j_fss_2020_09_014
crossref_primary_10_1007_s10700_021_09371_y
crossref_primary_10_1016_j_cie_2020_106537
crossref_primary_10_1109_TFUZZ_2020_3021726
crossref_primary_10_1109_ACCESS_2018_2878748
crossref_primary_10_1016_j_ins_2022_01_023
crossref_primary_10_1007_s12190_025_02559_0
crossref_primary_10_1016_j_fss_2017_04_002
Cites_doi 10.1109/TSMC.1987.289361
10.1007/s00500-006-0103-5
10.1016/S0165-0114(96)00246-1
10.1109/91.784204
10.1109/TFUZZ.2002.800657
10.1016/j.fss.2005.02.010
10.1016/j.fss.2004.09.010
10.1016/0165-0114(79)90023-X
10.1016/S0165-0114(01)00052-5
10.1016/j.fss.2008.02.017
10.1016/S0165-0114(97)00184-X
10.1016/0165-0114(84)90015-0
10.1016/0165-0114(80)90062-7
10.1016/S0019-9958(76)90446-0
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.fss.2014.04.007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6801
EndPage 51
ExternalDocumentID 10_1016_j_fss_2014_04_007
S0165011414001687
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
K-O
KOM
LG9
LY1
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
WH7
ZMT
~02
~G-
1OL
29H
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
F0J
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
VH1
WUQ
XPP
~HD
ID FETCH-LOGICAL-c367t-f18d62779e02af2719a7ec3b4e2953383d08cd3c53d8b3d91f7eb7cbe744e3aa3
ISICitedReferencesCount 83
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343378800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-0114
IngestDate Sat Nov 29 02:04:15 EST 2025
Tue Nov 18 22:36:08 EST 2025
Fri Feb 23 02:36:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pseudo-minimal index
The minimal solutions
The optimal solution
The optimization system
Fuzzy relation inequalities
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-f18d62779e02af2719a7ec3b4e2953383d08cd3c53d8b3d91f7eb7cbe744e3aa3
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_fss_2014_04_007
crossref_primary_10_1016_j_fss_2014_04_007
elsevier_sciencedirect_doi_10_1016_j_fss_2014_04_007
PublicationCentury 2000
PublicationDate 2014-11-16
PublicationDateYYYYMMDD 2014-11-16
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-16
  day: 16
PublicationDecade 2010
PublicationTitle Fuzzy sets and systems
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Loetamonphong, Fang (br0100) 1999; 7
Pedrycz (br0140) 1984; 13
Wu, Guu, Liu (br0190) 2002; 10
Li, Hu (br0080) 2010; 3
Loetamonphong, Fang, Young (br0110) 2002; 127
Sanchez (br0160) 1976; 30
Li, Hu (br0060) 1997; 11
Ou, Zhang (br0130) 1988
Wu, Guu (br0180) 2005; 150
Li, Yang (br0090) 2012
Yue (br0240) 2009
Markovskii (br0120) 2005; 153
Zheng, Ou (br0220) 1982; 3
Lee, Guu (br0040) 2002; 2
Xu, Lu (br0200) 1987; 17
Fang, Li (br0030) 1999; 103
Li (br0050) 2008; 159
Dubois, Prade (br0020) 1986
Li, Hu (br0070) 2009; 4
Bourke, Fisher (br0010) 1998; 94
Peeva, Kyosev (br0150) 2007; 11
Thole, Zimmermann, Zysno (br0170) 1979; 2
Zimmermann, Zysno (br0230) 1980; 4
Peeva (10.1016/j.fss.2014.04.007_br0150) 2007; 11
Yue (10.1016/j.fss.2014.04.007_br0240) 2009
Xu (10.1016/j.fss.2014.04.007_br0200) 1987; 17
Zheng (10.1016/j.fss.2014.04.007_br0220) 1982; 3
Ou (10.1016/j.fss.2014.04.007_br0130) 1988
Markovskii (10.1016/j.fss.2014.04.007_br0120) 2005; 153
Li (10.1016/j.fss.2014.04.007_br0050) 2008; 159
Loetamonphong (10.1016/j.fss.2014.04.007_br0110) 2002; 127
Dubois (10.1016/j.fss.2014.04.007_br0020) 1986
Lee (10.1016/j.fss.2014.04.007_br0040) 2002; 2
Loetamonphong (10.1016/j.fss.2014.04.007_br0100) 1999; 7
Thole (10.1016/j.fss.2014.04.007_br0170) 1979; 2
Wu (10.1016/j.fss.2014.04.007_br0180) 2005; 150
Wu (10.1016/j.fss.2014.04.007_br0190) 2002; 10
Zimmermann (10.1016/j.fss.2014.04.007_br0230) 1980; 4
Li (10.1016/j.fss.2014.04.007_br0070) 2009; 4
Li (10.1016/j.fss.2014.04.007_br0080) 2010; 3
Li (10.1016/j.fss.2014.04.007_br0060) 1997; 11
Sanchez (10.1016/j.fss.2014.04.007_br0160) 1976; 30
Bourke (10.1016/j.fss.2014.04.007_br0010) 1998; 94
Li (10.1016/j.fss.2014.04.007_br0090) 2012
Pedrycz (10.1016/j.fss.2014.04.007_br0140) 1984; 13
Fang (10.1016/j.fss.2014.04.007_br0030) 1999; 103
References_xml – volume: 159
  start-page: 2278
  year: 2008
  end-page: 2298
  ident: br0050
  article-title: A new algorithm for minimizing a linear objective function with fuzzy relation equation constraints
  publication-title: Fuzzy Sets Syst.
– volume: 13
  start-page: 153
  year: 1984
  end-page: 167
  ident: br0140
  article-title: An identification algorithm in fuzzy relation systems
  publication-title: Fuzzy Sets Syst.
– start-page: 190
  year: 1988
  end-page: 277
  ident: br0130
  article-title: The Principle of Fuzzy Mathematics and Its Applications
– volume: 94
  start-page: 61
  year: 1998
  end-page: 69
  ident: br0010
  article-title: Solution algorithms for fuzzy relational equations with max-product composition
  publication-title: Fuzzy Sets Syst.
– volume: 150
  start-page: 147
  year: 2005
  end-page: 162
  ident: br0180
  article-title: Minimizing a linear function under a fuzzy max–min relational equation constraint
  publication-title: Fuzzy Sets Syst.
– start-page: 59
  year: 1986
  end-page: 75
  ident: br0020
  article-title: New results about properties and semantics of fuzzy set-theoretic operators
  publication-title: Fuzzy Sets
– volume: 3
  start-page: 39
  year: 1982
  end-page: 47
  ident: br0220
  article-title: A method for the solution of fuzzy relation equations
  publication-title: J. Chengdu Inst. Radio Eng.
– volume: 11
  start-page: 44
  year: 1997
  end-page: 52
  ident: br0060
  article-title: The construction of the max–min fuzzy relation equations that have an unique minimal solution
  publication-title: Fuzzy Syst. Math.
– volume: 2
  start-page: 31
  year: 2002
  end-page: 39
  ident: br0040
  article-title: On the optimal three-tier multimedia streaming services
  publication-title: Fuzzy Optim. Decis. Mak.
– volume: 17
  start-page: 683
  year: 1987
  end-page: 689
  ident: br0200
  article-title: Fuzzy model identification and self-learning for dynamic systems
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 3
  start-page: 229
  year: 2010
  end-page: 247
  ident: br0080
  article-title: A new algorithm for minimizing a linear objective function subject to a system of fuzzy relation equations with max-product composition
  publication-title: Fuzzy Inf. Eng.
– volume: 2
  start-page: 167
  year: 1979
  end-page: 180
  ident: br0170
  article-title: On the suit-ability of minimum and product operators for intersection of fuzzy sets
  publication-title: Fuzzy Sets Syst.
– volume: 153
  start-page: 261
  year: 2005
  end-page: 273
  ident: br0120
  article-title: On the relation between equations with max-product composition and the covering problem
  publication-title: Fuzzy Sets Syst.
– year: 2009
  ident: br0240
  article-title: Operational Research
– volume: 4
  start-page: 37
  year: 1980
  end-page: 51
  ident: br0230
  article-title: Latent connectives in human decision-making
  publication-title: Fuzzy Sets Syst.
– volume: 127
  start-page: 141
  year: 2002
  end-page: 164
  ident: br0110
  article-title: Multi-objective optimization problems with fuzzy relation equation constrain
  publication-title: Fuzzy Sets Syst.
– volume: 7
  start-page: 331
  year: 1999
  end-page: 445
  ident: br0100
  article-title: An efficient solution procedure for fuzzy relational equations with max-product composition
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 11
  start-page: 593
  year: 2007
  end-page: 605
  ident: br0150
  article-title: Algorithm for solving max-product fuzzy relational equations
  publication-title: Soft Comput.
– volume: 30
  start-page: 38
  year: 1976
  end-page: 48
  ident: br0160
  article-title: The notion of fuzzy relation equations with the max–min composition was first investigated by Sanchez
  publication-title: Inf. Control
– volume: 10
  start-page: 552
  year: 2002
  end-page: 558
  ident: br0190
  article-title: An accelerated approach for solving fuzzy relation equations with a linear objective function
  publication-title: IEEE Trans. Fuzzy Syst.
– start-page: 452
  year: 2012
  end-page: 456
  ident: br0090
  article-title: Fuzzy relation inequalities about the data transmission mechanism in bittorrent-like peer-to-peer file sharing systems
  publication-title: Proceedings – 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2012
– volume: 103
  start-page: 107
  year: 1999
  end-page: 113
  ident: br0030
  article-title: Solving fuzzy relation equations with a linear objective function
  publication-title: Fuzzy Sets Syst.
– volume: 4
  start-page: 1
  year: 2009
  end-page: 21
  ident: br0070
  article-title: An algorithm for fuzzy relation equations with max-product composition
  publication-title: Adv. Fuzzy Sets Syst.
– volume: 17
  start-page: 683
  year: 1987
  ident: 10.1016/j.fss.2014.04.007_br0200
  article-title: Fuzzy model identification and self-learning for dynamic systems
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1987.289361
– volume: 11
  start-page: 593
  year: 2007
  ident: 10.1016/j.fss.2014.04.007_br0150
  article-title: Algorithm for solving max-product fuzzy relational equations
  publication-title: Soft Comput.
  doi: 10.1007/s00500-006-0103-5
– volume: 94
  start-page: 61
  year: 1998
  ident: 10.1016/j.fss.2014.04.007_br0010
  article-title: Solution algorithms for fuzzy relational equations with max-product composition
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(96)00246-1
– volume: 11
  start-page: 44
  issue: 1
  year: 1997
  ident: 10.1016/j.fss.2014.04.007_br0060
  article-title: The construction of the max–min fuzzy relation equations that have an unique minimal solution
  publication-title: Fuzzy Syst. Math.
– volume: 7
  start-page: 331
  year: 1999
  ident: 10.1016/j.fss.2014.04.007_br0100
  article-title: An efficient solution procedure for fuzzy relational equations with max-product composition
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.784204
– volume: 10
  start-page: 552
  issue: 4
  year: 2002
  ident: 10.1016/j.fss.2014.04.007_br0190
  article-title: An accelerated approach for solving fuzzy relation equations with a linear objective function
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2002.800657
– volume: 2
  start-page: 31
  issue: 31
  year: 2002
  ident: 10.1016/j.fss.2014.04.007_br0040
  article-title: On the optimal three-tier multimedia streaming services
  publication-title: Fuzzy Optim. Decis. Mak.
– start-page: 59
  year: 1986
  ident: 10.1016/j.fss.2014.04.007_br0020
  article-title: New results about properties and semantics of fuzzy set-theoretic operators
– volume: 3
  start-page: 229
  year: 2010
  ident: 10.1016/j.fss.2014.04.007_br0080
  article-title: A new algorithm for minimizing a linear objective function subject to a system of fuzzy relation equations with max-product composition
  publication-title: Fuzzy Inf. Eng.
– start-page: 452
  year: 2012
  ident: 10.1016/j.fss.2014.04.007_br0090
  article-title: Fuzzy relation inequalities about the data transmission mechanism in bittorrent-like peer-to-peer file sharing systems
– volume: 153
  start-page: 261
  year: 2005
  ident: 10.1016/j.fss.2014.04.007_br0120
  article-title: On the relation between equations with max-product composition and the covering problem
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2005.02.010
– start-page: 190
  year: 1988
  ident: 10.1016/j.fss.2014.04.007_br0130
– volume: 150
  start-page: 147
  year: 2005
  ident: 10.1016/j.fss.2014.04.007_br0180
  article-title: Minimizing a linear function under a fuzzy max–min relational equation constraint
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2004.09.010
– volume: 2
  start-page: 167
  year: 1979
  ident: 10.1016/j.fss.2014.04.007_br0170
  article-title: On the suit-ability of minimum and product operators for intersection of fuzzy sets
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(79)90023-X
– year: 2009
  ident: 10.1016/j.fss.2014.04.007_br0240
– volume: 4
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.fss.2014.04.007_br0070
  article-title: An algorithm for fuzzy relation equations with max-product composition
  publication-title: Adv. Fuzzy Sets Syst.
– volume: 127
  start-page: 141
  year: 2002
  ident: 10.1016/j.fss.2014.04.007_br0110
  article-title: Multi-objective optimization problems with fuzzy relation equation constrain
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(01)00052-5
– volume: 159
  start-page: 2278
  year: 2008
  ident: 10.1016/j.fss.2014.04.007_br0050
  article-title: A new algorithm for minimizing a linear objective function with fuzzy relation equation constraints
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2008.02.017
– volume: 103
  start-page: 107
  year: 1999
  ident: 10.1016/j.fss.2014.04.007_br0030
  article-title: Solving fuzzy relation equations with a linear objective function
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(97)00184-X
– volume: 13
  start-page: 153
  year: 1984
  ident: 10.1016/j.fss.2014.04.007_br0140
  article-title: An identification algorithm in fuzzy relation systems
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(84)90015-0
– volume: 3
  start-page: 39
  year: 1982
  ident: 10.1016/j.fss.2014.04.007_br0220
  article-title: A method for the solution of fuzzy relation equations
  publication-title: J. Chengdu Inst. Radio Eng.
– volume: 4
  start-page: 37
  year: 1980
  ident: 10.1016/j.fss.2014.04.007_br0230
  article-title: Latent connectives in human decision-making
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(80)90062-7
– volume: 30
  start-page: 38
  year: 1976
  ident: 10.1016/j.fss.2014.04.007_br0160
  article-title: The notion of fuzzy relation equations with the max–min composition was first investigated by Sanchez
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(76)90446-0
SSID ssj0001160
Score 2.4255874
Snippet In this paper, we study the optimal solution of minimizing a linear objective function subject to the fuzzy relation inequalities with addition–min...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 41
SubjectTerms Fuzzy relation inequalities
Pseudo-minimal index
The minimal solutions
The optimal solution
The optimization system
Title An algorithm for minimizing a linear objective function subject to the fuzzy relation inequalities with addition–min composition
URI https://dx.doi.org/10.1016/j.fss.2014.04.007
Volume 255
WOSCitedRecordID wos000343378800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-6801
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001160
  issn: 0165-0114
  databaseCode: AIEXJ
  dateStart: 19950113
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6hlAMcUHmJ8tIeOBG5sr121nuMUCuooOJQUG7WvkwbNXYVO1WbE-Iv8A_7S5h9OVahiB6QIitaxWMn82Vmdv3Ntwi9kVxLs41FRDKto4wLHTFqiK4iVVznnAj7oP3rR3p4WMxm7LPnqrZ2OwFa18XFBTv7r66GMXC2aZ29hbt7ozAA78HpcAS3w_GfHD-tx_z0WwOT_uOFJREa9ZDFydp2I45NVcmX40bMXaQbm8RmMdCu7FgoRqvVen3pW10sHVK7_kuYWfuGOKUs3SvQJcjCU9o9DWxY9u5bY63unCJ0O5BJNxEnrFkf8yY6WNXDlYgkMy15rlEyLE5ODBHQNYWG6Jrm-SA-OpErn2md0uxvMdwtJ8x3q9bIqSfZrhM43ySs8JD-Wh7r2YWBuDYvwURpTJQxvIzmwFZKc1aM0Nb0w97soE_ZSWLbyfsvEB5_WyLgtfv4cwEzKEqOttEDP5vAU4eCh-iOrh-h-596Kd72MfoxrXGPBwx4wBs8YI4dHnCPBxzwgD0ecNdgMIctHnDAAx7iARs84ICHq-8_4Qp4gIQn6Mv-3tG795HfeCOSZEK7qEoKNUkpZTpOeZXShHGqJRGZTg0buSAqLqQiMieqEESxpKJaUCk0zTJNOCdP0ahuav0MYSHBBNGVyFmeTTiEDKYYlKQi1kkFCWUHxeHXLKVXpTebo5yWN3pxB73tTzlzkix_-3AWXFT6mtLViiXA7ebTnt_mGi_Qvc3f4SUadcuVfoXuyvPupF2-9lj7BSh0nxo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algorithm+for+minimizing+a+linear+objective+function+subject+to+the+fuzzy+relation+inequalities+with+addition%E2%80%93min+composition&rft.jtitle=Fuzzy+sets+and+systems&rft.au=Yang%2C+Shao-Jun&rft.date=2014-11-16&rft.issn=0165-0114&rft.volume=255&rft.spage=41&rft.epage=51&rft_id=info:doi/10.1016%2Fj.fss.2014.04.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fss_2014_04_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0114&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0114&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0114&client=summon