K-Means-Based Nature-Inspired Metaheuristic Algorithms for Automatic Data Clustering Problems: Recent Advances and Future Directions
K-means clustering algorithm is a partitional clustering algorithm that has been used widely in many applications for traditional clustering due to its simplicity and low computational complexity. This clustering technique depends on the user specification of the number of clusters generated from th...
Uložené v:
| Vydané v: | Applied sciences Ročník 11; číslo 23; s. 11246 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.12.2021
|
| Predmet: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | K-means clustering algorithm is a partitional clustering algorithm that has been used widely in many applications for traditional clustering due to its simplicity and low computational complexity. This clustering technique depends on the user specification of the number of clusters generated from the dataset, which affects the clustering results. Moreover, random initialization of cluster centers results in its local minimal convergence. Automatic clustering is a recent approach to clustering where the specification of cluster number is not required. In automatic clustering, natural clusters existing in datasets are identified without any background information of the data objects. Nature-inspired metaheuristic optimization algorithms have been deployed in recent times to overcome the challenges of the traditional clustering algorithm in handling automatic data clustering. Some nature-inspired metaheuristics algorithms have been hybridized with the traditional K-means algorithm to boost its performance and capability to handle automatic data clustering problems. This study aims to identify, retrieve, summarize, and analyze recently proposed studies related to the improvements of the K-means clustering algorithm with nature-inspired optimization techniques. A quest approach for article selection was adopted, which led to the identification and selection of 147 related studies from different reputable academic avenues and databases. More so, the analysis revealed that although the K-means algorithm has been well researched in the literature, its superiority over several well-established state-of-the-art clustering algorithms in terms of speed, accessibility, simplicity of use, and applicability to solve clustering problems with unlabeled and nonlinearly separable datasets has been clearly observed in the study. The current study also evaluated and discussed some of the well-known weaknesses of the K-means clustering algorithm, for which the existing improvement methods were conceptualized. It is noteworthy to mention that the current systematic review and analysis of existing literature on K-means enhancement approaches presents possible perspectives in the clustering analysis research domain and serves as a comprehensive source of information regarding the K-means algorithm and its variants for the research community. |
|---|---|
| AbstractList | K-means clustering algorithm is a partitional clustering algorithm that has been used widely in many applications for traditional clustering due to its simplicity and low computational complexity. This clustering technique depends on the user specification of the number of clusters generated from the dataset, which affects the clustering results. Moreover, random initialization of cluster centers results in its local minimal convergence. Automatic clustering is a recent approach to clustering where the specification of cluster number is not required. In automatic clustering, natural clusters existing in datasets are identified without any background information of the data objects. Nature-inspired metaheuristic optimization algorithms have been deployed in recent times to overcome the challenges of the traditional clustering algorithm in handling automatic data clustering. Some nature-inspired metaheuristics algorithms have been hybridized with the traditional K-means algorithm to boost its performance and capability to handle automatic data clustering problems. This study aims to identify, retrieve, summarize, and analyze recently proposed studies related to the improvements of the K-means clustering algorithm with nature-inspired optimization techniques. A quest approach for article selection was adopted, which led to the identification and selection of 147 related studies from different reputable academic avenues and databases. More so, the analysis revealed that although the K-means algorithm has been well researched in the literature, its superiority over several well-established state-of-the-art clustering algorithms in terms of speed, accessibility, simplicity of use, and applicability to solve clustering problems with unlabeled and nonlinearly separable datasets has been clearly observed in the study. The current study also evaluated and discussed some of the well-known weaknesses of the K-means clustering algorithm, for which the existing improvement methods were conceptualized. It is noteworthy to mention that the current systematic review and analysis of existing literature on K-means enhancement approaches presents possible perspectives in the clustering analysis research domain and serves as a comprehensive source of information regarding the K-means algorithm and its variants for the research community. |
| Author | Ezugwu, Absalom E. Ikotun, Abiodun M. Almutari, Mubarak S. |
| Author_xml | – sequence: 1 givenname: Abiodun M. surname: Ikotun fullname: Ikotun, Abiodun M. – sequence: 2 givenname: Mubarak S. orcidid: 0000-0001-6228-7455 surname: Almutari fullname: Almutari, Mubarak S. – sequence: 3 givenname: Absalom E. orcidid: 0000-0002-3721-3400 surname: Ezugwu fullname: Ezugwu, Absalom E. |
| BookMark | eNptkVFvFCEQx4mpibX2zQ9A4qursOyyrG_n1erFthqjz5tZGK5c9mAFtknf_eBynjGNKckEBn78_wzznJz44JGQl5y9EaJnb2GeOa9FiUY-Iac162QlGt6dPFg_I-cp7VgZPReKs1Py63N1jeBT9R4SGnoDeYlYbXyaXSz5NWa4xSW6lJ2mq2kbosu3-0RtiHS15LCHw8EFZKDraUkZo_Nb-jWGccJ9eke_oUaf6crcgdeYKHhDL5eDCb0oDjq74NML8tTClPD873xGflx--L7-VF19-bhZr64qLWSXK1R1ayWz3KrWCBCdkhwaAUboUk7XcCmk5KZnrOUaTT8ytLoR2OixHwshzsjmqGsC7IY5uj3E-yGAG_5shLgdIJZ6Jhx6qQQ3pgVj26YZW-iU6FVtDLftOMquaL06as0x_Fww5WEXlujL84daMsWUbDgv1OsjpWNIKaL958rZcGjb8LBtBa__w7XLcPijHMFNj1_6DdC1nS0 |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_128803 crossref_primary_10_1080_00051144_2023_2293515 crossref_primary_10_3390_s24227219 crossref_primary_10_3390_app13020906 crossref_primary_10_1007_s41870_022_01078_6 crossref_primary_10_3390_en15176488 crossref_primary_10_1016_j_health_2025_100389 crossref_primary_10_1016_j_aei_2024_102799 crossref_primary_10_1109_TDEI_2023_3275119 crossref_primary_10_1007_s13042_025_02720_y crossref_primary_10_3390_pr12020406 crossref_primary_10_3390_app122312275 crossref_primary_10_1007_s11277_024_11511_7 crossref_primary_10_3390_app122413019 crossref_primary_10_1155_2022_4636931 crossref_primary_10_3390_electronics14061232 crossref_primary_10_3390_app122412789 crossref_primary_10_3233_MGS_230007 crossref_primary_10_12688_f1000research_166187_1 crossref_primary_10_1371_journal_pone_0272861 crossref_primary_10_1038_s41598_025_08473_6 crossref_primary_10_1016_j_ins_2022_11_139 crossref_primary_10_12688_f1000research_163662_2 crossref_primary_10_3390_app12125927 crossref_primary_10_1007_s12530_023_09507_y crossref_primary_10_12688_f1000research_163662_1 crossref_primary_10_3390_systems10060252 crossref_primary_10_1186_s40537_024_00931_8 crossref_primary_10_3390_pr13082516 crossref_primary_10_1007_s11042_023_18067_x crossref_primary_10_1016_j_sftr_2025_100814 crossref_primary_10_3390_sym15122094 crossref_primary_10_3390_sym15101875 crossref_primary_10_1016_j_procs_2025_03_309 crossref_primary_10_3390_app12167985 crossref_primary_10_1108_JAMR_03_2024_0095 crossref_primary_10_3390_s25123648 crossref_primary_10_1108_COMPEL_05_2023_0207 crossref_primary_10_1186_s12859_024_05797_4 crossref_primary_10_1007_s13748_025_00372_1 |
| Cites_doi | 10.1109/ACCESS.2019.2960925 10.1109/ICCONS.2018.8662994 10.1016/j.patrec.2007.08.006 10.1016/j.eswa.2011.05.027 10.3390/sym12081222 10.1109/ICCIA49625.2020.00018 10.1109/SMC.2015.445 10.1109/WICOM.2007.916 10.1109/CCNC.2019.8651682 10.1142/S0218001405004083 10.1109/CEC.2013.6557888 10.1016/j.eswa.2017.09.005 10.1016/j.eswa.2013.05.041 10.1109/ICSSIT48917.2020.9214280 10.1088/1757-899X/993/1/012049 10.1007/s11227-017-2182-8 10.1007/s00500-008-0386-9 10.1109/ACCESS.2020.3024212 10.1023/A:1008202821328 10.1007/978-981-10-3614-9_34 10.1007/978-3-030-61111-8 10.1109/ICAICA50127.2020.9182505 10.1109/3477.764879 10.1016/j.asoc.2009.07.001 10.1007/s00180-019-00871-5 10.1007/978-81-322-0740-5_108 10.1504/IJBET.2019.100556 10.1016/j.kijoms.2018.09.001 10.1016/j.asoc.2020.106722 10.1007/978-3-319-07692-8_6 10.1109/WIIAT.2008.370 10.1007/s11042-018-6652-7 10.1109/TSMCC.2008.2007252 10.1145/347090.347123 10.1007/s00521-015-1920-1 10.3390/ijgi6120392 10.1109/CEC.2010.5586109 10.1093/comjnl/bxz130 10.1109/IMCEC.2018.8469472 10.1007/s00521-016-2817-3 10.1016/j.eswa.2009.12.017 10.1109/I2CACIS.2019.8825077 10.1109/TC.1977.1674822 10.1007/978-3-319-12027-0_31 10.1504/IJCAT.2018.094576 10.1016/j.eswa.2005.07.036 10.1080/1206212X.2020.1735035 10.1016/j.engappai.2010.10.001 10.1109/ICAIBD.2018.8396161 10.1007/s13198-017-0665-x 10.1007/978-81-322-2208-8_31 10.1007/s40092-018-0283-5 10.1002/9780470512517 10.1016/j.matpr.2020.06.503 10.1109/ICCKE48569.2019.8964794 10.1016/S0898-1221(99)00090-5 10.1016/j.eswa.2009.02.003 10.1109/ICSTCEE49637.2020.9277088 10.1108/02644401211235834 10.1088/1757-899X/1070/1/012064 10.1049/el:19780539 10.1007/978-3-642-04944-6_14 10.1007/978-3-030-63319-6_57 10.1007/978-3-030-02698-1_37 10.1109/AISP.2012.6313708 10.1016/j.asoc.2018.05.045 10.1049/cje.2015.10.006 10.1016/j.knosys.2015.12.022 10.1016/S0020-0255(02)00208-6 10.1109/ICCSE.2017.8085537 10.7763/IJCTE.2014.V6.852 10.1007/s00521-020-05395-4 10.1109/CEC.2007.4425083 10.1007/978-3-319-31854-7_18 10.1109/ACCESS.2019.2937021 10.1007/11494669_39 10.1109/MELCON.2016.7495372 10.1007/978-3-319-95933-7_20 10.1007/s13369-015-1826-3 10.1109/TAP.2010.2041163 10.1109/ICICISYS.2009.5358020 10.1109/TEVC.2013.2281545 10.1109/ICECOS.2017.8167117 10.1016/j.eswa.2010.11.082 10.1109/NABIC.2009.5393690 10.1109/ACCESS.2020.3006173 10.1016/j.ins.2012.08.023 10.1109/IADCC.2009.4808991 10.1109/ICPRE48497.2019.9034814 10.1038/scientificamerican0792-66 10.1109/CONECCT50063.2020.9198685 10.1109/IEEM.2007.4419249 10.1002/wics.199 10.1007/978-3-319-31854-7_106 10.1109/ICNISC.2015.62 10.1016/j.asoc.2015.12.001 10.1007/s42452-020-2073-0 10.1016/j.knosys.2014.08.011 10.1016/j.procs.2015.12.163 10.1109/ICCIT.2008.110 10.1007/s13198-017-0683-8 10.1016/j.knosys.2020.106167 10.1109/ICBDA.2018.8367720 10.1016/j.swevo.2014.02.001 10.6026/97320630009084 10.1109/ICPICS47731.2019.8942442 10.1016/j.eswa.2007.01.028 10.1016/j.advengsoft.2013.12.007 10.1142/S0218001414500153 10.1109/IranianCEE.2014.6999695 10.1016/j.aasri.2013.10.037 10.1109/GSIS.2017.8077713 10.1007/s10462-013-9400-4 10.1016/j.patcog.2008.11.006 10.1109/ICICCS48265.2020.9121165 10.1109/RAICS.2011.6069352 10.1109/DCABES48411.2019.00054 10.1016/j.neucom.2015.02.048 10.1007/s00500-018-3289-4 10.1109/SIS.2008.4668294 10.1007/978-3-642-32894-7_27 10.1007/s00521-018-3768-7 10.1007/978-3-540-73190-0_2 10.1109/PDGC.2016.7913145 10.1016/j.agwat.2020.106624 10.3390/math8040555 10.1109/TPAMI.1979.4766909 10.1016/j.eswa.2019.112968 10.1007/s10462-010-9191-9 10.1007/978-981-13-8676-3_35 10.1109/ICRTIT.2016.7569584 10.1108/WJE-10-2020-0527 10.1016/j.asoc.2019.105763 10.1002/int.22733 10.1109/TIT.1982.1056489 10.1109/ICICA.2014.21 10.1007/978-3-030-19223-5_3 10.1007/978-3-642-04225-6_3 10.1007/978-981-15-3125-5_7 10.1109/CESYS.2016.7889811 10.1109/TPAMI.2006.66 10.1016/j.patrec.2011.05.010 10.1007/s10462-020-09952-0 10.1016/j.matpr.2021.01.200 10.1109/CSCITA.2014.6839297 10.1007/s10489-007-0091-x 10.1016/j.asoc.2010.04.008 10.1007/s10044-005-0015-5 10.1007/978-981-4451-98-7_143 10.1007/978-3-319-03404-1 10.1016/j.swevo.2013.11.003 10.1080/17445760.2019.1682144 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.241 10.1016/j.asoc.2014.08.036 10.1166/asl.2015.6555 10.1007/s10618-008-0123-0 10.1007/s11227-013-1053-1 10.1016/j.eswa.2017.10.042 10.1016/j.cie.2016.07.012 10.1016/j.cageo.2019.104335 10.1007/978-981-13-5802-9_43 10.1109/ICHPCA.2014.7045322 10.1155/2014/375358 10.1007/978-3-319-13153-5_22 10.1016/j.ecoinf.2006.07.003 10.1007/978-3-642-41278-3_70 10.1016/0167-6377(93)90023-A 10.1016/j.matpr.2020.10.273 10.3390/a14020053 10.1109/IIH-MSP.2007.259 10.1007/978-3-319-26832-3_17 10.1007/s11047-016-9542-9 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
| DOI | 10.3390/app112311246 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_96831dd5adf544b5a783982dd1f5bb67 10_3390_app112311246 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c367t-e825f60f1f85d3a37861a43ad3c91374163661d90051ced9b0efc43e4cb9b9133 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 45 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000735151300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:46:29 EDT 2025 Mon Jun 30 11:22:41 EDT 2025 Tue Nov 18 22:34:29 EST 2025 Sat Nov 29 07:11:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-e825f60f1f85d3a37861a43ad3c91374163661d90051ced9b0efc43e4cb9b9133 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6228-7455 0000-0002-3721-3400 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2608086411?pq-origsite=%requestingapplication% |
| PQID | 2608086411 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_96831dd5adf544b5a783982dd1f5bb67 proquest_journals_2608086411 crossref_primary_10_3390_app112311246 crossref_citationtrail_10_3390_app112311246 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_94 ref_92 ref_91 ref_138 Rahman (ref_32) 2014; 71 Xie (ref_73) 2019; 84 Niknam (ref_139) 2011; 24 ref_131 ref_99 ref_130 ref_98 ref_97 ref_132 ref_134 ref_126 ref_128 ref_127 ref_129 Majhi (ref_164) 2018; 4 Ezugwu (ref_5) 2020; 33 Deepa (ref_121) 2020; 993 Armano (ref_95) 2014; 6 Razi (ref_137) 2018; 15 Gowdham (ref_175) 2016; 2 ref_72 Mehrabian (ref_133) 2006; 1 ref_159 ref_71 ref_70 Karimkashi (ref_202) 2010; 58 ref_151 ref_78 ref_153 ref_152 ref_155 ref_75 ref_74 ref_157 ref_156 Cai (ref_125) 2011; 11 Laszlo (ref_27) 2007; 28 ref_83 Katarya (ref_104) 2016; 30 ref_147 ref_149 Wu (ref_84) 2020; 245 Dhand (ref_168) 2020; 37 Kuo (ref_80) 2016; 99 ref_89 ref_88 ref_141 Nanda (ref_10) 2014; 16 ref_144 ref_143 ref_146 Djenouri (ref_180) 2016; 2 Hatamlou (ref_148) 2013; 222 Malik (ref_16) 2014; 7 Pambudi (ref_106) 2021; 11 Charon (ref_203) 1993; 14 ref_210 Storn (ref_122) 1997; 11 Forsati (ref_197) 2015; 159 Chaudhary (ref_90) 2020; 17 Esmin (ref_47) 2013; 44 Holland (ref_21) 1992; 267 Mirjalili (ref_161) 2016; 27 ref_204 ref_207 Agbaje (ref_18) 2019; 7 Ayoub (ref_37) 2019; 34 Abdeyazdan (ref_140) 2014; 68 Yang (ref_85) 2012; 29 ref_201 ref_200 Ghezelbash (ref_38) 2019; 134 Wang (ref_160) 2019; 36 Yang (ref_62) 2009; 36 ref_114 ref_117 Mahdavi (ref_142) 2008; 18 ref_116 ref_118 ref_111 ref_110 ref_113 ref_112 Jiang (ref_154) 2014; 10 Krishna (ref_23) 1999; 29 Mirjalili (ref_103) 2014; 69 Mustafi (ref_36) 2019; 23 Mirjalili (ref_108) 2016; 96 Sood (ref_86) 2013; 5 Tripathi (ref_87) 2017; 9 Yang (ref_198) 2020; 97 ref_107 ref_109 Fathian (ref_186) 2007; 190 Kaur (ref_81) 2018; 9 ref_100 Ezugwu (ref_8) 2021; 54 ref_102 Rana (ref_9) 2010; 35 ref_13 ref_12 Wikaisuksakul (ref_208) 2014; 24 ref_19 Laszlo (ref_26) 2006; 28 ref_17 Jitpakdee (ref_79) 2013; 77 ref_15 Bandyopadhyay (ref_24) 2002; 146 Sinha (ref_33) 2018; 74 Kao (ref_60) 2008; 34 Xiao (ref_31) 2010; 37 Omran (ref_50) 2005; 8 Djenouri (ref_178) 2018; 94 Tarkhaneh (ref_115) 2018; 58 Emami (ref_65) 2015; 40 ref_25 ref_22 ref_20 Pan (ref_135) 2014; 28 Binu (ref_119) 2013; 4 Mohammadrezapour (ref_46) 2018; 32 ref_28 Yuwono (ref_57) 2013; 18 Zhao (ref_158) 2013; 11 Angelin (ref_162) 2021; 12 Behera (ref_77) 2015; 1 Neath (ref_209) 2012; 4 Lloyd (ref_67) 1982; 28 Obagbuwa (ref_189) 2014; 2014 Kumari (ref_93) 2021; 18 Eshlaghy (ref_42) 2015; 18 Niknam (ref_53) 2010; 10 Tsai (ref_63) 2011; 38 (ref_6) 2016; 41 Li (ref_181) 2011; 28 Tran (ref_96) 2015; 24 Chang (ref_29) 2009; 42 Islam (ref_34) 2018; 91 Manju (ref_120) 2019; 78 Naem (ref_167) 2019; 8 Wang (ref_101) 2020; 8 ref_173 MacQueen (ref_2) 1969; 21 Kuo (ref_39) 2006; 30 ref_172 ref_56 ref_174 ref_177 ref_176 ref_52 ref_179 ref_51 Cuevas (ref_169) 2013; 40 Bishop (ref_184) 2013; 4 ref_59 Korayem (ref_105) 2015; 21 Revathi (ref_182) 2021; 1070 Alam (ref_11) 2014; 17 Boobord (ref_136) 2015; 7 ref_61 Ezugwu (ref_4) 2020; 8 Thangaraj (ref_54) 2011; 217 Nazeer (ref_145) 2013; 9 Sheng (ref_30) 2008; 14 ref_69 ref_68 ref_66 Das (ref_196) 2018; 70 Kumar (ref_163) 2019; 63 ref_166 ref_64 Hruschka (ref_7) 2009; 39 Teimoury (ref_187) 2016; 16 ref_170 Lee (ref_206) 1977; 26 Niu (ref_48) 2016; 16 ref_195 ref_35 ref_194 Nayak (ref_76) 2017; Volume 556 ref_199 Chen (ref_165) 2020; 203 Abdulwahab (ref_150) 2019; 7 Pykett (ref_205) 1978; 14 Omran (ref_58) 2005; 19 ref_183 Ezugwu (ref_1) 2020; 2 ref_45 Kwedlo (ref_124) 2011; 32 Thiruvenkatasuresh (ref_171) 2019; 30 ref_185 ref_43 ref_188 Cowgill (ref_14) 1999; 37 ref_41 ref_40 ref_3 Barekatain (ref_44) 2015; 72 ref_191 ref_190 ref_49 Brest (ref_123) 2007; 29 ref_193 Langari (ref_82) 2019; 141 ref_192 Chuang (ref_55) 2011; 38 |
| References_xml | – volume: 7 start-page: 184963 year: 2019 ident: ref_18 article-title: Automatic Data Clustering Using Hybrid Firefly Particle Swarm Optimization Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2960925 – ident: ref_170 doi: 10.1109/ICCONS.2018.8662994 – volume: 28 start-page: 2359 year: 2007 ident: ref_27 article-title: A genetic algorithm that exchanges neighboring centers for k-means clustering publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2007.08.006 – volume: 38 start-page: 14555 year: 2011 ident: ref_55 article-title: Chaotic particle swarm optimization for data clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.05.027 – ident: ref_100 doi: 10.3390/sym12081222 – ident: ref_68 doi: 10.1109/ICCIA49625.2020.00018 – ident: ref_149 doi: 10.1109/SMC.2015.445 – ident: ref_59 doi: 10.1109/WICOM.2007.916 – ident: ref_147 doi: 10.1109/CCNC.2019.8651682 – volume: 19 start-page: 297 year: 2005 ident: ref_58 article-title: Particle swarm optimization method for image clustering publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001405004083 – ident: ref_94 – ident: ref_114 – ident: ref_191 doi: 10.1109/CEC.2013.6557888 – volume: 91 start-page: 402 year: 2018 ident: ref_34 article-title: Combining K-Means and a genetic algorithm through a novel arrangement of genetic operators for high quality clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.09.005 – volume: 40 start-page: 6374 year: 2013 ident: ref_169 article-title: A swarm optimization algorithm inspired in the behavior of the social-spider publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.05.041 – ident: ref_190 doi: 10.1109/ICSSIT48917.2020.9214280 – volume: 993 start-page: 012049 year: 2020 ident: ref_121 article-title: Intrusion Detection System Using K-Means Based on Cuckoo Search Optimization publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/993/1/012049 – ident: ref_13 – volume: 74 start-page: 1562 year: 2018 ident: ref_33 article-title: A Hybrid MapReduce-based k-Means Clustering using Genetic Algorithm for Distributed Datasets publication-title: J. Supercomput. doi: 10.1007/s11227-017-2182-8 – volume: 14 start-page: 9 year: 2008 ident: ref_30 article-title: A niching genetic k-means algorithm and its applications to gene expression data publication-title: Soft Comput. doi: 10.1007/s00500-008-0386-9 – volume: 21 start-page: 407 year: 1969 ident: ref_2 article-title: Some Methods for Classification and Analysis of Multivariate Observations publication-title: Am. J. Hum. Genet. – volume: 8 start-page: 173723 year: 2020 ident: ref_101 article-title: Dynamic Equivalent Modeling for Wind Farms with DFIGs Using the Artificial Bee Colony With K-Means Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3024212 – volume: 11 start-page: 341 year: 1997 ident: ref_122 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – ident: ref_43 doi: 10.1007/978-981-10-3614-9_34 – ident: ref_15 doi: 10.1007/978-3-030-61111-8 – ident: ref_174 doi: 10.1109/ICAICA50127.2020.9182505 – volume: 29 start-page: 433 year: 1999 ident: ref_23 article-title: Genetic K-means algorithm publication-title: IEEE Trans. Syst. Man Cybern. Part B doi: 10.1109/3477.764879 – volume: 10 start-page: 183 year: 2010 ident: ref_53 article-title: An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.07.001 – volume: 34 start-page: 1355 year: 2019 ident: ref_37 article-title: An enhanced genetic algorithm with new mutation for cluster analysis publication-title: Comput. Stat. doi: 10.1007/s00180-019-00871-5 – ident: ref_41 doi: 10.1007/978-81-322-0740-5_108 – volume: 30 start-page: 153 year: 2019 ident: ref_171 article-title: Analysis and evaluation of classification and segmentation of brain tumour images publication-title: Int. J. Biomed. Eng. Technol. doi: 10.1504/IJBET.2019.100556 – volume: 4 start-page: 347 year: 2018 ident: ref_164 article-title: Optimal cluster analysis using hybrid K-Means and Ant Lion Optimizer publication-title: Karbala Int. J. Mod. Sci. doi: 10.1016/j.kijoms.2018.09.001 – volume: 97 start-page: 106722 year: 2020 ident: ref_198 article-title: A clustering-based symbiotic organisms search algorithm for high-dimensional optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106722 – ident: ref_112 doi: 10.1007/978-3-319-07692-8_6 – ident: ref_141 doi: 10.1109/WIIAT.2008.370 – ident: ref_25 – volume: 78 start-page: 14897 year: 2019 ident: ref_120 article-title: An efficient multi balanced cuckoo search K-means technique for segmentation and compression of compound images publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-6652-7 – volume: 39 start-page: 133 year: 2009 ident: ref_7 article-title: A Survey of Evolutionary Algorithms for Clustering publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. doi: 10.1109/TSMCC.2008.2007252 – ident: ref_207 doi: 10.1145/347090.347123 – volume: 27 start-page: 1053 year: 2016 ident: ref_161 article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1920-1 – ident: ref_45 doi: 10.3390/ijgi6120392 – ident: ref_143 doi: 10.1109/CEC.2010.5586109 – volume: 63 start-page: 308 year: 2019 ident: ref_163 article-title: WHDA-FCM: Wolf Hunting-Based Dragonfly With Fuzzy C-Mean Clustering for Change Detection in SAR Images publication-title: Comput. J. doi: 10.1093/comjnl/bxz130 – ident: ref_129 doi: 10.1109/IMCEC.2018.8469472 – volume: 30 start-page: 1679 year: 2016 ident: ref_104 article-title: Recommender system with grey wolf optimizer and FCM publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2817-3 – volume: 4 start-page: 155 year: 2013 ident: ref_184 article-title: Stochastic Diffusion Search Review publication-title: Paladyn J. Behav. Robot. – volume: 37 start-page: 4966 year: 2010 ident: ref_31 article-title: A quantum-inspired genetic algorithm for k-means clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.12.017 – ident: ref_89 doi: 10.1109/I2CACIS.2019.8825077 – volume: 26 start-page: 288 year: 1977 ident: ref_206 article-title: A triangulation method for the sequential mapping of points from N-space to two-space publication-title: IEEE Trans. Comput. doi: 10.1109/TC.1977.1674822 – ident: ref_127 doi: 10.1007/978-3-319-12027-0_31 – volume: 58 start-page: 137 year: 2018 ident: ref_115 article-title: A new hybrid strategy for data clustering using cuckoo search based on Mantegna levy distribution, PSO and k-means publication-title: Int. J. Comput. Appl. Technol. doi: 10.1504/IJCAT.2018.094576 – volume: 30 start-page: 313 year: 2006 ident: ref_39 article-title: Integration of self-organizing feature maps neural network and genetic K-means algorithm for market segmentation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.07.036 – ident: ref_132 doi: 10.1080/1206212X.2020.1735035 – ident: ref_49 – volume: 24 start-page: 306 year: 2011 ident: ref_139 article-title: An efficient hybrid algorithm based on modified imperialist competitive algorithm and K-means for data clustering publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2010.10.001 – ident: ref_35 doi: 10.1109/ICAIBD.2018.8396161 – volume: 9 start-page: 866 year: 2017 ident: ref_87 article-title: Dynamic frequency based parallel k-bat algorithm for massive data clustering (DFBPKBA) publication-title: Int. J. Syst. Assur. Eng. Manag. doi: 10.1007/s13198-017-0665-x – ident: ref_66 doi: 10.1007/978-81-322-2208-8_31 – volume: 15 start-page: 499 year: 2018 ident: ref_137 article-title: A hybrid DEA-based K-means and invasive weed optimization for facility location problem publication-title: J. Ind. Eng. Int. doi: 10.1007/s40092-018-0283-5 – ident: ref_17 doi: 10.1002/9780470512517 – volume: 37 start-page: 1324 year: 2020 ident: ref_168 article-title: Protocols SMEER (Secure Multitier Energy Efficient Routing Protocol) and SCOR (Secure Elliptic curve based Chaotic key Galois Cryptography on Opportunistic Routing) publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.06.503 – ident: ref_117 doi: 10.1109/ICCKE48569.2019.8964794 – volume: 37 start-page: 99 year: 1999 ident: ref_14 article-title: A genetic algorithm approach to cluster analysis publication-title: Comput. Math. Appl. doi: 10.1016/S0898-1221(99)00090-5 – volume: 36 start-page: 9847 year: 2009 ident: ref_62 article-title: An efficient hybrid data clustering method based on K-harmonic means and Particle Swarm Optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.02.003 – ident: ref_166 doi: 10.1109/ICSTCEE49637.2020.9277088 – volume: 29 start-page: 464 year: 2012 ident: ref_85 article-title: Bat algorithm: A novel approach for global engineering optimization publication-title: Eng. Comput. doi: 10.1108/02644401211235834 – volume: 1070 start-page: 012064 year: 2021 ident: ref_182 article-title: Hybrid data clustering approaches using bacterial colony optimization and k-means publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/1070/1/012064 – volume: 14 start-page: 799 year: 1978 ident: ref_205 article-title: Improving the efficiency of Sammon’s nonlinear mapping by using clustering archetypes publication-title: Electron. Lett. doi: 10.1049/el:19780539 – volume: 28 start-page: 223 year: 2011 ident: ref_181 article-title: Bacterial colony optimization algorithm publication-title: Control Theory Appl. – ident: ref_72 doi: 10.1007/978-3-642-04944-6_14 – ident: ref_88 doi: 10.1007/978-3-030-63319-6_57 – ident: ref_183 – ident: ref_159 doi: 10.1007/978-3-030-02698-1_37 – ident: ref_74 doi: 10.1109/AISP.2012.6313708 – volume: 17 start-page: 323 year: 2020 ident: ref_90 article-title: Hybrid enhanced shuffled bat algorithm for data clustering publication-title: Int. J. Adv. Intell. Paradig. – volume: 10 start-page: 753 year: 2014 ident: ref_154 article-title: A novel clustering algorithm based on P systems publication-title: Int. J. Innov. Comput. Inf. Control – ident: ref_173 – volume: 70 start-page: 590 year: 2018 ident: ref_196 article-title: A modified Bee Colony Optimization (MBCO) and its hybridization with k-means for an application to data clustering publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.05.045 – volume: 24 start-page: 694 year: 2015 ident: ref_96 article-title: A Novel Hybrid Data Clustering Algorithm Based on Artificial Bee Colony Algorithm and K-Means publication-title: Chin. J. Electron. doi: 10.1049/cje.2015.10.006 – volume: 96 start-page: 120 year: 2016 ident: ref_108 article-title: SCA: A Sine Cosine Algorithm for solving optimization problems publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 146 start-page: 221 year: 2002 ident: ref_24 article-title: An evolutionary technique based on K-means algorithm for optimal clustering in RN publication-title: Inf. Sci. doi: 10.1016/S0020-0255(02)00208-6 – ident: ref_128 doi: 10.1109/ICCSE.2017.8085537 – volume: 6 start-page: 141 year: 2014 ident: ref_95 article-title: Clustering Analysis with Combination of Artificial Bee Colony Algorithm and k-Means Technique publication-title: Int. J. Comput. Theory Eng. doi: 10.7763/IJCTE.2014.V6.852 – volume: 33 start-page: 6247 year: 2020 ident: ref_5 article-title: Automatic clustering algorithms: A systematic review and bibliometric analysis of relevant literature publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05395-4 – ident: ref_138 doi: 10.1109/CEC.2007.4425083 – ident: ref_155 doi: 10.1007/978-3-319-31854-7_18 – volume: 217 start-page: 5208 year: 2011 ident: ref_54 article-title: Particle swarm optimization: Hybridization perspectives and experimental illustrations publication-title: Appl. Math. Comput. – volume: 7 start-page: 142085 year: 2019 ident: ref_150 article-title: An Enhanced Version of Black Hole Algorithm via Levy Flight for Optimization and Data Clustering Problems publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2937021 – ident: ref_177 doi: 10.1007/11494669_39 – ident: ref_188 doi: 10.1109/MELCON.2016.7495372 – ident: ref_153 doi: 10.1007/978-3-319-95933-7_20 – volume: 40 start-page: 3545 year: 2015 ident: ref_65 article-title: Integrating Fuzzy K-Means, Particle Swarm Optimization, and Imperialist Competitive Algorithm for Data Clustering publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-015-1826-3 – ident: ref_204 – volume: 58 start-page: 1269 year: 2010 ident: ref_202 article-title: Invasive Weed Optimization and its Features in Electromagnetics publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2010.2041163 – volume: 11 start-page: 2050 year: 2013 ident: ref_158 article-title: The K-Medoids Clustering Algorithm with Membrane Computing publication-title: TELKOMNIKA Indones. J. Electr. Eng. – ident: ref_61 doi: 10.1109/ICICISYS.2009.5358020 – volume: 18 start-page: 366 year: 2013 ident: ref_57 article-title: Data clustering using variants of rapid centroid estimation publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281545 – ident: ref_113 doi: 10.1109/ICECOS.2017.8167117 – volume: 7 start-page: 799 year: 2014 ident: ref_16 article-title: Comparison of Nature Inspired Metaheuristic Algorithms publication-title: Int. J. Electron. Electr. Eng. – volume: 38 start-page: 6565 year: 2011 ident: ref_63 article-title: Particle swarm optimization with selective particle regeneration for data clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.11.082 – ident: ref_110 doi: 10.1109/NABIC.2009.5393690 – volume: 8 start-page: 121089 year: 2020 ident: ref_4 article-title: A Comparative Performance Study of Hybrid Firefly Algorithms for Automatic Data Clustering publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3006173 – volume: 222 start-page: 175 year: 2013 ident: ref_148 article-title: Black hole: A new heuristic optimization approach for data clustering publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.08.023 – volume: 2 start-page: 156 year: 2016 ident: ref_175 article-title: Fruit Fly K-Means Clustering Algorithm publication-title: Int. J. Scient. Res. Sci. Eng. Technol. – ident: ref_200 doi: 10.1109/IADCC.2009.4808991 – ident: ref_70 doi: 10.1109/ICPRE48497.2019.9034814 – volume: 267 start-page: 66 year: 1992 ident: ref_21 article-title: Genetic algorithms publication-title: Sci. Am. doi: 10.1038/scientificamerican0792-66 – ident: ref_56 – volume: 1 start-page: 431 year: 2015 ident: ref_77 article-title: A novel hybrid approach for real world data clustering algorithm based on fuzzy C-means and firefly algorithm publication-title: Int. J. Fuzzy Comput. Model. – ident: ref_69 doi: 10.1109/CONECCT50063.2020.9198685 – ident: ref_52 doi: 10.1109/IEEM.2007.4419249 – ident: ref_193 – volume: 16 start-page: 1 year: 2016 ident: ref_187 article-title: An optimized clustering algorithm based on K-means using Honey Bee Mating algorithm publication-title: Sensors – volume: 4 start-page: 199 year: 2012 ident: ref_209 article-title: The Bayesian information criterion: Background, derivation, and applications publication-title: Wiley Interdiscip. Rev. Comput. Stat. doi: 10.1002/wics.199 – ident: ref_156 doi: 10.1007/978-3-319-31854-7_106 – ident: ref_102 doi: 10.1109/ICNISC.2015.62 – volume: 5 start-page: 20 year: 2013 ident: ref_86 article-title: K-medoids clustering technique using bat algorithm publication-title: Int. J. Appl. Inf. Syst. – volume: 41 start-page: 192 year: 2016 ident: ref_6 article-title: Automatic clustering using nature-inspired metaheuristics: A survey publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.12.001 – volume: 2 start-page: 273 year: 2020 ident: ref_1 article-title: Nature-inspired metaheuristic techniques for automatic clustering: A survey and performance study publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-2073-0 – volume: 71 start-page: 345 year: 2014 ident: ref_32 article-title: A hybrid clustering technique combining a novel genetic algorithm with K-Means publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.08.011 – volume: 18 start-page: 171 year: 2021 ident: ref_93 article-title: Flower pollination-based K-means algorithm for medical image compression publication-title: Int. J. Adv. Intell. Paradig. – volume: 72 start-page: 552 year: 2015 ident: ref_44 article-title: An Energy-Aware Routing Protocol for Wireless Sensor Networks Based on New Combination of Genetic Algorithm & k-means publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.12.163 – ident: ref_199 doi: 10.1109/ICCIT.2008.110 – volume: 9 start-page: 901 year: 2018 ident: ref_81 article-title: Hybridization of K-Means and Firefly Algorithm for intrusion detection system publication-title: Int. J. Syst. Assur. Eng. Manag. doi: 10.1007/s13198-017-0683-8 – ident: ref_157 – volume: 203 start-page: 106167 year: 2020 ident: ref_165 article-title: Quantum-inspired ant lion optimized hybrid k-means for cluster analysis and intrusion detection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106167 – ident: ref_92 – ident: ref_111 doi: 10.1109/ICBDA.2018.8367720 – volume: 17 start-page: 1 year: 2014 ident: ref_11 article-title: Research on particle swarm optimization based clustering: A systematic review of literature and techniques publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2014.02.001 – volume: 9 start-page: 84 year: 2013 ident: ref_145 article-title: A novel harmony search-K means hybrid algorithm for clustering gene expression data publication-title: Bioinformation doi: 10.6026/97320630009084 – ident: ref_71 doi: 10.1109/ICPICS47731.2019.8942442 – volume: 34 start-page: 1754 year: 2008 ident: ref_60 article-title: A hybridized approach to data clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.01.028 – volume: 69 start-page: 46 year: 2014 ident: ref_103 article-title: Grey wolf optimizer publication-title: Adv. Eng. Soft. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 28 start-page: 1450015 year: 2014 ident: ref_135 article-title: A hybrid clustering algorithm combining cloud model IWO and k-means publication-title: Int. J. Pattern Recogn. Artif. Intell. doi: 10.1142/S0218001414500153 – ident: ref_151 doi: 10.1109/IranianCEE.2014.6999695 – volume: 4 start-page: 243 year: 2013 ident: ref_119 article-title: MKF-Cuckoo: Hybridization of Cuckoo Search and Multiple Kernel-based Fuzzy C-means Algorithm publication-title: AASRI Procedia doi: 10.1016/j.aasri.2013.10.037 – ident: ref_176 doi: 10.1109/GSIS.2017.8077713 – volume: 44 start-page: 23 year: 2013 ident: ref_47 article-title: A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-013-9400-4 – volume: 42 start-page: 1210 year: 2009 ident: ref_29 article-title: A genetic algorithm with gene rearrangement for K-means clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2008.11.006 – ident: ref_109 doi: 10.1109/ICICCS48265.2020.9121165 – ident: ref_144 doi: 10.1109/RAICS.2011.6069352 – ident: ref_194 doi: 10.1109/DCABES48411.2019.00054 – volume: 190 start-page: 1502 year: 2007 ident: ref_186 article-title: Application of honey-bee mating optimization algorithm on clustering publication-title: Appl. Math. Comput. – volume: 159 start-page: 9 year: 2015 ident: ref_197 article-title: An improved bee colony optimization algorithm with an application to document clustering publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.02.048 – volume: 23 start-page: 6361 year: 2019 ident: ref_36 article-title: A hybrid approach using genetic algorithm and the differential evolution heuristic for enhanced initialization of the k-means algorithm with applications in text clustering publication-title: Soft Comput. doi: 10.1007/s00500-018-3289-4 – ident: ref_51 doi: 10.1109/SIS.2008.4668294 – ident: ref_91 doi: 10.1007/978-3-642-32894-7_27 – volume: 32 start-page: 3763 year: 2018 ident: ref_46 article-title: Fuzzy c-means and K-means clustering with genetic algorithm for identification of homogeneous regions of groundwater quality publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3768-7 – ident: ref_78 – volume: 8 start-page: 1433 year: 2019 ident: ref_167 article-title: Optimizing community detection in social networks using antlion and K-median publication-title: Bull. Electr. Eng. Inform. – ident: ref_22 doi: 10.1007/978-3-540-73190-0_2 – ident: ref_3 doi: 10.1109/PDGC.2016.7913145 – volume: 245 start-page: 106624 year: 2020 ident: ref_84 article-title: A novel kernel extreme learning machine model coupled with K-means clustering and firefly algorithm for estimating monthly reference evapotranspiration in parallel computation publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106624 – ident: ref_118 doi: 10.3390/math8040555 – ident: ref_210 doi: 10.1109/TPAMI.1979.4766909 – volume: 141 start-page: 112968 year: 2019 ident: ref_82 article-title: Combined fuzzy clustering and firefly algorithm for privacy preserving in social networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112968 – volume: 35 start-page: 211 year: 2010 ident: ref_9 article-title: A review on particle swarm optimization algorithms and their applications to data clustering publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-010-9191-9 – ident: ref_152 doi: 10.1007/978-981-13-8676-3_35 – volume: 12 start-page: 467 year: 2021 ident: ref_162 article-title: A Roc Curve Based K-Means Clustering for Outlier Detection Using Dragon Fly Optimization publication-title: Turk. J. Compu. Math. Educ. – ident: ref_146 doi: 10.1109/ICRTIT.2016.7569584 – volume: 11 start-page: 2353 year: 2021 ident: ref_106 article-title: Enhanced K-Means by Using Grey Wolf Optimizer for Brain MRI Segmentation publication-title: ICTACT J. Soft Comput. – ident: ref_107 doi: 10.1108/WJE-10-2020-0527 – volume: 84 start-page: 105763 year: 2019 ident: ref_73 article-title: Improving K-means clustering with enhanced Firefly Algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105763 – volume: 18 start-page: 141 year: 2015 ident: ref_42 article-title: A hybrid grey-based k-means and genetic algorithm for project selection publication-title: Int. J. Bus. Inf. Syst. – ident: ref_20 doi: 10.1002/int.22733 – volume: 28 start-page: 129 year: 1982 ident: ref_67 article-title: Least squares quantization in PCM publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1982.1056489 – ident: ref_64 doi: 10.1109/ICICA.2014.21 – ident: ref_130 doi: 10.1007/978-3-030-19223-5_3 – ident: ref_195 doi: 10.1007/978-3-642-04225-6_3 – volume: Volume 556 start-page: 343 year: 2017 ident: ref_76 article-title: Evolutionary Improved Swarm-based Hybrid K-Means Algorithm for Cluster Analysis publication-title: Proceedings of the Second International Conference on Computer and Communication Technologies – volume: 7 start-page: 3 year: 2015 ident: ref_136 article-title: PCAWK: A Hybridized Clustering Algorithm Based on PCA and WK-means for Large Size of Dataset publication-title: Int. J. Adv. Soft Comput. Appl. – ident: ref_99 doi: 10.1007/978-981-15-3125-5_7 – ident: ref_131 – ident: ref_19 doi: 10.1109/CESYS.2016.7889811 – volume: 28 start-page: 533 year: 2006 ident: ref_26 article-title: A genetic algorithm using hyper-quadtrees for low-dimensional k-means clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.66 – volume: 32 start-page: 1613 year: 2011 ident: ref_124 article-title: A clustering method combining differential evolution with the K-means algorithm publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2011.05.010 – volume: 54 start-page: 4237 year: 2021 ident: ref_8 article-title: Metaheuristics: A comprehensive overview and classification along with bibliometric analysis publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09952-0 – ident: ref_185 doi: 10.1016/j.matpr.2021.01.200 – ident: ref_12 doi: 10.1109/CSCITA.2014.6839297 – volume: 29 start-page: 228 year: 2007 ident: ref_123 article-title: Population size reduction for the differential evolution algorithm publication-title: Appl. Intell. doi: 10.1007/s10489-007-0091-x – volume: 11 start-page: 1363 year: 2011 ident: ref_125 article-title: A clustering-based differential evolution for global optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.04.008 – volume: 8 start-page: 332 year: 2005 ident: ref_50 article-title: Dynamic clustering using particle swarm optimization with application in image segmentation publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-005-0015-5 – volume: 77 start-page: 138 year: 2013 ident: ref_79 article-title: A hybrid approach for color image quantization using k-means and firefly algorithms publication-title: World Acad. Sci. Eng. Technol. – ident: ref_126 doi: 10.1007/978-981-4451-98-7_143 – ident: ref_172 doi: 10.1007/978-3-319-03404-1 – volume: 16 start-page: 1 year: 2014 ident: ref_10 article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2013.11.003 – volume: 36 start-page: 3 year: 2019 ident: ref_160 article-title: An improved initialisation method for K-means algorithm optimised by Tissue-like P system publication-title: Int. J. Parallel Emergent Distrib. Syst. doi: 10.1080/17445760.2019.1682144 – ident: ref_134 doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.241 – ident: ref_192 – volume: 24 start-page: 679 year: 2014 ident: ref_208 article-title: A multi-objective genetic algorithm with fuzzy c-means for automatic data clustering publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.08.036 – volume: 21 start-page: 3720 year: 2015 ident: ref_105 article-title: A Hybrid K-Means Metaheuristic Algorithm to Solve a Class of Vehicle Routing Problems publication-title: Adv. Sci. Lett. doi: 10.1166/asl.2015.6555 – ident: ref_40 – volume: 18 start-page: 370 year: 2008 ident: ref_142 article-title: Harmony K-means algorithm for document clustering publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-008-0123-0 – volume: 68 start-page: 574 year: 2014 ident: ref_140 article-title: Data clustering based on hybrid K-harmonic means and modifier imperialist competitive algorithm publication-title: J. Supercomput. doi: 10.1007/s11227-013-1053-1 – volume: 94 start-page: 126 year: 2018 ident: ref_178 article-title: Bees swarm optimization guided by data mining techniques for document information retrieval publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.10.042 – volume: 99 start-page: 153 year: 2016 ident: ref_80 article-title: Taiwanese export trade forecasting using firefly algorithm based K-means algorithm and SVR with wavelet transform publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2016.07.012 – volume: 134 start-page: 104335 year: 2019 ident: ref_38 article-title: Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2019.104335 – ident: ref_116 doi: 10.1007/978-981-13-5802-9_43 – ident: ref_75 doi: 10.1109/ICHPCA.2014.7045322 – volume: 2014 start-page: 1 year: 2014 ident: ref_189 article-title: An Improved Cockroach Swarm Optimization publication-title: Sci. World J. doi: 10.1155/2014/375358 – ident: ref_97 doi: 10.1007/978-3-319-13153-5_22 – volume: 1 start-page: 355 year: 2006 ident: ref_133 article-title: A novel numerical optimization algorithm inspired from weed colonization publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2006.07.003 – volume: 2 start-page: 472 year: 2016 ident: ref_180 article-title: Bees Swarm Optimization Metaheuristic Guided by Decomposition for Solving MAX-SAT publication-title: ICAART – ident: ref_201 doi: 10.1007/978-3-642-41278-3_70 – volume: 14 start-page: 133 year: 1993 ident: ref_203 article-title: The noising method: A new method for combinatorial optimization publication-title: Oper. Res. Lett. doi: 10.1016/0167-6377(93)90023-A – ident: ref_83 doi: 10.1016/j.matpr.2020.10.273 – ident: ref_98 doi: 10.3390/a14020053 – ident: ref_28 doi: 10.1109/IIH-MSP.2007.259 – ident: ref_179 doi: 10.1007/978-3-319-26832-3_17 – volume: 16 start-page: 45 year: 2016 ident: ref_48 article-title: A population-based clustering technique using particle swarm optimization and k-means publication-title: Nat. Comput. doi: 10.1007/s11047-016-9542-9 |
| SSID | ssj0000913810 |
| Score | 2.4724526 |
| SecondaryResourceType | review_article |
| Snippet | K-means clustering algorithm is a partitional clustering algorithm that has been used widely in many applications for traditional clustering due to its... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 11246 |
| SubjectTerms | Algorithms automatic clustering Bibliometrics Cluster analysis Clustering Data mining Datasets Hybridization K-means clustering Mathematical programming nature-inspired metaheuristic algorithms Optimization techniques Research methodology Trends |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9kYOCIkFj0rTxtqsuiuziQcFbyVMX1q5su_4Cf7iTtEpBxIuHHloGUjKTfN-QyTcIHSgaNM4FI4llinCfCqK5Y0Rq7r0AgNLKxmYT6XCYPT3J-1arr1ATVssD1xN3KkXGqLWJsj7hXCcqBUjPzq2lPtFaxHvkZ6lsJVNxD5Y0SFfVle4M8vpwHgzUgsETuG4Lg6JU_4-dOMJLfwUtN7wQd-v_WUVzrlhDSy21wDW02qzDEh81YtHH6-jjjgwcwA3pARxZPIw6neS2CAfo8D5wlXpxs1qOGXfHz5PpqHp5LTFwVdydVZOo2IqvVKXw5XgWVBNgLHxft5kpLzDQSoAl3K1LBUqsCov7UYcEN7slhO0GeuxfP1zekKazAjFMpBVxkBeCJzz1WfARSzNBFWfKMgMTF0ka4LaVYckaZ6U-c95w5rjRUoMF20TzxaRwWwh7I4FkOu-9sVwrkSmqqNeZToTx4KUOOvma69w0suOh-8U4h_QjeCZve6aDDr-t32q5jV_sesFt3zZBJDt-gNDJm9DJ_wqdDtr9cnrerNwyh_wugzSPU7r9H2PsoMXzUAUTC2B20Xw1nbk9tGDeq1E53Y9B-wkvwPMf priority: 102 providerName: Directory of Open Access Journals |
| Title | K-Means-Based Nature-Inspired Metaheuristic Algorithms for Automatic Data Clustering Problems: Recent Advances and Future Directions |
| URI | https://www.proquest.com/docview/2608086411 https://doaj.org/article/96831dd5adf544b5a783982dd1f5bb67 |
| Volume | 11 |
| WOSCitedRecordID | wos000735151300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BwgEOlBYQgRLtASQQWjXb9WPdS5WURlQokYVAKidrny1ScErs8Av44cyuN2kkBCcOPtgeadea2ZlvZ8ffALySzHOcZ5ymhkuauDyjKrGcFipxLsMApaQJzSby-VxcXhZl_D26iWWVG58YHHXH9uzrttEJH5ml9hnzI0ThAsF4wtjpzQ_qe0j5s9bYUOMu9D3x1qgH_fJiVn7d5lw8B6Zgo67-neNu358SI-DgeHkEvBOZAoH_H_45BJ3p3v-d7iN4GMEnGXfWsg93bH0AD3YoCQ9gPy72hryJjNRvH8Ovj3RmMabRCcY8Q-aBDJRe1P6UHu9ntpXXdt1xPpPx4gqHbq-_NwQBMRmv22WghSXvZSvJ2WLtqRlwLFJ2vWyaE4LYFb-DjLt6hIbI2pBpIDsh0SXj2ngCX6bnn88-0Ni-gWqe5S21uPlEdTvmhDcEnouMyYRLwzXqISBBBAem8H5BW1OokXU64TbRqlAowZ9Cr17W9hkQpwtEstY5p02iZCYkk8wpodJMO2PYAN5tVFfpyG3uW2wsKtzjeEVXu4oewOut9E3H6fEXuYm3gq2MZ-IOD5arqyou7KrIBGfGpNI4tDmVyhwhpzjGSblUqSwfwOHGQKroHprq1h6e__v1C7h_7ItoQv3MIfTa1dq-hHv6Z_utWQ2hPzmfl5-GIZEwjNb-G4xQEG8 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFAk4AC2gBgrsgUogtCKbXX8hIZS2RI3SRDkUqZzc_WwrBafEDog7v4ffyOzaCZEQ3Hrg4IPtlb22n-e9XY_fALyQzHucx5xGhksqXBJTJSynmRLOxUhQSppQbCIZj9PT02yyAT-X_8L4tMplTAyB2sy0nyN_g7o7RfktGHt_9YX6qlH-6-qyhEYNi6H9_g2HbOW7wSE-371ut__h5OCINlUFqOZxUlGLYyLshWMu9f3jSRozKbg0XGeMB4GCnGUyD1dtTaY61mnBrdAqU9iC43FvwKZAsHdasDkZjCafVrM63mUzZZ06w57zrOO_Q6Ok4bh4jb3GfaFEwB8MEGitf-9_uyH34W4joEmvRvwWbNhiG-6s2Spuw1YTsErysnHVfvUAfgzpyCIv033kbUPGwdCUDgqfaYDrI1vJC7uofatJb3qOl1pdfC4JinrSW1SzYG1LDmUlycF04e0l8FxkUtfjKd8S1N_I36RX51SURBaG9INhC2loBd_vh_DxWu7NI2gVs8LuAHE6QzVunXPaCCXjVDLJnEpVFGtnDGvD6yU4ct34s_syIdMcx2keSvk6lNqwt2p9VfuS_KXdvsfZqo13Ew8bZvPzvAlOeRannBkTSeMiIVQkE5TNaRc75SKl4qQNu0sI5k2IK_Pf-Hv8793P4dbRyeg4Px6Mh0_gdtcnBYV8oF1oVfOFfQo39dfqspw_a94mAmfXjddfF7Vd7g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCE4AC2gBgrsgUogtGo2608khJKmEVGoFSGQejP72VYKTokdEHd-Fb-O2bUdIiG49cDBB9sre22_nffWHr8BeCaY8ziPOA01FzSwcURlYDhNZWBthAQlhfbFJuIsS05P09kW_Gz_hXFplW1M9IFaL5R7R36IujtB-R0wdmibtIjZaPzm8gt1FaTcl9a2nEYNkan5_g2nb-XryQif9UG_Pz7-cPSWNhUGqOJRXFGD8yPskWU2cX3lcRIxEXChuUoZ92IF-UunDrrK6FT2jFUBN4GSqcQWHI97DbZjjpOeDmwPj7PZ-_UbHue4mbBenW3Pedpz36RR3nBcnN7e4EFfLuAPNvAUN77zP9-cu3C7EdZkUI-EHdgyxS7c2rBb3IWdJpCV5Hnjtv3iHvyY0hODfE2HyOeaZN7olE4Kl4GA6yemEudmVftZk8H8DC-1Ov9cEhT7ZLCqFt7yloxEJcjRfOVsJ_BcZFbX6SlfEdTlyOtkUOdalEQUmoy9kQtp6AbH_X34eCX35gF0ikVh9oBYlaJKN9ZapQMpokQwwaxMZBgpqzXrwssWKLlqfNtd-ZB5jvM3B6t8E1ZdOFi3vqz9Sv7Sbugwt27jXMb9hsXyLG-CVp5GCWdah0LbMAhkKGKU00kfO2VDKaO4C_stHPMm9JX5byw-_Pfup3ADQZq_m2TTR3Cz73KFfJrQPnSq5co8huvqa3VRLp80A4vAp6uG6y_0YmaI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=K-Means-Based+Nature-Inspired+Metaheuristic+Algorithms+for+Automatic+Data+Clustering+Problems%3A+Recent+Advances+and+Future+Directions&rft.jtitle=Applied+sciences&rft.au=Ikotun%2C+Abiodun+M.&rft.au=Almutari%2C+Mubarak+S.&rft.au=Ezugwu%2C+Absalom+E.&rft.date=2021-12-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=11&rft.issue=23&rft.spage=11246&rft_id=info:doi/10.3390%2Fapp112311246&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app112311246 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |