A Hybrid Method of Enhancing Accuracy of Facial Recognition System Using Gabor Filter and Stacked Sparse Autoencoders Deep Neural Network
Face recognition has grown in popularity due to the ease with which most recognition systems can find and recognize human faces in images and videos. However, the accuracy of the face recognition system is critical in ascertaining the success of a person’s identification. A lack of sufficiently larg...
Saved in:
| Published in: | Applied sciences Vol. 12; no. 21; p. 11052 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.11.2022
|
| Subjects: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Face recognition has grown in popularity due to the ease with which most recognition systems can find and recognize human faces in images and videos. However, the accuracy of the face recognition system is critical in ascertaining the success of a person’s identification. A lack of sufficiently large training datasets is one of the significant challenges that limit the accuracy of face recognition systems. Meanwhile, machine learning (ML) algorithms, particularly those used for image-based face recognition, require large training data samples to achieve a high degree of face recognition accuracy. Based on the above challenge, this research proposes a method for improving face recognition precision and accuracy by employing a hybrid approach of the Gabor filter and a stacked sparse autoencoders (SSAE) deep neural network. The face image datasets from Olivetti Research Laboratory (OLR) and the Extended Yale-B databases were used to evaluate the proposed hybrid model’s performance. All face image datasets used in our experiments are grayscale image type with a resolution of 92 × 112 for the OLR database and a resolution 192 × 168 for the Extended Yale-B database. Our experimental results showed that the proposed method improved face recognition accuracy by approximately 100% for the two databases used at a significantly reduced feature extraction time compared to the current state-of-art face recognition methods for all test cases. The SSAE approach can explore large and complex datasets with minimal computation time. In addition, the algorithm minimizes the false acceptance rate and improves recognition accuracy. This implies that the proposed method is promising and has the potential to enhance the performance of face recognition systems. |
|---|---|
| AbstractList | Face recognition has grown in popularity due to the ease with which most recognition systems can find and recognize human faces in images and videos. However, the accuracy of the face recognition system is critical in ascertaining the success of a person’s identification. A lack of sufficiently large training datasets is one of the significant challenges that limit the accuracy of face recognition systems. Meanwhile, machine learning (ML) algorithms, particularly those used for image-based face recognition, require large training data samples to achieve a high degree of face recognition accuracy. Based on the above challenge, this research proposes a method for improving face recognition precision and accuracy by employing a hybrid approach of the Gabor filter and a stacked sparse autoencoders (SSAE) deep neural network. The face image datasets from Olivetti Research Laboratory (OLR) and the Extended Yale-B databases were used to evaluate the proposed hybrid model’s performance. All face image datasets used in our experiments are grayscale image type with a resolution of 92 × 112 for the OLR database and a resolution 192 × 168 for the Extended Yale-B database. Our experimental results showed that the proposed method improved face recognition accuracy by approximately 100% for the two databases used at a significantly reduced feature extraction time compared to the current state-of-art face recognition methods for all test cases. The SSAE approach can explore large and complex datasets with minimal computation time. In addition, the algorithm minimizes the false acceptance rate and improves recognition accuracy. This implies that the proposed method is promising and has the potential to enhance the performance of face recognition systems. |
| Author | Usman, Opeyemi Lateef Singh, Harprith Kaur Rajinder Jaber, Abdullah Ghanim Muniyandi, Ravie Chandren |
| Author_xml | – sequence: 1 givenname: Abdullah Ghanim surname: Jaber fullname: Jaber, Abdullah Ghanim – sequence: 2 givenname: Ravie Chandren orcidid: 0000-0002-8999-9548 surname: Muniyandi fullname: Muniyandi, Ravie Chandren – sequence: 3 givenname: Opeyemi Lateef orcidid: 0000-0002-0788-5927 surname: Usman fullname: Usman, Opeyemi Lateef – sequence: 4 givenname: Harprith Kaur Rajinder surname: Singh fullname: Singh, Harprith Kaur Rajinder |
| BookMark | eNptkcFuEzEQhleoSJTSGw9giSuhHnuzzh6j0rSVCkiUnq3Z8WzqdGsvtqMqj8Bbd0NAqhBz-Uejb379mnlbHYUYuKreg_ykdSvPcBxBKQCQc_WqOlbSNDNdgzl60b-pTnPeyKla0AuQx9Wvpbjadck78YXLfXQi9uIi3GMgH9ZiSbRNSLv9dIXkcRDfmeI6-OJjELe7XPhR3OU9e4ldTGLlh8JJYHDitiA98KQjpsxiuS2RA0XHKYvPzKP4ypP5MEl5iunhXfW6xyHz6R89qe5WFz_Or2Y33y6vz5c3M9KNKTN2NWipuCFpCHppoFsQG6gdzfumNkhSNl3bIC4ItOpNR5Kx19R2e6TWJ9X1wddF3Ngx-UdMOxvR29-DmNYWU_E0sFW1axdQN8q1UDNB2xNrx86QIT2v-8nrw8FrTPHnlnOxm7hNYYpvlTHQzEG2cqLUgaIUc07cW_IF9xcsCf1gQdr9B-3LD05LH_9Z-hv1v_gz2uCfJQ |
| CitedBy_id | crossref_primary_10_1007_s41870_024_01872_4 crossref_primary_10_1109_TITS_2024_3421373 crossref_primary_10_3390_app15126891 crossref_primary_10_1109_ACCESS_2023_3337647 crossref_primary_10_3390_app15126883 crossref_primary_10_1080_1206212X_2025_2537892 |
| Cites_doi | 10.3390/jimaging7090161 10.1109/TIP.2002.999679 10.1109/ACCESS.2021.3062709 10.1007/s10044-006-0033-y 10.1016/j.imu.2017.10.008 10.1007/s11042-019-7577-5 10.1109/TIP.2006.881945 10.1371/journal.pone.0245579 10.1038/nature14539 10.1109/TPAMI.2011.225 10.7717/peerj-cs.344 10.1155/2021/4796768 10.1016/j.simpat.2014.05.005 10.3390/brainsci10120949 10.1016/S0031-3203(97)00057-5 10.1016/j.imavis.2006.05.002 10.1016/j.patcog.2004.08.004 10.1109/TIP.2005.864174 10.1109/TPAMI.2013.50 10.1016/j.compeleceng.2012.12.011 10.12720/ijsps.1.1.1-6 10.1007/s11760-021-01941-2 10.3390/sym12050836 10.1109/ACCESS.2021.3096136 10.1007/978-981-13-1513-8_87 10.1364/JOSAA.2.001160 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app122111052 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ : Directory of Open Access Journals [open access] |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_24d981462d914ec19fce3ded7c7c354f 10_3390_app122111052 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c367t-ed41302e6c07c1f071b8ce714dc5f647ac006b96aa8c132f7bc0eaf3c9b4dc543 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000881029600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:46:17 EDT 2025 Mon Jun 30 07:31:38 EDT 2025 Tue Nov 18 21:34:48 EST 2025 Sat Nov 29 07:18:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-ed41302e6c07c1f071b8ce714dc5f647ac006b96aa8c132f7bc0eaf3c9b4dc543 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0788-5927 0000-0002-8999-9548 |
| OpenAccessLink | https://www.proquest.com/docview/2771651090?pq-origsite=%requestingapplication% |
| PQID | 2771651090 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_24d981462d914ec19fce3ded7c7c354f proquest_journals_2771651090 crossref_citationtrail_10_3390_app122111052 crossref_primary_10_3390_app122111052 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Kamencay (ref_30) 2017; 16 Bengio (ref_27) 2013; 35 Lu (ref_3) 2021; 2021 Maroosi (ref_28) 2014; 47 Meshgini (ref_2) 2013; 39 Kamarainen (ref_18) 2006; 15 Rahman (ref_21) 2021; 7 Liu (ref_19) 2002; 11 ref_11 Simsek (ref_6) 2019; 355 Gideon (ref_24) 2008; 6 ref_31 Usman (ref_10) 2021; 9 Shen (ref_12) 2007; 25 Wang (ref_17) 2005; 38 Shen (ref_13) 2006; 9 Hamamoto (ref_16) 1998; 31 Rajeswari (ref_20) 2021; 16 Reddy (ref_4) 2021; 16 Rahman (ref_29) 2018; 10 Cai (ref_14) 2006; 15 ref_22 ref_1 LeCun (ref_23) 2015; 521 Rejeesh (ref_32) 2019; 78 Fuad (ref_25) 2021; 9 Daugman (ref_15) 1985; 2 ref_26 ref_9 Fernandes (ref_33) 2013; 1 ref_8 Kumar (ref_34) 2011; 34 Aldhahab (ref_5) 2020; 13 ref_7 |
| References_xml | – ident: ref_1 doi: 10.3390/jimaging7090161 – volume: 11 start-page: 467 year: 2002 ident: ref_19 article-title: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2002.999679 – volume: 6 start-page: 461 year: 2008 ident: ref_24 article-title: Estimating the Dimension of a Model Source publication-title: Ann. Stat. – volume: 9 start-page: 36879 year: 2021 ident: ref_10 article-title: Advance Machine Learning Methods for Dyslexia Biomarker Detection: A Review of Implementation Details and Challenges publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3062709 – volume: 9 start-page: 273 year: 2006 ident: ref_13 article-title: A review on Gabor wavelets for face recognition publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-006-0033-y – volume: 10 start-page: 17 year: 2018 ident: ref_29 article-title: Review of GPU implementation to process of RNA sequence on cancer publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2017.10.008 – ident: ref_26 – volume: 78 start-page: 22691 year: 2019 ident: ref_32 article-title: Interest point based face recognition using adaptive neuro fuzzy inference system publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-019-7577-5 – volume: 15 start-page: 3608 year: 2006 ident: ref_14 article-title: Orthogonal Laplacian faces for 3D face recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.881945 – ident: ref_11 doi: 10.1371/journal.pone.0245579 – volume: 521 start-page: 436 year: 2015 ident: ref_23 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 34 start-page: 1423 year: 2011 ident: ref_34 article-title: Trainable Convolution Filters and Their Application to Face Recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.225 – volume: 16 start-page: 1 year: 2021 ident: ref_20 article-title: Wavelet scattering transform and long short-term memory network-based noninvasive blood pressure estimation from photoplethysmograph signals publication-title: Signal Image Video Process. – volume: 7 start-page: e344 year: 2021 ident: ref_21 article-title: Artificial neural network with Taguchi method for robust classification model to improve classification accuracy of breast cancer publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.344 – volume: 2021 start-page: 4796768 year: 2021 ident: ref_3 article-title: Face Detection and Recognition Algorithm in Digital Image Based on Computer Vision Sensor publication-title: J. Sens. doi: 10.1155/2021/4796768 – volume: 47 start-page: 60 year: 2014 ident: ref_28 article-title: Parallel and distributed computing models on a graphics processing unit to accelerate simulation of membrane systems publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2014.05.005 – ident: ref_22 doi: 10.3390/brainsci10120949 – volume: 31 start-page: 395 year: 1998 ident: ref_16 article-title: A gabor filter-based method for recognizing handwritten numerals publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(97)00057-5 – ident: ref_8 – volume: 25 start-page: 553 year: 2007 ident: ref_12 article-title: Gabor wavelets and General Discriminant Analysis for face identification and verification publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2006.05.002 – volume: 38 start-page: 369 year: 2005 ident: ref_17 article-title: Gabor filters-based feature extraction for character recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2004.08.004 – volume: 15 start-page: 1088 year: 2006 ident: ref_18 article-title: Invariance properties of Gabor filter-based features-overview and applications publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.864174 – ident: ref_31 – volume: 35 start-page: 1798 year: 2013 ident: ref_27 article-title: Representation Learning: A Review and New Perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – volume: 39 start-page: 727 year: 2013 ident: ref_2 article-title: Face recognition using Gabor-based direct linear discriminant analysis and support vector machine publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2012.12.011 – volume: 1 start-page: 1 year: 2013 ident: ref_33 article-title: Performance Analysis of PCA-based and LDA-based Algorithms for Face Recognition publication-title: Int. J. Signal Process. Syst. doi: 10.12720/ijsps.1.1.1-6 – volume: 16 start-page: 369 year: 2021 ident: ref_4 article-title: Deep cross feature adaptive network for facial emotion classification publication-title: Signal Image Video Process. doi: 10.1007/s11760-021-01941-2 – ident: ref_9 doi: 10.3390/sym12050836 – volume: 355 start-page: 325 year: 2019 ident: ref_6 article-title: Face recognition via Deep Stacked Denoising Sparse Autoencoders (DSDSA) publication-title: Appl. Math. Comput. – volume: 13 start-page: 268 year: 2020 ident: ref_5 article-title: Stacked Sparse Autoencoder and Softmax Classifier Framework to Classify MRI of Brain Tumor Images publication-title: Int. J. Intell. Eng. Syst. – volume: 9 start-page: 99112 year: 2021 ident: ref_25 article-title: Recent Advances in Deep Learning Techniques for Face Recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3096136 – volume: 16 start-page: 663 year: 2017 ident: ref_30 article-title: A new method for face recognition using convolutional neural network publication-title: Digit. Image Process. Comput. Graph. – ident: ref_7 doi: 10.1007/978-981-13-1513-8_87 – volume: 2 start-page: 1160 year: 1985 ident: ref_15 article-title: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.2.001160 |
| SSID | ssj0000913810 |
| Score | 2.2630572 |
| Snippet | Face recognition has grown in popularity due to the ease with which most recognition systems can find and recognize human faces in images and videos. However,... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 11052 |
| SubjectTerms | Accuracy Algorithms Bandwidths Datasets Deep learning deep neural network Efficiency face recognition Facial recognition technology Gabor filter Human subjects hybrid method Localization Methods Neural networks stacked sparse autoencoders |
| SummonAdditionalLinks | – databaseName: DOAJ : Directory of Open Access Journals [open access] dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yeNCDuKvi6Cp1UFCksfPoJH0cdcc96CCisLcmXUl0YekZ5iHsT9h_vVXdPcuIiBdPDaHoNF2P1JdUvhLiRRl0cKr1RYXZFSYpcqmqrQqLBoOKWMuha8knN5_7s7P6y16rL64JG-iBhx_3VplY8zaVirU0CWWdMemYokOHujKZoy9lPXtgqo_BNIeX5VDprgnX83mwVIR2KJ9Qv61BPVX_H5G4X15m98W9MS-E6fA9h-JW6o7E3T22wCNxOPrhGl6NZNGvH4irKZxe8q0r-Nz3goZFhpPuJ7NodD9girhdBbzk0Vng3XH4uqsYWnQw0JVDXzYAH9kcYHbOx-cQugiUh5KL03NJ4DfBdLtZMOslVz7Dh5SWwMQe9Mb5UEn-UHyfnXx7f1qM7RUK1NZtihR5AVPJYulQZso1Wo_JSROxyta4gOSRbW1D8EiYNbsWyxSyxrplEaMfiYNu0aXHAlJrNWKZrWopCJTBe-u1TMl6E2XQdiLe7H54gyP3OLfAuGgIg7B6mn31TMTLG-nlwLnxF7l3rLsbGWbK7gfIfprRfpp_2c9EHO8034zuu26UIxhZcc3qk_8xx1NxR_Gtif4K47E42Ky26Zm4jb825-vV895yrwGaafPi priority: 102 providerName: Directory of Open Access Journals |
| Title | A Hybrid Method of Enhancing Accuracy of Facial Recognition System Using Gabor Filter and Stacked Sparse Autoencoders Deep Neural Network |
| URI | https://www.proquest.com/docview/2771651090 https://doaj.org/article/24d981462d914ec19fce3ded7c7c354f |
| Volume | 12 |
| WOSCitedRecordID | wos000881029600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy4EegBYQC6XyASQQiogfsZ0T2sIuRaKrVQVSOUXO2C6VULLdB1J_Av8aT-JdihBcOEVJRlGkeXhm_PkbQp7lVljNa5MVEHQmPY8uVdRFpkCC5Q5K1k8t-ainU3N2Vs5Sw22ZYJWbmNgFatcC9shfcx0z-wJhhG_mlxlOjcLd1TRC4ybZQaYyOSA7R-Pp7HTbZUHWS8PyHvEuYn2P-8KMR-GYV_Df1qKOsv-PiNwtM5O7__uD98idlGDSUW8Re-SGb_bJ7jXawX2ylxx6SV8k1umX98mPET2-wuNb9KQbKk3bQMfNV6TjaM7pCGC9sHCFTycW2-z0dAM9ahva857TDn9A36Nd0ckF7sNT2zgaE9oYK-J1HqtoT0frVYv0mQihpu-8n1NkCIlfnPaQ9Afk82T86e1xluY0ZCCUXmXe4UrIvYJcAwsxaakNeM2kgyIoqS1E165LZa2BWPwGXUPubRBQ1igixUMyaNrGPyLU10oA5EHxOkaT3BqjjGDeKyMds0INyauNxipIJOY4S-NbFYsZ1G91Xb9D8nwrPe_JO_4id4TK38og5Xb3oF2cV8mDKy5dif1S7komPbAygBfOOw0aRCHDkBxs7KJKcWBZ_TKKx_9-_YTc5niwojvleEAGq8XaPyW34PvqYrk4TGZ92HUM4t3sw8nsy0_DfwVg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKiwQcgBZQFwr4QCUQikhsx04OCG3pLlt1G1VVkXoLztgplapkSXZB-wi8DM-IJz9LEYJbD5wiOSMfkm_-7JlvCHnha64VyyIvhFx5wjKnUmEWehIEaGYgDtqpJVOVJNHZWXy8Rn70vTBYVtnbxMZQmxLwjPwNUy6yD7GM8N3si4dTo_B2tR-h0cLi0C6_uZStfnuw7_7vLmPj0en7iddNFfCASzX3rEG7zawEX0GQOxebRWBVIAyEuRRKgwNiFkutI3CpWq4y8K3OOcQZigju9r1BNgQXyunVxt4oOT5Zneogy2YU-G2FPeexj_fQAXNZlotj2G--rxkR8IcHaNza-N7_9kHuk7tdAE2HLeI3yZottsidK7SKW2SzM1g1fdmxar96QL4P6WSJ7Wn0qBmaTcucjorPSDdSnNMhwKLSsMTVscZrBHrSl1aVBW153WlTX0E_oN7Q8QXWGVBdGOoCdmcL3XOmq9rS4WJeIj0olojTfWtnFBlQ3I5JW3L_kHy8lg_0iKwXZWG3CbWZ5AB-LlnmrKWvo0hGPLBWRsIEmssBed0jJIWOpB1nhVymLllDPKVX8TQguyvpWUtO8he5PQTbSgYpxZuFsjpPOwuVMmFiPA9mJg6EhSDOwXJjjQIFPBT5gOz0OEw7O1env0D4-N-vn5Nbk9OjaTo9SA6fkNsMm0iajs4dsj6vFvYpuQlf5xd19axTKUo-XTdofwLmkmFX |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELVKixAcgBZQFwr4QCUQiprYTpwcEFrYLl21Xa0QSO0pOGO7rYSSkOyC9ifwl_h1ePKxFCG49cApkjOyIufNeGw_vyHkma-4kiyLvRCs9IRhzqXCLPQiEKCYhiRoq5Ycyek0PjlJZmvkR38XBmmVfUxsArUuAPfI95h0mX2INMI929EiZqPx6_KLhxWk8KS1L6fRQuTQLL-55Vv9ajJy_3qXsfH-h7cHXldhwAMeyblnNMZwZiLwJQTWTbdZDEYGQkNoIyEVOFBmSaRUDG7ZZmUGvlGWQ5KhieCu32tkw6XkwvnYxmxyPDtd7fCg4mYc-C3bnnP34aosA-ZWXC6nYb_Ng025gD9mg2aKG9_5nwfnLrndJdZ02HrCJlkz-Ra5dUlucYtsdoGsps87te0X98j3IT1Y4rU1etwU06aFpfv5OcqQ5Gd0CLCoFCyxdazweIG-7ylXRU5bvXfa8C7oO_QnOr5A_gFVuaYukXcx0j1LVdWGDhfzAmVDkTpOR8aUFJVRXI_Tlop_n3y8kgF6QNbzIjfbhJos4gC-jVjmoqiv4jiKeWBMFAsdKB4NyMseLSl04u1YQ-Rz6hZxiK30MrYGZHdlXbaiJX-xe4PAW9mg1HjTUFRnaRe5UiZ0gvvETCeBMBAkFgzXRkuQwENhB2Snx2Taxb86_QXIh_9-_ZTccEhNjybTw0fkJsO7Jc1Fzx2yPq8W5jG5Dl_nF3X1pPMuSj5dNWZ_AqRLakk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Method+of+Enhancing+Accuracy+of+Facial+Recognition+System+Using+Gabor+Filter+and+Stacked+Sparse+Autoencoders+Deep+Neural+Network&rft.jtitle=Applied+sciences&rft.au=Jaber%2C+Abdullah+Ghanim&rft.au=Muniyandi%2C+Ravie+Chandren&rft.au=Usman%2C+Opeyemi+Lateef&rft.au=Singh%2C+Harprith+Kaur+Rajinder&rft.date=2022-11-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=12&rft.issue=21&rft.spage=11052&rft_id=info:doi/10.3390%2Fapp122111052&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app122111052 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |