A Hybrid Method of Enhancing Accuracy of Facial Recognition System Using Gabor Filter and Stacked Sparse Autoencoders Deep Neural Network

Face recognition has grown in popularity due to the ease with which most recognition systems can find and recognize human faces in images and videos. However, the accuracy of the face recognition system is critical in ascertaining the success of a person’s identification. A lack of sufficiently larg...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 12; no. 21; p. 11052
Main Authors: Jaber, Abdullah Ghanim, Muniyandi, Ravie Chandren, Usman, Opeyemi Lateef, Singh, Harprith Kaur Rajinder
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.11.2022
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Face recognition has grown in popularity due to the ease with which most recognition systems can find and recognize human faces in images and videos. However, the accuracy of the face recognition system is critical in ascertaining the success of a person’s identification. A lack of sufficiently large training datasets is one of the significant challenges that limit the accuracy of face recognition systems. Meanwhile, machine learning (ML) algorithms, particularly those used for image-based face recognition, require large training data samples to achieve a high degree of face recognition accuracy. Based on the above challenge, this research proposes a method for improving face recognition precision and accuracy by employing a hybrid approach of the Gabor filter and a stacked sparse autoencoders (SSAE) deep neural network. The face image datasets from Olivetti Research Laboratory (OLR) and the Extended Yale-B databases were used to evaluate the proposed hybrid model’s performance. All face image datasets used in our experiments are grayscale image type with a resolution of 92 × 112 for the OLR database and a resolution 192 × 168 for the Extended Yale-B database. Our experimental results showed that the proposed method improved face recognition accuracy by approximately 100% for the two databases used at a significantly reduced feature extraction time compared to the current state-of-art face recognition methods for all test cases. The SSAE approach can explore large and complex datasets with minimal computation time. In addition, the algorithm minimizes the false acceptance rate and improves recognition accuracy. This implies that the proposed method is promising and has the potential to enhance the performance of face recognition systems.
AbstractList Face recognition has grown in popularity due to the ease with which most recognition systems can find and recognize human faces in images and videos. However, the accuracy of the face recognition system is critical in ascertaining the success of a person’s identification. A lack of sufficiently large training datasets is one of the significant challenges that limit the accuracy of face recognition systems. Meanwhile, machine learning (ML) algorithms, particularly those used for image-based face recognition, require large training data samples to achieve a high degree of face recognition accuracy. Based on the above challenge, this research proposes a method for improving face recognition precision and accuracy by employing a hybrid approach of the Gabor filter and a stacked sparse autoencoders (SSAE) deep neural network. The face image datasets from Olivetti Research Laboratory (OLR) and the Extended Yale-B databases were used to evaluate the proposed hybrid model’s performance. All face image datasets used in our experiments are grayscale image type with a resolution of 92 × 112 for the OLR database and a resolution 192 × 168 for the Extended Yale-B database. Our experimental results showed that the proposed method improved face recognition accuracy by approximately 100% for the two databases used at a significantly reduced feature extraction time compared to the current state-of-art face recognition methods for all test cases. The SSAE approach can explore large and complex datasets with minimal computation time. In addition, the algorithm minimizes the false acceptance rate and improves recognition accuracy. This implies that the proposed method is promising and has the potential to enhance the performance of face recognition systems.
Author Usman, Opeyemi Lateef
Singh, Harprith Kaur Rajinder
Jaber, Abdullah Ghanim
Muniyandi, Ravie Chandren
Author_xml – sequence: 1
  givenname: Abdullah Ghanim
  surname: Jaber
  fullname: Jaber, Abdullah Ghanim
– sequence: 2
  givenname: Ravie Chandren
  orcidid: 0000-0002-8999-9548
  surname: Muniyandi
  fullname: Muniyandi, Ravie Chandren
– sequence: 3
  givenname: Opeyemi Lateef
  orcidid: 0000-0002-0788-5927
  surname: Usman
  fullname: Usman, Opeyemi Lateef
– sequence: 4
  givenname: Harprith Kaur Rajinder
  surname: Singh
  fullname: Singh, Harprith Kaur Rajinder
BookMark eNptkcFuEzEQhleoSJTSGw9giSuhHnuzzh6j0rSVCkiUnq3Z8WzqdGsvtqMqj8Bbd0NAqhBz-Uejb379mnlbHYUYuKreg_ykdSvPcBxBKQCQc_WqOlbSNDNdgzl60b-pTnPeyKla0AuQx9Wvpbjadck78YXLfXQi9uIi3GMgH9ZiSbRNSLv9dIXkcRDfmeI6-OJjELe7XPhR3OU9e4ldTGLlh8JJYHDitiA98KQjpsxiuS2RA0XHKYvPzKP4ypP5MEl5iunhXfW6xyHz6R89qe5WFz_Or2Y33y6vz5c3M9KNKTN2NWipuCFpCHppoFsQG6gdzfumNkhSNl3bIC4ItOpNR5Kx19R2e6TWJ9X1wddF3Ngx-UdMOxvR29-DmNYWU_E0sFW1axdQN8q1UDNB2xNrx86QIT2v-8nrw8FrTPHnlnOxm7hNYYpvlTHQzEG2cqLUgaIUc07cW_IF9xcsCf1gQdr9B-3LD05LH_9Z-hv1v_gz2uCfJQ
CitedBy_id crossref_primary_10_1007_s41870_024_01872_4
crossref_primary_10_1109_TITS_2024_3421373
crossref_primary_10_3390_app15126891
crossref_primary_10_1109_ACCESS_2023_3337647
crossref_primary_10_3390_app15126883
crossref_primary_10_1080_1206212X_2025_2537892
Cites_doi 10.3390/jimaging7090161
10.1109/TIP.2002.999679
10.1109/ACCESS.2021.3062709
10.1007/s10044-006-0033-y
10.1016/j.imu.2017.10.008
10.1007/s11042-019-7577-5
10.1109/TIP.2006.881945
10.1371/journal.pone.0245579
10.1038/nature14539
10.1109/TPAMI.2011.225
10.7717/peerj-cs.344
10.1155/2021/4796768
10.1016/j.simpat.2014.05.005
10.3390/brainsci10120949
10.1016/S0031-3203(97)00057-5
10.1016/j.imavis.2006.05.002
10.1016/j.patcog.2004.08.004
10.1109/TIP.2005.864174
10.1109/TPAMI.2013.50
10.1016/j.compeleceng.2012.12.011
10.12720/ijsps.1.1.1-6
10.1007/s11760-021-01941-2
10.3390/sym12050836
10.1109/ACCESS.2021.3096136
10.1007/978-981-13-1513-8_87
10.1364/JOSAA.2.001160
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app122111052
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ : Directory of Open Access Journals [open access]
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_24d981462d914ec19fce3ded7c7c354f
10_3390_app122111052
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c367t-ed41302e6c07c1f071b8ce714dc5f647ac006b96aa8c132f7bc0eaf3c9b4dc543
IEDL.DBID BENPR
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000881029600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:46:17 EDT 2025
Mon Jun 30 07:31:38 EDT 2025
Tue Nov 18 21:34:48 EST 2025
Sat Nov 29 07:18:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-ed41302e6c07c1f071b8ce714dc5f647ac006b96aa8c132f7bc0eaf3c9b4dc543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0788-5927
0000-0002-8999-9548
OpenAccessLink https://www.proquest.com/docview/2771651090?pq-origsite=%requestingapplication%
PQID 2771651090
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_24d981462d914ec19fce3ded7c7c354f
proquest_journals_2771651090
crossref_citationtrail_10_3390_app122111052
crossref_primary_10_3390_app122111052
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kamencay (ref_30) 2017; 16
Bengio (ref_27) 2013; 35
Lu (ref_3) 2021; 2021
Maroosi (ref_28) 2014; 47
Meshgini (ref_2) 2013; 39
Kamarainen (ref_18) 2006; 15
Rahman (ref_21) 2021; 7
Liu (ref_19) 2002; 11
ref_11
Simsek (ref_6) 2019; 355
Gideon (ref_24) 2008; 6
ref_31
Usman (ref_10) 2021; 9
Shen (ref_12) 2007; 25
Wang (ref_17) 2005; 38
Shen (ref_13) 2006; 9
Hamamoto (ref_16) 1998; 31
Rajeswari (ref_20) 2021; 16
Reddy (ref_4) 2021; 16
Rahman (ref_29) 2018; 10
Cai (ref_14) 2006; 15
ref_22
ref_1
LeCun (ref_23) 2015; 521
Rejeesh (ref_32) 2019; 78
Fuad (ref_25) 2021; 9
Daugman (ref_15) 1985; 2
ref_26
ref_9
Fernandes (ref_33) 2013; 1
ref_8
Kumar (ref_34) 2011; 34
Aldhahab (ref_5) 2020; 13
ref_7
References_xml – ident: ref_1
  doi: 10.3390/jimaging7090161
– volume: 11
  start-page: 467
  year: 2002
  ident: ref_19
  article-title: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2002.999679
– volume: 6
  start-page: 461
  year: 2008
  ident: ref_24
  article-title: Estimating the Dimension of a Model Source
  publication-title: Ann. Stat.
– volume: 9
  start-page: 36879
  year: 2021
  ident: ref_10
  article-title: Advance Machine Learning Methods for Dyslexia Biomarker Detection: A Review of Implementation Details and Challenges
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3062709
– volume: 9
  start-page: 273
  year: 2006
  ident: ref_13
  article-title: A review on Gabor wavelets for face recognition
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-006-0033-y
– volume: 10
  start-page: 17
  year: 2018
  ident: ref_29
  article-title: Review of GPU implementation to process of RNA sequence on cancer
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2017.10.008
– ident: ref_26
– volume: 78
  start-page: 22691
  year: 2019
  ident: ref_32
  article-title: Interest point based face recognition using adaptive neuro fuzzy inference system
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-019-7577-5
– volume: 15
  start-page: 3608
  year: 2006
  ident: ref_14
  article-title: Orthogonal Laplacian faces for 3D face recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.881945
– ident: ref_11
  doi: 10.1371/journal.pone.0245579
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_23
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 34
  start-page: 1423
  year: 2011
  ident: ref_34
  article-title: Trainable Convolution Filters and Their Application to Face Recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.225
– volume: 16
  start-page: 1
  year: 2021
  ident: ref_20
  article-title: Wavelet scattering transform and long short-term memory network-based noninvasive blood pressure estimation from photoplethysmograph signals
  publication-title: Signal Image Video Process.
– volume: 7
  start-page: e344
  year: 2021
  ident: ref_21
  article-title: Artificial neural network with Taguchi method for robust classification model to improve classification accuracy of breast cancer
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.344
– volume: 2021
  start-page: 4796768
  year: 2021
  ident: ref_3
  article-title: Face Detection and Recognition Algorithm in Digital Image Based on Computer Vision Sensor
  publication-title: J. Sens.
  doi: 10.1155/2021/4796768
– volume: 47
  start-page: 60
  year: 2014
  ident: ref_28
  article-title: Parallel and distributed computing models on a graphics processing unit to accelerate simulation of membrane systems
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2014.05.005
– ident: ref_22
  doi: 10.3390/brainsci10120949
– volume: 31
  start-page: 395
  year: 1998
  ident: ref_16
  article-title: A gabor filter-based method for recognizing handwritten numerals
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(97)00057-5
– ident: ref_8
– volume: 25
  start-page: 553
  year: 2007
  ident: ref_12
  article-title: Gabor wavelets and General Discriminant Analysis for face identification and verification
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2006.05.002
– volume: 38
  start-page: 369
  year: 2005
  ident: ref_17
  article-title: Gabor filters-based feature extraction for character recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2004.08.004
– volume: 15
  start-page: 1088
  year: 2006
  ident: ref_18
  article-title: Invariance properties of Gabor filter-based features-overview and applications
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.864174
– ident: ref_31
– volume: 35
  start-page: 1798
  year: 2013
  ident: ref_27
  article-title: Representation Learning: A Review and New Perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– volume: 39
  start-page: 727
  year: 2013
  ident: ref_2
  article-title: Face recognition using Gabor-based direct linear discriminant analysis and support vector machine
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2012.12.011
– volume: 1
  start-page: 1
  year: 2013
  ident: ref_33
  article-title: Performance Analysis of PCA-based and LDA-based Algorithms for Face Recognition
  publication-title: Int. J. Signal Process. Syst.
  doi: 10.12720/ijsps.1.1.1-6
– volume: 16
  start-page: 369
  year: 2021
  ident: ref_4
  article-title: Deep cross feature adaptive network for facial emotion classification
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-021-01941-2
– ident: ref_9
  doi: 10.3390/sym12050836
– volume: 355
  start-page: 325
  year: 2019
  ident: ref_6
  article-title: Face recognition via Deep Stacked Denoising Sparse Autoencoders (DSDSA)
  publication-title: Appl. Math. Comput.
– volume: 13
  start-page: 268
  year: 2020
  ident: ref_5
  article-title: Stacked Sparse Autoencoder and Softmax Classifier Framework to Classify MRI of Brain Tumor Images
  publication-title: Int. J. Intell. Eng. Syst.
– volume: 9
  start-page: 99112
  year: 2021
  ident: ref_25
  article-title: Recent Advances in Deep Learning Techniques for Face Recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3096136
– volume: 16
  start-page: 663
  year: 2017
  ident: ref_30
  article-title: A new method for face recognition using convolutional neural network
  publication-title: Digit. Image Process. Comput. Graph.
– ident: ref_7
  doi: 10.1007/978-981-13-1513-8_87
– volume: 2
  start-page: 1160
  year: 1985
  ident: ref_15
  article-title: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.2.001160
SSID ssj0000913810
Score 2.2630572
Snippet Face recognition has grown in popularity due to the ease with which most recognition systems can find and recognize human faces in images and videos. However,...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 11052
SubjectTerms Accuracy
Algorithms
Bandwidths
Datasets
Deep learning
deep neural network
Efficiency
face recognition
Facial recognition technology
Gabor filter
Human subjects
hybrid method
Localization
Methods
Neural networks
stacked sparse autoencoders
SummonAdditionalLinks – databaseName: DOAJ : Directory of Open Access Journals [open access]
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yeNCDuKvi6Cp1UFCksfPoJH0cdcc96CCisLcmXUl0YekZ5iHsT9h_vVXdPcuIiBdPDaHoNF2P1JdUvhLiRRl0cKr1RYXZFSYpcqmqrQqLBoOKWMuha8knN5_7s7P6y16rL64JG-iBhx_3VplY8zaVirU0CWWdMemYokOHujKZoy9lPXtgqo_BNIeX5VDprgnX83mwVIR2KJ9Qv61BPVX_H5G4X15m98W9MS-E6fA9h-JW6o7E3T22wCNxOPrhGl6NZNGvH4irKZxe8q0r-Nz3goZFhpPuJ7NodD9girhdBbzk0Vng3XH4uqsYWnQw0JVDXzYAH9kcYHbOx-cQugiUh5KL03NJ4DfBdLtZMOslVz7Dh5SWwMQe9Mb5UEn-UHyfnXx7f1qM7RUK1NZtihR5AVPJYulQZso1Wo_JSROxyta4gOSRbW1D8EiYNbsWyxSyxrplEaMfiYNu0aXHAlJrNWKZrWopCJTBe-u1TMl6E2XQdiLe7H54gyP3OLfAuGgIg7B6mn31TMTLG-nlwLnxF7l3rLsbGWbK7gfIfprRfpp_2c9EHO8034zuu26UIxhZcc3qk_8xx1NxR_Gtif4K47E42Ky26Zm4jb825-vV895yrwGaafPi
  priority: 102
  providerName: Directory of Open Access Journals
Title A Hybrid Method of Enhancing Accuracy of Facial Recognition System Using Gabor Filter and Stacked Sparse Autoencoders Deep Neural Network
URI https://www.proquest.com/docview/2771651090
https://doaj.org/article/24d981462d914ec19fce3ded7c7c354f
Volume 12
WOSCitedRecordID wos000881029600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy4EegBYQC6XyASQQiogfsZ0T2sIuRaKrVQVSOUXO2C6VULLdB1J_Av8aT-JdihBcOEVJRlGkeXhm_PkbQp7lVljNa5MVEHQmPY8uVdRFpkCC5Q5K1k8t-ainU3N2Vs5Sw22ZYJWbmNgFatcC9shfcx0z-wJhhG_mlxlOjcLd1TRC4ybZQaYyOSA7R-Pp7HTbZUHWS8PyHvEuYn2P-8KMR-GYV_Df1qKOsv-PiNwtM5O7__uD98idlGDSUW8Re-SGb_bJ7jXawX2ylxx6SV8k1umX98mPET2-wuNb9KQbKk3bQMfNV6TjaM7pCGC9sHCFTycW2-z0dAM9ahva857TDn9A36Nd0ckF7sNT2zgaE9oYK-J1HqtoT0frVYv0mQihpu-8n1NkCIlfnPaQ9Afk82T86e1xluY0ZCCUXmXe4UrIvYJcAwsxaakNeM2kgyIoqS1E165LZa2BWPwGXUPubRBQ1igixUMyaNrGPyLU10oA5EHxOkaT3BqjjGDeKyMds0INyauNxipIJOY4S-NbFYsZ1G91Xb9D8nwrPe_JO_4id4TK38og5Xb3oF2cV8mDKy5dif1S7komPbAygBfOOw0aRCHDkBxs7KJKcWBZ_TKKx_9-_YTc5niwojvleEAGq8XaPyW34PvqYrk4TGZ92HUM4t3sw8nsy0_DfwVg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKiwQcgBZQFwr4QCUQikhsx04OCG3pLlt1G1VVkXoLztgplapkSXZB-wi8DM-IJz9LEYJbD5wiOSMfkm_-7JlvCHnha64VyyIvhFx5wjKnUmEWehIEaGYgDtqpJVOVJNHZWXy8Rn70vTBYVtnbxMZQmxLwjPwNUy6yD7GM8N3si4dTo_B2tR-h0cLi0C6_uZStfnuw7_7vLmPj0en7iddNFfCASzX3rEG7zawEX0GQOxebRWBVIAyEuRRKgwNiFkutI3CpWq4y8K3OOcQZigju9r1BNgQXyunVxt4oOT5Zneogy2YU-G2FPeexj_fQAXNZlotj2G--rxkR8IcHaNza-N7_9kHuk7tdAE2HLeI3yZottsidK7SKW2SzM1g1fdmxar96QL4P6WSJ7Wn0qBmaTcucjorPSDdSnNMhwKLSsMTVscZrBHrSl1aVBW153WlTX0E_oN7Q8QXWGVBdGOoCdmcL3XOmq9rS4WJeIj0olojTfWtnFBlQ3I5JW3L_kHy8lg_0iKwXZWG3CbWZ5AB-LlnmrKWvo0hGPLBWRsIEmssBed0jJIWOpB1nhVymLllDPKVX8TQguyvpWUtO8he5PQTbSgYpxZuFsjpPOwuVMmFiPA9mJg6EhSDOwXJjjQIFPBT5gOz0OEw7O1env0D4-N-vn5Nbk9OjaTo9SA6fkNsMm0iajs4dsj6vFvYpuQlf5xd19axTKUo-XTdofwLmkmFX
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELVKixAcgBZQFwr4QCUQiprYTpwcEFrYLl21Xa0QSO0pOGO7rYSSkOyC9ifwl_h1ePKxFCG49cApkjOyIufNeGw_vyHkma-4kiyLvRCs9IRhzqXCLPQiEKCYhiRoq5Ycyek0PjlJZmvkR38XBmmVfUxsArUuAPfI95h0mX2INMI929EiZqPx6_KLhxWk8KS1L6fRQuTQLL-55Vv9ajJy_3qXsfH-h7cHXldhwAMeyblnNMZwZiLwJQTWTbdZDEYGQkNoIyEVOFBmSaRUDG7ZZmUGvlGWQ5KhieCu32tkw6XkwvnYxmxyPDtd7fCg4mYc-C3bnnP34aosA-ZWXC6nYb_Ng025gD9mg2aKG9_5nwfnLrndJdZ02HrCJlkz-Ra5dUlucYtsdoGsps87te0X98j3IT1Y4rU1etwU06aFpfv5OcqQ5Gd0CLCoFCyxdazweIG-7ylXRU5bvXfa8C7oO_QnOr5A_gFVuaYukXcx0j1LVdWGDhfzAmVDkTpOR8aUFJVRXI_Tlop_n3y8kgF6QNbzIjfbhJos4gC-jVjmoqiv4jiKeWBMFAsdKB4NyMseLSl04u1YQ-Rz6hZxiK30MrYGZHdlXbaiJX-xe4PAW9mg1HjTUFRnaRe5UiZ0gvvETCeBMBAkFgzXRkuQwENhB2Snx2Taxb86_QXIh_9-_ZTccEhNjybTw0fkJsO7Jc1Fzx2yPq8W5jG5Dl_nF3X1pPMuSj5dNWZ_AqRLakk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Method+of+Enhancing+Accuracy+of+Facial+Recognition+System+Using+Gabor+Filter+and+Stacked+Sparse+Autoencoders+Deep+Neural+Network&rft.jtitle=Applied+sciences&rft.au=Jaber%2C+Abdullah+Ghanim&rft.au=Muniyandi%2C+Ravie+Chandren&rft.au=Usman%2C+Opeyemi+Lateef&rft.au=Singh%2C+Harprith+Kaur+Rajinder&rft.date=2022-11-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=12&rft.issue=21&rft.spage=11052&rft_id=info:doi/10.3390%2Fapp122111052&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app122111052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon