K-Means-Based Nature-Inspired Metaheuristic Algorithms for Automatic Data Clustering Problems: Recent Advances and Future Directions

K-means clustering algorithm is a partitional clustering algorithm that has been used widely in many applications for traditional clustering due to its simplicity and low computational complexity. This clustering technique depends on the user specification of the number of clusters generated from th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 11; číslo 23; s. 11246
Hlavní autori: Ikotun, Abiodun M., Almutari, Mubarak S., Ezugwu, Absalom E.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.12.2021
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract K-means clustering algorithm is a partitional clustering algorithm that has been used widely in many applications for traditional clustering due to its simplicity and low computational complexity. This clustering technique depends on the user specification of the number of clusters generated from the dataset, which affects the clustering results. Moreover, random initialization of cluster centers results in its local minimal convergence. Automatic clustering is a recent approach to clustering where the specification of cluster number is not required. In automatic clustering, natural clusters existing in datasets are identified without any background information of the data objects. Nature-inspired metaheuristic optimization algorithms have been deployed in recent times to overcome the challenges of the traditional clustering algorithm in handling automatic data clustering. Some nature-inspired metaheuristics algorithms have been hybridized with the traditional K-means algorithm to boost its performance and capability to handle automatic data clustering problems. This study aims to identify, retrieve, summarize, and analyze recently proposed studies related to the improvements of the K-means clustering algorithm with nature-inspired optimization techniques. A quest approach for article selection was adopted, which led to the identification and selection of 147 related studies from different reputable academic avenues and databases. More so, the analysis revealed that although the K-means algorithm has been well researched in the literature, its superiority over several well-established state-of-the-art clustering algorithms in terms of speed, accessibility, simplicity of use, and applicability to solve clustering problems with unlabeled and nonlinearly separable datasets has been clearly observed in the study. The current study also evaluated and discussed some of the well-known weaknesses of the K-means clustering algorithm, for which the existing improvement methods were conceptualized. It is noteworthy to mention that the current systematic review and analysis of existing literature on K-means enhancement approaches presents possible perspectives in the clustering analysis research domain and serves as a comprehensive source of information regarding the K-means algorithm and its variants for the research community.
AbstractList K-means clustering algorithm is a partitional clustering algorithm that has been used widely in many applications for traditional clustering due to its simplicity and low computational complexity. This clustering technique depends on the user specification of the number of clusters generated from the dataset, which affects the clustering results. Moreover, random initialization of cluster centers results in its local minimal convergence. Automatic clustering is a recent approach to clustering where the specification of cluster number is not required. In automatic clustering, natural clusters existing in datasets are identified without any background information of the data objects. Nature-inspired metaheuristic optimization algorithms have been deployed in recent times to overcome the challenges of the traditional clustering algorithm in handling automatic data clustering. Some nature-inspired metaheuristics algorithms have been hybridized with the traditional K-means algorithm to boost its performance and capability to handle automatic data clustering problems. This study aims to identify, retrieve, summarize, and analyze recently proposed studies related to the improvements of the K-means clustering algorithm with nature-inspired optimization techniques. A quest approach for article selection was adopted, which led to the identification and selection of 147 related studies from different reputable academic avenues and databases. More so, the analysis revealed that although the K-means algorithm has been well researched in the literature, its superiority over several well-established state-of-the-art clustering algorithms in terms of speed, accessibility, simplicity of use, and applicability to solve clustering problems with unlabeled and nonlinearly separable datasets has been clearly observed in the study. The current study also evaluated and discussed some of the well-known weaknesses of the K-means clustering algorithm, for which the existing improvement methods were conceptualized. It is noteworthy to mention that the current systematic review and analysis of existing literature on K-means enhancement approaches presents possible perspectives in the clustering analysis research domain and serves as a comprehensive source of information regarding the K-means algorithm and its variants for the research community.
Author Ezugwu, Absalom E.
Ikotun, Abiodun M.
Almutari, Mubarak S.
Author_xml – sequence: 1
  givenname: Abiodun M.
  surname: Ikotun
  fullname: Ikotun, Abiodun M.
– sequence: 2
  givenname: Mubarak S.
  orcidid: 0000-0001-6228-7455
  surname: Almutari
  fullname: Almutari, Mubarak S.
– sequence: 3
  givenname: Absalom E.
  orcidid: 0000-0002-3721-3400
  surname: Ezugwu
  fullname: Ezugwu, Absalom E.
BookMark eNptkVFvFCEQx4mpibX2zQ9A4qursOyyrG_n1erFthqjz5tZGK5c9mAFtknf_eBynjGNKckEBn78_wzznJz44JGQl5y9EaJnb2GeOa9FiUY-Iac162QlGt6dPFg_I-cp7VgZPReKs1Py63N1jeBT9R4SGnoDeYlYbXyaXSz5NWa4xSW6lJ2mq2kbosu3-0RtiHS15LCHw8EFZKDraUkZo_Nb-jWGccJ9eke_oUaf6crcgdeYKHhDL5eDCb0oDjq74NML8tTClPD873xGflx--L7-VF19-bhZr64qLWSXK1R1ayWz3KrWCBCdkhwaAUboUk7XcCmk5KZnrOUaTT8ytLoR2OixHwshzsjmqGsC7IY5uj3E-yGAG_5shLgdIJZ6Jhx6qQQ3pgVj26YZW-iU6FVtDLftOMquaL06as0x_Fww5WEXlujL84daMsWUbDgv1OsjpWNIKaL958rZcGjb8LBtBa__w7XLcPijHMFNj1_6DdC1nS0
CitedBy_id crossref_primary_10_1016_j_eswa_2025_128803
crossref_primary_10_1080_00051144_2023_2293515
crossref_primary_10_3390_s24227219
crossref_primary_10_3390_app13020906
crossref_primary_10_1007_s41870_022_01078_6
crossref_primary_10_3390_en15176488
crossref_primary_10_1016_j_health_2025_100389
crossref_primary_10_1016_j_aei_2024_102799
crossref_primary_10_1109_TDEI_2023_3275119
crossref_primary_10_1007_s13042_025_02720_y
crossref_primary_10_3390_pr12020406
crossref_primary_10_3390_app122312275
crossref_primary_10_1007_s11277_024_11511_7
crossref_primary_10_3390_app122413019
crossref_primary_10_1155_2022_4636931
crossref_primary_10_3390_electronics14061232
crossref_primary_10_3390_app122412789
crossref_primary_10_3233_MGS_230007
crossref_primary_10_12688_f1000research_166187_1
crossref_primary_10_1371_journal_pone_0272861
crossref_primary_10_1038_s41598_025_08473_6
crossref_primary_10_1016_j_ins_2022_11_139
crossref_primary_10_12688_f1000research_163662_2
crossref_primary_10_3390_app12125927
crossref_primary_10_1007_s12530_023_09507_y
crossref_primary_10_12688_f1000research_163662_1
crossref_primary_10_3390_systems10060252
crossref_primary_10_1186_s40537_024_00931_8
crossref_primary_10_3390_pr13082516
crossref_primary_10_1007_s11042_023_18067_x
crossref_primary_10_1016_j_sftr_2025_100814
crossref_primary_10_3390_sym15122094
crossref_primary_10_3390_sym15101875
crossref_primary_10_1016_j_procs_2025_03_309
crossref_primary_10_3390_app12167985
crossref_primary_10_1108_JAMR_03_2024_0095
crossref_primary_10_3390_s25123648
crossref_primary_10_1108_COMPEL_05_2023_0207
crossref_primary_10_1186_s12859_024_05797_4
crossref_primary_10_1007_s13748_025_00372_1
Cites_doi 10.1109/ACCESS.2019.2960925
10.1109/ICCONS.2018.8662994
10.1016/j.patrec.2007.08.006
10.1016/j.eswa.2011.05.027
10.3390/sym12081222
10.1109/ICCIA49625.2020.00018
10.1109/SMC.2015.445
10.1109/WICOM.2007.916
10.1109/CCNC.2019.8651682
10.1142/S0218001405004083
10.1109/CEC.2013.6557888
10.1016/j.eswa.2017.09.005
10.1016/j.eswa.2013.05.041
10.1109/ICSSIT48917.2020.9214280
10.1088/1757-899X/993/1/012049
10.1007/s11227-017-2182-8
10.1007/s00500-008-0386-9
10.1109/ACCESS.2020.3024212
10.1023/A:1008202821328
10.1007/978-981-10-3614-9_34
10.1007/978-3-030-61111-8
10.1109/ICAICA50127.2020.9182505
10.1109/3477.764879
10.1016/j.asoc.2009.07.001
10.1007/s00180-019-00871-5
10.1007/978-81-322-0740-5_108
10.1504/IJBET.2019.100556
10.1016/j.kijoms.2018.09.001
10.1016/j.asoc.2020.106722
10.1007/978-3-319-07692-8_6
10.1109/WIIAT.2008.370
10.1007/s11042-018-6652-7
10.1109/TSMCC.2008.2007252
10.1145/347090.347123
10.1007/s00521-015-1920-1
10.3390/ijgi6120392
10.1109/CEC.2010.5586109
10.1093/comjnl/bxz130
10.1109/IMCEC.2018.8469472
10.1007/s00521-016-2817-3
10.1016/j.eswa.2009.12.017
10.1109/I2CACIS.2019.8825077
10.1109/TC.1977.1674822
10.1007/978-3-319-12027-0_31
10.1504/IJCAT.2018.094576
10.1016/j.eswa.2005.07.036
10.1080/1206212X.2020.1735035
10.1016/j.engappai.2010.10.001
10.1109/ICAIBD.2018.8396161
10.1007/s13198-017-0665-x
10.1007/978-81-322-2208-8_31
10.1007/s40092-018-0283-5
10.1002/9780470512517
10.1016/j.matpr.2020.06.503
10.1109/ICCKE48569.2019.8964794
10.1016/S0898-1221(99)00090-5
10.1016/j.eswa.2009.02.003
10.1109/ICSTCEE49637.2020.9277088
10.1108/02644401211235834
10.1088/1757-899X/1070/1/012064
10.1049/el:19780539
10.1007/978-3-642-04944-6_14
10.1007/978-3-030-63319-6_57
10.1007/978-3-030-02698-1_37
10.1109/AISP.2012.6313708
10.1016/j.asoc.2018.05.045
10.1049/cje.2015.10.006
10.1016/j.knosys.2015.12.022
10.1016/S0020-0255(02)00208-6
10.1109/ICCSE.2017.8085537
10.7763/IJCTE.2014.V6.852
10.1007/s00521-020-05395-4
10.1109/CEC.2007.4425083
10.1007/978-3-319-31854-7_18
10.1109/ACCESS.2019.2937021
10.1007/11494669_39
10.1109/MELCON.2016.7495372
10.1007/978-3-319-95933-7_20
10.1007/s13369-015-1826-3
10.1109/TAP.2010.2041163
10.1109/ICICISYS.2009.5358020
10.1109/TEVC.2013.2281545
10.1109/ICECOS.2017.8167117
10.1016/j.eswa.2010.11.082
10.1109/NABIC.2009.5393690
10.1109/ACCESS.2020.3006173
10.1016/j.ins.2012.08.023
10.1109/IADCC.2009.4808991
10.1109/ICPRE48497.2019.9034814
10.1038/scientificamerican0792-66
10.1109/CONECCT50063.2020.9198685
10.1109/IEEM.2007.4419249
10.1002/wics.199
10.1007/978-3-319-31854-7_106
10.1109/ICNISC.2015.62
10.1016/j.asoc.2015.12.001
10.1007/s42452-020-2073-0
10.1016/j.knosys.2014.08.011
10.1016/j.procs.2015.12.163
10.1109/ICCIT.2008.110
10.1007/s13198-017-0683-8
10.1016/j.knosys.2020.106167
10.1109/ICBDA.2018.8367720
10.1016/j.swevo.2014.02.001
10.6026/97320630009084
10.1109/ICPICS47731.2019.8942442
10.1016/j.eswa.2007.01.028
10.1016/j.advengsoft.2013.12.007
10.1142/S0218001414500153
10.1109/IranianCEE.2014.6999695
10.1016/j.aasri.2013.10.037
10.1109/GSIS.2017.8077713
10.1007/s10462-013-9400-4
10.1016/j.patcog.2008.11.006
10.1109/ICICCS48265.2020.9121165
10.1109/RAICS.2011.6069352
10.1109/DCABES48411.2019.00054
10.1016/j.neucom.2015.02.048
10.1007/s00500-018-3289-4
10.1109/SIS.2008.4668294
10.1007/978-3-642-32894-7_27
10.1007/s00521-018-3768-7
10.1007/978-3-540-73190-0_2
10.1109/PDGC.2016.7913145
10.1016/j.agwat.2020.106624
10.3390/math8040555
10.1109/TPAMI.1979.4766909
10.1016/j.eswa.2019.112968
10.1007/s10462-010-9191-9
10.1007/978-981-13-8676-3_35
10.1109/ICRTIT.2016.7569584
10.1108/WJE-10-2020-0527
10.1016/j.asoc.2019.105763
10.1002/int.22733
10.1109/TIT.1982.1056489
10.1109/ICICA.2014.21
10.1007/978-3-030-19223-5_3
10.1007/978-3-642-04225-6_3
10.1007/978-981-15-3125-5_7
10.1109/CESYS.2016.7889811
10.1109/TPAMI.2006.66
10.1016/j.patrec.2011.05.010
10.1007/s10462-020-09952-0
10.1016/j.matpr.2021.01.200
10.1109/CSCITA.2014.6839297
10.1007/s10489-007-0091-x
10.1016/j.asoc.2010.04.008
10.1007/s10044-005-0015-5
10.1007/978-981-4451-98-7_143
10.1007/978-3-319-03404-1
10.1016/j.swevo.2013.11.003
10.1080/17445760.2019.1682144
10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.241
10.1016/j.asoc.2014.08.036
10.1166/asl.2015.6555
10.1007/s10618-008-0123-0
10.1007/s11227-013-1053-1
10.1016/j.eswa.2017.10.042
10.1016/j.cie.2016.07.012
10.1016/j.cageo.2019.104335
10.1007/978-981-13-5802-9_43
10.1109/ICHPCA.2014.7045322
10.1155/2014/375358
10.1007/978-3-319-13153-5_22
10.1016/j.ecoinf.2006.07.003
10.1007/978-3-642-41278-3_70
10.1016/0167-6377(93)90023-A
10.1016/j.matpr.2020.10.273
10.3390/a14020053
10.1109/IIH-MSP.2007.259
10.1007/978-3-319-26832-3_17
10.1007/s11047-016-9542-9
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app112311246
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_96831dd5adf544b5a783982dd1f5bb67
10_3390_app112311246
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c367t-e825f60f1f85d3a37861a43ad3c91374163661d90051ced9b0efc43e4cb9b9133
IEDL.DBID PIMPY
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000735151300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:46:29 EDT 2025
Mon Jun 30 11:22:41 EDT 2025
Tue Nov 18 22:34:29 EST 2025
Sat Nov 29 07:11:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-e825f60f1f85d3a37861a43ad3c91374163661d90051ced9b0efc43e4cb9b9133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6228-7455
0000-0002-3721-3400
OpenAccessLink https://www.proquest.com/publiccontent/docview/2608086411?pq-origsite=%requestingapplication%
PQID 2608086411
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_96831dd5adf544b5a783982dd1f5bb67
proquest_journals_2608086411
crossref_primary_10_3390_app112311246
crossref_citationtrail_10_3390_app112311246
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_94
ref_92
ref_91
ref_138
Rahman (ref_32) 2014; 71
Xie (ref_73) 2019; 84
Niknam (ref_139) 2011; 24
ref_131
ref_99
ref_130
ref_98
ref_97
ref_132
ref_134
ref_126
ref_128
ref_127
ref_129
Majhi (ref_164) 2018; 4
Ezugwu (ref_5) 2020; 33
Deepa (ref_121) 2020; 993
Armano (ref_95) 2014; 6
Razi (ref_137) 2018; 15
Gowdham (ref_175) 2016; 2
ref_72
Mehrabian (ref_133) 2006; 1
ref_159
ref_71
ref_70
Karimkashi (ref_202) 2010; 58
ref_151
ref_78
ref_153
ref_152
ref_155
ref_75
ref_74
ref_157
ref_156
Cai (ref_125) 2011; 11
Laszlo (ref_27) 2007; 28
ref_83
Katarya (ref_104) 2016; 30
ref_147
ref_149
Wu (ref_84) 2020; 245
Dhand (ref_168) 2020; 37
Kuo (ref_80) 2016; 99
ref_89
ref_88
ref_141
Nanda (ref_10) 2014; 16
ref_144
ref_143
ref_146
Djenouri (ref_180) 2016; 2
Hatamlou (ref_148) 2013; 222
Malik (ref_16) 2014; 7
Pambudi (ref_106) 2021; 11
Charon (ref_203) 1993; 14
ref_210
Storn (ref_122) 1997; 11
Forsati (ref_197) 2015; 159
Chaudhary (ref_90) 2020; 17
Esmin (ref_47) 2013; 44
Holland (ref_21) 1992; 267
Mirjalili (ref_161) 2016; 27
ref_204
ref_207
Agbaje (ref_18) 2019; 7
Ayoub (ref_37) 2019; 34
Abdeyazdan (ref_140) 2014; 68
Yang (ref_85) 2012; 29
ref_201
ref_200
Ghezelbash (ref_38) 2019; 134
Wang (ref_160) 2019; 36
Yang (ref_62) 2009; 36
ref_114
ref_117
Mahdavi (ref_142) 2008; 18
ref_116
ref_118
ref_111
ref_110
ref_113
ref_112
Jiang (ref_154) 2014; 10
Krishna (ref_23) 1999; 29
Mirjalili (ref_103) 2014; 69
Mustafi (ref_36) 2019; 23
Mirjalili (ref_108) 2016; 96
Sood (ref_86) 2013; 5
Tripathi (ref_87) 2017; 9
Yang (ref_198) 2020; 97
ref_107
ref_109
Fathian (ref_186) 2007; 190
Kaur (ref_81) 2018; 9
ref_100
Ezugwu (ref_8) 2021; 54
ref_102
Rana (ref_9) 2010; 35
ref_13
ref_12
Wikaisuksakul (ref_208) 2014; 24
ref_19
Laszlo (ref_26) 2006; 28
ref_17
Jitpakdee (ref_79) 2013; 77
ref_15
Bandyopadhyay (ref_24) 2002; 146
Sinha (ref_33) 2018; 74
Kao (ref_60) 2008; 34
Xiao (ref_31) 2010; 37
Omran (ref_50) 2005; 8
Djenouri (ref_178) 2018; 94
Tarkhaneh (ref_115) 2018; 58
Emami (ref_65) 2015; 40
ref_25
ref_22
ref_20
Pan (ref_135) 2014; 28
Binu (ref_119) 2013; 4
Mohammadrezapour (ref_46) 2018; 32
ref_28
Yuwono (ref_57) 2013; 18
Zhao (ref_158) 2013; 11
Angelin (ref_162) 2021; 12
Behera (ref_77) 2015; 1
Neath (ref_209) 2012; 4
Lloyd (ref_67) 1982; 28
Obagbuwa (ref_189) 2014; 2014
Kumari (ref_93) 2021; 18
Eshlaghy (ref_42) 2015; 18
Niknam (ref_53) 2010; 10
Tsai (ref_63) 2011; 38
(ref_6) 2016; 41
Li (ref_181) 2011; 28
Tran (ref_96) 2015; 24
Chang (ref_29) 2009; 42
Islam (ref_34) 2018; 91
Manju (ref_120) 2019; 78
Naem (ref_167) 2019; 8
Wang (ref_101) 2020; 8
ref_173
MacQueen (ref_2) 1969; 21
Kuo (ref_39) 2006; 30
ref_172
ref_56
ref_174
ref_177
ref_176
ref_52
ref_179
ref_51
Cuevas (ref_169) 2013; 40
Bishop (ref_184) 2013; 4
ref_59
Korayem (ref_105) 2015; 21
Revathi (ref_182) 2021; 1070
Alam (ref_11) 2014; 17
Boobord (ref_136) 2015; 7
ref_61
Ezugwu (ref_4) 2020; 8
Thangaraj (ref_54) 2011; 217
Nazeer (ref_145) 2013; 9
Sheng (ref_30) 2008; 14
ref_69
ref_68
ref_66
Das (ref_196) 2018; 70
Kumar (ref_163) 2019; 63
ref_166
ref_64
Hruschka (ref_7) 2009; 39
Teimoury (ref_187) 2016; 16
ref_170
Lee (ref_206) 1977; 26
Niu (ref_48) 2016; 16
ref_195
ref_35
ref_194
Nayak (ref_76) 2017; Volume 556
ref_199
Chen (ref_165) 2020; 203
Abdulwahab (ref_150) 2019; 7
Pykett (ref_205) 1978; 14
Omran (ref_58) 2005; 19
ref_183
Ezugwu (ref_1) 2020; 2
ref_45
Kwedlo (ref_124) 2011; 32
Thiruvenkatasuresh (ref_171) 2019; 30
ref_185
ref_43
ref_188
Cowgill (ref_14) 1999; 37
ref_41
ref_40
ref_3
Barekatain (ref_44) 2015; 72
ref_191
ref_190
ref_49
Brest (ref_123) 2007; 29
ref_193
Langari (ref_82) 2019; 141
ref_192
Chuang (ref_55) 2011; 38
References_xml – volume: 7
  start-page: 184963
  year: 2019
  ident: ref_18
  article-title: Automatic Data Clustering Using Hybrid Firefly Particle Swarm Optimization Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960925
– ident: ref_170
  doi: 10.1109/ICCONS.2018.8662994
– volume: 28
  start-page: 2359
  year: 2007
  ident: ref_27
  article-title: A genetic algorithm that exchanges neighboring centers for k-means clustering
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2007.08.006
– volume: 38
  start-page: 14555
  year: 2011
  ident: ref_55
  article-title: Chaotic particle swarm optimization for data clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.05.027
– ident: ref_100
  doi: 10.3390/sym12081222
– ident: ref_68
  doi: 10.1109/ICCIA49625.2020.00018
– ident: ref_149
  doi: 10.1109/SMC.2015.445
– ident: ref_59
  doi: 10.1109/WICOM.2007.916
– ident: ref_147
  doi: 10.1109/CCNC.2019.8651682
– volume: 19
  start-page: 297
  year: 2005
  ident: ref_58
  article-title: Particle swarm optimization method for image clustering
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001405004083
– ident: ref_94
– ident: ref_114
– ident: ref_191
  doi: 10.1109/CEC.2013.6557888
– volume: 91
  start-page: 402
  year: 2018
  ident: ref_34
  article-title: Combining K-Means and a genetic algorithm through a novel arrangement of genetic operators for high quality clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.09.005
– volume: 40
  start-page: 6374
  year: 2013
  ident: ref_169
  article-title: A swarm optimization algorithm inspired in the behavior of the social-spider
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.05.041
– ident: ref_190
  doi: 10.1109/ICSSIT48917.2020.9214280
– volume: 993
  start-page: 012049
  year: 2020
  ident: ref_121
  article-title: Intrusion Detection System Using K-Means Based on Cuckoo Search Optimization
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/993/1/012049
– ident: ref_13
– volume: 74
  start-page: 1562
  year: 2018
  ident: ref_33
  article-title: A Hybrid MapReduce-based k-Means Clustering using Genetic Algorithm for Distributed Datasets
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-017-2182-8
– volume: 14
  start-page: 9
  year: 2008
  ident: ref_30
  article-title: A niching genetic k-means algorithm and its applications to gene expression data
  publication-title: Soft Comput.
  doi: 10.1007/s00500-008-0386-9
– volume: 21
  start-page: 407
  year: 1969
  ident: ref_2
  article-title: Some Methods for Classification and Analysis of Multivariate Observations
  publication-title: Am. J. Hum. Genet.
– volume: 8
  start-page: 173723
  year: 2020
  ident: ref_101
  article-title: Dynamic Equivalent Modeling for Wind Farms with DFIGs Using the Artificial Bee Colony With K-Means Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3024212
– volume: 11
  start-page: 341
  year: 1997
  ident: ref_122
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– ident: ref_43
  doi: 10.1007/978-981-10-3614-9_34
– ident: ref_15
  doi: 10.1007/978-3-030-61111-8
– ident: ref_174
  doi: 10.1109/ICAICA50127.2020.9182505
– volume: 29
  start-page: 433
  year: 1999
  ident: ref_23
  article-title: Genetic K-means algorithm
  publication-title: IEEE Trans. Syst. Man Cybern. Part B
  doi: 10.1109/3477.764879
– volume: 10
  start-page: 183
  year: 2010
  ident: ref_53
  article-title: An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.07.001
– volume: 34
  start-page: 1355
  year: 2019
  ident: ref_37
  article-title: An enhanced genetic algorithm with new mutation for cluster analysis
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-019-00871-5
– ident: ref_41
  doi: 10.1007/978-81-322-0740-5_108
– volume: 30
  start-page: 153
  year: 2019
  ident: ref_171
  article-title: Analysis and evaluation of classification and segmentation of brain tumour images
  publication-title: Int. J. Biomed. Eng. Technol.
  doi: 10.1504/IJBET.2019.100556
– volume: 4
  start-page: 347
  year: 2018
  ident: ref_164
  article-title: Optimal cluster analysis using hybrid K-Means and Ant Lion Optimizer
  publication-title: Karbala Int. J. Mod. Sci.
  doi: 10.1016/j.kijoms.2018.09.001
– volume: 97
  start-page: 106722
  year: 2020
  ident: ref_198
  article-title: A clustering-based symbiotic organisms search algorithm for high-dimensional optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106722
– ident: ref_112
  doi: 10.1007/978-3-319-07692-8_6
– ident: ref_141
  doi: 10.1109/WIIAT.2008.370
– ident: ref_25
– volume: 78
  start-page: 14897
  year: 2019
  ident: ref_120
  article-title: An efficient multi balanced cuckoo search K-means technique for segmentation and compression of compound images
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-6652-7
– volume: 39
  start-page: 133
  year: 2009
  ident: ref_7
  article-title: A Survey of Evolutionary Algorithms for Clustering
  publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
  doi: 10.1109/TSMCC.2008.2007252
– ident: ref_207
  doi: 10.1145/347090.347123
– volume: 27
  start-page: 1053
  year: 2016
  ident: ref_161
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1920-1
– ident: ref_45
  doi: 10.3390/ijgi6120392
– ident: ref_143
  doi: 10.1109/CEC.2010.5586109
– volume: 63
  start-page: 308
  year: 2019
  ident: ref_163
  article-title: WHDA-FCM: Wolf Hunting-Based Dragonfly With Fuzzy C-Mean Clustering for Change Detection in SAR Images
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxz130
– ident: ref_129
  doi: 10.1109/IMCEC.2018.8469472
– volume: 30
  start-page: 1679
  year: 2016
  ident: ref_104
  article-title: Recommender system with grey wolf optimizer and FCM
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2817-3
– volume: 4
  start-page: 155
  year: 2013
  ident: ref_184
  article-title: Stochastic Diffusion Search Review
  publication-title: Paladyn J. Behav. Robot.
– volume: 37
  start-page: 4966
  year: 2010
  ident: ref_31
  article-title: A quantum-inspired genetic algorithm for k-means clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.12.017
– ident: ref_89
  doi: 10.1109/I2CACIS.2019.8825077
– volume: 26
  start-page: 288
  year: 1977
  ident: ref_206
  article-title: A triangulation method for the sequential mapping of points from N-space to two-space
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.1977.1674822
– ident: ref_127
  doi: 10.1007/978-3-319-12027-0_31
– volume: 58
  start-page: 137
  year: 2018
  ident: ref_115
  article-title: A new hybrid strategy for data clustering using cuckoo search based on Mantegna levy distribution, PSO and k-means
  publication-title: Int. J. Comput. Appl. Technol.
  doi: 10.1504/IJCAT.2018.094576
– volume: 30
  start-page: 313
  year: 2006
  ident: ref_39
  article-title: Integration of self-organizing feature maps neural network and genetic K-means algorithm for market segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.07.036
– ident: ref_132
  doi: 10.1080/1206212X.2020.1735035
– ident: ref_49
– volume: 24
  start-page: 306
  year: 2011
  ident: ref_139
  article-title: An efficient hybrid algorithm based on modified imperialist competitive algorithm and K-means for data clustering
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2010.10.001
– ident: ref_35
  doi: 10.1109/ICAIBD.2018.8396161
– volume: 9
  start-page: 866
  year: 2017
  ident: ref_87
  article-title: Dynamic frequency based parallel k-bat algorithm for massive data clustering (DFBPKBA)
  publication-title: Int. J. Syst. Assur. Eng. Manag.
  doi: 10.1007/s13198-017-0665-x
– ident: ref_66
  doi: 10.1007/978-81-322-2208-8_31
– volume: 15
  start-page: 499
  year: 2018
  ident: ref_137
  article-title: A hybrid DEA-based K-means and invasive weed optimization for facility location problem
  publication-title: J. Ind. Eng. Int.
  doi: 10.1007/s40092-018-0283-5
– ident: ref_17
  doi: 10.1002/9780470512517
– volume: 37
  start-page: 1324
  year: 2020
  ident: ref_168
  article-title: Protocols SMEER (Secure Multitier Energy Efficient Routing Protocol) and SCOR (Secure Elliptic curve based Chaotic key Galois Cryptography on Opportunistic Routing)
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.06.503
– ident: ref_117
  doi: 10.1109/ICCKE48569.2019.8964794
– volume: 37
  start-page: 99
  year: 1999
  ident: ref_14
  article-title: A genetic algorithm approach to cluster analysis
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(99)00090-5
– volume: 36
  start-page: 9847
  year: 2009
  ident: ref_62
  article-title: An efficient hybrid data clustering method based on K-harmonic means and Particle Swarm Optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.02.003
– ident: ref_166
  doi: 10.1109/ICSTCEE49637.2020.9277088
– volume: 29
  start-page: 464
  year: 2012
  ident: ref_85
  article-title: Bat algorithm: A novel approach for global engineering optimization
  publication-title: Eng. Comput.
  doi: 10.1108/02644401211235834
– volume: 1070
  start-page: 012064
  year: 2021
  ident: ref_182
  article-title: Hybrid data clustering approaches using bacterial colony optimization and k-means
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/1070/1/012064
– volume: 14
  start-page: 799
  year: 1978
  ident: ref_205
  article-title: Improving the efficiency of Sammon’s nonlinear mapping by using clustering archetypes
  publication-title: Electron. Lett.
  doi: 10.1049/el:19780539
– volume: 28
  start-page: 223
  year: 2011
  ident: ref_181
  article-title: Bacterial colony optimization algorithm
  publication-title: Control Theory Appl.
– ident: ref_72
  doi: 10.1007/978-3-642-04944-6_14
– ident: ref_88
  doi: 10.1007/978-3-030-63319-6_57
– ident: ref_183
– ident: ref_159
  doi: 10.1007/978-3-030-02698-1_37
– ident: ref_74
  doi: 10.1109/AISP.2012.6313708
– volume: 17
  start-page: 323
  year: 2020
  ident: ref_90
  article-title: Hybrid enhanced shuffled bat algorithm for data clustering
  publication-title: Int. J. Adv. Intell. Paradig.
– volume: 10
  start-page: 753
  year: 2014
  ident: ref_154
  article-title: A novel clustering algorithm based on P systems
  publication-title: Int. J. Innov. Comput. Inf. Control
– ident: ref_173
– volume: 70
  start-page: 590
  year: 2018
  ident: ref_196
  article-title: A modified Bee Colony Optimization (MBCO) and its hybridization with k-means for an application to data clustering
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.05.045
– volume: 24
  start-page: 694
  year: 2015
  ident: ref_96
  article-title: A Novel Hybrid Data Clustering Algorithm Based on Artificial Bee Colony Algorithm and K-Means
  publication-title: Chin. J. Electron.
  doi: 10.1049/cje.2015.10.006
– volume: 96
  start-page: 120
  year: 2016
  ident: ref_108
  article-title: SCA: A Sine Cosine Algorithm for solving optimization problems
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– volume: 146
  start-page: 221
  year: 2002
  ident: ref_24
  article-title: An evolutionary technique based on K-means algorithm for optimal clustering in RN
  publication-title: Inf. Sci.
  doi: 10.1016/S0020-0255(02)00208-6
– ident: ref_128
  doi: 10.1109/ICCSE.2017.8085537
– volume: 6
  start-page: 141
  year: 2014
  ident: ref_95
  article-title: Clustering Analysis with Combination of Artificial Bee Colony Algorithm and k-Means Technique
  publication-title: Int. J. Comput. Theory Eng.
  doi: 10.7763/IJCTE.2014.V6.852
– volume: 33
  start-page: 6247
  year: 2020
  ident: ref_5
  article-title: Automatic clustering algorithms: A systematic review and bibliometric analysis of relevant literature
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05395-4
– ident: ref_138
  doi: 10.1109/CEC.2007.4425083
– ident: ref_155
  doi: 10.1007/978-3-319-31854-7_18
– volume: 217
  start-page: 5208
  year: 2011
  ident: ref_54
  article-title: Particle swarm optimization: Hybridization perspectives and experimental illustrations
  publication-title: Appl. Math. Comput.
– volume: 7
  start-page: 142085
  year: 2019
  ident: ref_150
  article-title: An Enhanced Version of Black Hole Algorithm via Levy Flight for Optimization and Data Clustering Problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2937021
– ident: ref_177
  doi: 10.1007/11494669_39
– ident: ref_188
  doi: 10.1109/MELCON.2016.7495372
– ident: ref_153
  doi: 10.1007/978-3-319-95933-7_20
– volume: 40
  start-page: 3545
  year: 2015
  ident: ref_65
  article-title: Integrating Fuzzy K-Means, Particle Swarm Optimization, and Imperialist Competitive Algorithm for Data Clustering
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-015-1826-3
– ident: ref_204
– volume: 58
  start-page: 1269
  year: 2010
  ident: ref_202
  article-title: Invasive Weed Optimization and its Features in Electromagnetics
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2010.2041163
– volume: 11
  start-page: 2050
  year: 2013
  ident: ref_158
  article-title: The K-Medoids Clustering Algorithm with Membrane Computing
  publication-title: TELKOMNIKA Indones. J. Electr. Eng.
– ident: ref_61
  doi: 10.1109/ICICISYS.2009.5358020
– volume: 18
  start-page: 366
  year: 2013
  ident: ref_57
  article-title: Data clustering using variants of rapid centroid estimation
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281545
– ident: ref_113
  doi: 10.1109/ICECOS.2017.8167117
– volume: 7
  start-page: 799
  year: 2014
  ident: ref_16
  article-title: Comparison of Nature Inspired Metaheuristic Algorithms
  publication-title: Int. J. Electron. Electr. Eng.
– volume: 38
  start-page: 6565
  year: 2011
  ident: ref_63
  article-title: Particle swarm optimization with selective particle regeneration for data clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.11.082
– ident: ref_110
  doi: 10.1109/NABIC.2009.5393690
– volume: 8
  start-page: 121089
  year: 2020
  ident: ref_4
  article-title: A Comparative Performance Study of Hybrid Firefly Algorithms for Automatic Data Clustering
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3006173
– volume: 222
  start-page: 175
  year: 2013
  ident: ref_148
  article-title: Black hole: A new heuristic optimization approach for data clustering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.08.023
– volume: 2
  start-page: 156
  year: 2016
  ident: ref_175
  article-title: Fruit Fly K-Means Clustering Algorithm
  publication-title: Int. J. Scient. Res. Sci. Eng. Technol.
– ident: ref_200
  doi: 10.1109/IADCC.2009.4808991
– ident: ref_70
  doi: 10.1109/ICPRE48497.2019.9034814
– volume: 267
  start-page: 66
  year: 1992
  ident: ref_21
  article-title: Genetic algorithms
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0792-66
– ident: ref_56
– volume: 1
  start-page: 431
  year: 2015
  ident: ref_77
  article-title: A novel hybrid approach for real world data clustering algorithm based on fuzzy C-means and firefly algorithm
  publication-title: Int. J. Fuzzy Comput. Model.
– ident: ref_69
  doi: 10.1109/CONECCT50063.2020.9198685
– ident: ref_52
  doi: 10.1109/IEEM.2007.4419249
– ident: ref_193
– volume: 16
  start-page: 1
  year: 2016
  ident: ref_187
  article-title: An optimized clustering algorithm based on K-means using Honey Bee Mating algorithm
  publication-title: Sensors
– volume: 4
  start-page: 199
  year: 2012
  ident: ref_209
  article-title: The Bayesian information criterion: Background, derivation, and applications
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.199
– ident: ref_156
  doi: 10.1007/978-3-319-31854-7_106
– ident: ref_102
  doi: 10.1109/ICNISC.2015.62
– volume: 5
  start-page: 20
  year: 2013
  ident: ref_86
  article-title: K-medoids clustering technique using bat algorithm
  publication-title: Int. J. Appl. Inf. Syst.
– volume: 41
  start-page: 192
  year: 2016
  ident: ref_6
  article-title: Automatic clustering using nature-inspired metaheuristics: A survey
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.12.001
– volume: 2
  start-page: 273
  year: 2020
  ident: ref_1
  article-title: Nature-inspired metaheuristic techniques for automatic clustering: A survey and performance study
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-2073-0
– volume: 71
  start-page: 345
  year: 2014
  ident: ref_32
  article-title: A hybrid clustering technique combining a novel genetic algorithm with K-Means
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.08.011
– volume: 18
  start-page: 171
  year: 2021
  ident: ref_93
  article-title: Flower pollination-based K-means algorithm for medical image compression
  publication-title: Int. J. Adv. Intell. Paradig.
– volume: 72
  start-page: 552
  year: 2015
  ident: ref_44
  article-title: An Energy-Aware Routing Protocol for Wireless Sensor Networks Based on New Combination of Genetic Algorithm & k-means
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.12.163
– ident: ref_199
  doi: 10.1109/ICCIT.2008.110
– volume: 9
  start-page: 901
  year: 2018
  ident: ref_81
  article-title: Hybridization of K-Means and Firefly Algorithm for intrusion detection system
  publication-title: Int. J. Syst. Assur. Eng. Manag.
  doi: 10.1007/s13198-017-0683-8
– ident: ref_157
– volume: 203
  start-page: 106167
  year: 2020
  ident: ref_165
  article-title: Quantum-inspired ant lion optimized hybrid k-means for cluster analysis and intrusion detection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106167
– ident: ref_92
– ident: ref_111
  doi: 10.1109/ICBDA.2018.8367720
– volume: 17
  start-page: 1
  year: 2014
  ident: ref_11
  article-title: Research on particle swarm optimization based clustering: A systematic review of literature and techniques
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2014.02.001
– volume: 9
  start-page: 84
  year: 2013
  ident: ref_145
  article-title: A novel harmony search-K means hybrid algorithm for clustering gene expression data
  publication-title: Bioinformation
  doi: 10.6026/97320630009084
– ident: ref_71
  doi: 10.1109/ICPICS47731.2019.8942442
– volume: 34
  start-page: 1754
  year: 2008
  ident: ref_60
  article-title: A hybridized approach to data clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.01.028
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_103
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Soft.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 28
  start-page: 1450015
  year: 2014
  ident: ref_135
  article-title: A hybrid clustering algorithm combining cloud model IWO and k-means
  publication-title: Int. J. Pattern Recogn. Artif. Intell.
  doi: 10.1142/S0218001414500153
– ident: ref_151
  doi: 10.1109/IranianCEE.2014.6999695
– volume: 4
  start-page: 243
  year: 2013
  ident: ref_119
  article-title: MKF-Cuckoo: Hybridization of Cuckoo Search and Multiple Kernel-based Fuzzy C-means Algorithm
  publication-title: AASRI Procedia
  doi: 10.1016/j.aasri.2013.10.037
– ident: ref_176
  doi: 10.1109/GSIS.2017.8077713
– volume: 44
  start-page: 23
  year: 2013
  ident: ref_47
  article-title: A review on particle swarm optimization algorithm and its variants to clustering high-dimensional data
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-013-9400-4
– volume: 42
  start-page: 1210
  year: 2009
  ident: ref_29
  article-title: A genetic algorithm with gene rearrangement for K-means clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2008.11.006
– ident: ref_109
  doi: 10.1109/ICICCS48265.2020.9121165
– ident: ref_144
  doi: 10.1109/RAICS.2011.6069352
– ident: ref_194
  doi: 10.1109/DCABES48411.2019.00054
– volume: 190
  start-page: 1502
  year: 2007
  ident: ref_186
  article-title: Application of honey-bee mating optimization algorithm on clustering
  publication-title: Appl. Math. Comput.
– volume: 159
  start-page: 9
  year: 2015
  ident: ref_197
  article-title: An improved bee colony optimization algorithm with an application to document clustering
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.02.048
– volume: 23
  start-page: 6361
  year: 2019
  ident: ref_36
  article-title: A hybrid approach using genetic algorithm and the differential evolution heuristic for enhanced initialization of the k-means algorithm with applications in text clustering
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3289-4
– ident: ref_51
  doi: 10.1109/SIS.2008.4668294
– ident: ref_91
  doi: 10.1007/978-3-642-32894-7_27
– volume: 32
  start-page: 3763
  year: 2018
  ident: ref_46
  article-title: Fuzzy c-means and K-means clustering with genetic algorithm for identification of homogeneous regions of groundwater quality
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3768-7
– ident: ref_78
– volume: 8
  start-page: 1433
  year: 2019
  ident: ref_167
  article-title: Optimizing community detection in social networks using antlion and K-median
  publication-title: Bull. Electr. Eng. Inform.
– ident: ref_22
  doi: 10.1007/978-3-540-73190-0_2
– ident: ref_3
  doi: 10.1109/PDGC.2016.7913145
– volume: 245
  start-page: 106624
  year: 2020
  ident: ref_84
  article-title: A novel kernel extreme learning machine model coupled with K-means clustering and firefly algorithm for estimating monthly reference evapotranspiration in parallel computation
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106624
– ident: ref_118
  doi: 10.3390/math8040555
– ident: ref_210
  doi: 10.1109/TPAMI.1979.4766909
– volume: 141
  start-page: 112968
  year: 2019
  ident: ref_82
  article-title: Combined fuzzy clustering and firefly algorithm for privacy preserving in social networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112968
– volume: 35
  start-page: 211
  year: 2010
  ident: ref_9
  article-title: A review on particle swarm optimization algorithms and their applications to data clustering
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-010-9191-9
– ident: ref_152
  doi: 10.1007/978-981-13-8676-3_35
– volume: 12
  start-page: 467
  year: 2021
  ident: ref_162
  article-title: A Roc Curve Based K-Means Clustering for Outlier Detection Using Dragon Fly Optimization
  publication-title: Turk. J. Compu. Math. Educ.
– ident: ref_146
  doi: 10.1109/ICRTIT.2016.7569584
– volume: 11
  start-page: 2353
  year: 2021
  ident: ref_106
  article-title: Enhanced K-Means by Using Grey Wolf Optimizer for Brain MRI Segmentation
  publication-title: ICTACT J. Soft Comput.
– ident: ref_107
  doi: 10.1108/WJE-10-2020-0527
– volume: 84
  start-page: 105763
  year: 2019
  ident: ref_73
  article-title: Improving K-means clustering with enhanced Firefly Algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105763
– volume: 18
  start-page: 141
  year: 2015
  ident: ref_42
  article-title: A hybrid grey-based k-means and genetic algorithm for project selection
  publication-title: Int. J. Bus. Inf. Syst.
– ident: ref_20
  doi: 10.1002/int.22733
– volume: 28
  start-page: 129
  year: 1982
  ident: ref_67
  article-title: Least squares quantization in PCM
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1982.1056489
– ident: ref_64
  doi: 10.1109/ICICA.2014.21
– ident: ref_130
  doi: 10.1007/978-3-030-19223-5_3
– ident: ref_195
  doi: 10.1007/978-3-642-04225-6_3
– volume: Volume 556
  start-page: 343
  year: 2017
  ident: ref_76
  article-title: Evolutionary Improved Swarm-based Hybrid K-Means Algorithm for Cluster Analysis
  publication-title: Proceedings of the Second International Conference on Computer and Communication Technologies
– volume: 7
  start-page: 3
  year: 2015
  ident: ref_136
  article-title: PCAWK: A Hybridized Clustering Algorithm Based on PCA and WK-means for Large Size of Dataset
  publication-title: Int. J. Adv. Soft Comput. Appl.
– ident: ref_99
  doi: 10.1007/978-981-15-3125-5_7
– ident: ref_131
– ident: ref_19
  doi: 10.1109/CESYS.2016.7889811
– volume: 28
  start-page: 533
  year: 2006
  ident: ref_26
  article-title: A genetic algorithm using hyper-quadtrees for low-dimensional k-means clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.66
– volume: 32
  start-page: 1613
  year: 2011
  ident: ref_124
  article-title: A clustering method combining differential evolution with the K-means algorithm
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2011.05.010
– volume: 54
  start-page: 4237
  year: 2021
  ident: ref_8
  article-title: Metaheuristics: A comprehensive overview and classification along with bibliometric analysis
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09952-0
– ident: ref_185
  doi: 10.1016/j.matpr.2021.01.200
– ident: ref_12
  doi: 10.1109/CSCITA.2014.6839297
– volume: 29
  start-page: 228
  year: 2007
  ident: ref_123
  article-title: Population size reduction for the differential evolution algorithm
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-007-0091-x
– volume: 11
  start-page: 1363
  year: 2011
  ident: ref_125
  article-title: A clustering-based differential evolution for global optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.04.008
– volume: 8
  start-page: 332
  year: 2005
  ident: ref_50
  article-title: Dynamic clustering using particle swarm optimization with application in image segmentation
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-005-0015-5
– volume: 77
  start-page: 138
  year: 2013
  ident: ref_79
  article-title: A hybrid approach for color image quantization using k-means and firefly algorithms
  publication-title: World Acad. Sci. Eng. Technol.
– ident: ref_126
  doi: 10.1007/978-981-4451-98-7_143
– ident: ref_172
  doi: 10.1007/978-3-319-03404-1
– volume: 16
  start-page: 1
  year: 2014
  ident: ref_10
  article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2013.11.003
– volume: 36
  start-page: 3
  year: 2019
  ident: ref_160
  article-title: An improved initialisation method for K-means algorithm optimised by Tissue-like P system
  publication-title: Int. J. Parallel Emergent Distrib. Syst.
  doi: 10.1080/17445760.2019.1682144
– ident: ref_134
  doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.241
– ident: ref_192
– volume: 24
  start-page: 679
  year: 2014
  ident: ref_208
  article-title: A multi-objective genetic algorithm with fuzzy c-means for automatic data clustering
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.08.036
– volume: 21
  start-page: 3720
  year: 2015
  ident: ref_105
  article-title: A Hybrid K-Means Metaheuristic Algorithm to Solve a Class of Vehicle Routing Problems
  publication-title: Adv. Sci. Lett.
  doi: 10.1166/asl.2015.6555
– ident: ref_40
– volume: 18
  start-page: 370
  year: 2008
  ident: ref_142
  article-title: Harmony K-means algorithm for document clustering
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-008-0123-0
– volume: 68
  start-page: 574
  year: 2014
  ident: ref_140
  article-title: Data clustering based on hybrid K-harmonic means and modifier imperialist competitive algorithm
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-013-1053-1
– volume: 94
  start-page: 126
  year: 2018
  ident: ref_178
  article-title: Bees swarm optimization guided by data mining techniques for document information retrieval
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.10.042
– volume: 99
  start-page: 153
  year: 2016
  ident: ref_80
  article-title: Taiwanese export trade forecasting using firefly algorithm based K-means algorithm and SVR with wavelet transform
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.07.012
– volume: 134
  start-page: 104335
  year: 2019
  ident: ref_38
  article-title: Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2019.104335
– ident: ref_116
  doi: 10.1007/978-981-13-5802-9_43
– ident: ref_75
  doi: 10.1109/ICHPCA.2014.7045322
– volume: 2014
  start-page: 1
  year: 2014
  ident: ref_189
  article-title: An Improved Cockroach Swarm Optimization
  publication-title: Sci. World J.
  doi: 10.1155/2014/375358
– ident: ref_97
  doi: 10.1007/978-3-319-13153-5_22
– volume: 1
  start-page: 355
  year: 2006
  ident: ref_133
  article-title: A novel numerical optimization algorithm inspired from weed colonization
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2006.07.003
– volume: 2
  start-page: 472
  year: 2016
  ident: ref_180
  article-title: Bees Swarm Optimization Metaheuristic Guided by Decomposition for Solving MAX-SAT
  publication-title: ICAART
– ident: ref_201
  doi: 10.1007/978-3-642-41278-3_70
– volume: 14
  start-page: 133
  year: 1993
  ident: ref_203
  article-title: The noising method: A new method for combinatorial optimization
  publication-title: Oper. Res. Lett.
  doi: 10.1016/0167-6377(93)90023-A
– ident: ref_83
  doi: 10.1016/j.matpr.2020.10.273
– ident: ref_98
  doi: 10.3390/a14020053
– ident: ref_28
  doi: 10.1109/IIH-MSP.2007.259
– ident: ref_179
  doi: 10.1007/978-3-319-26832-3_17
– volume: 16
  start-page: 45
  year: 2016
  ident: ref_48
  article-title: A population-based clustering technique using particle swarm optimization and k-means
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-016-9542-9
SSID ssj0000913810
Score 2.4724526
SecondaryResourceType review_article
Snippet K-means clustering algorithm is a partitional clustering algorithm that has been used widely in many applications for traditional clustering due to its...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 11246
SubjectTerms Algorithms
automatic clustering
Bibliometrics
Cluster analysis
Clustering
Data mining
Datasets
Hybridization
K-means clustering
Mathematical programming
nature-inspired metaheuristic algorithms
Optimization techniques
Research methodology
Trends
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9kYOCIkFj0rTxtqsuiuziQcFbyVMX1q5su_4Cf7iTtEpBxIuHHloGUjKTfN-QyTcIHSgaNM4FI4llinCfCqK5Y0Rq7r0AgNLKxmYT6XCYPT3J-1arr1ATVssD1xN3KkXGqLWJsj7hXCcqBUjPzq2lPtFaxHvkZ6lsJVNxD5Y0SFfVle4M8vpwHgzUgsETuG4Lg6JU_4-dOMJLfwUtN7wQd-v_WUVzrlhDSy21wDW02qzDEh81YtHH6-jjjgwcwA3pARxZPIw6neS2CAfo8D5wlXpxs1qOGXfHz5PpqHp5LTFwVdydVZOo2IqvVKXw5XgWVBNgLHxft5kpLzDQSoAl3K1LBUqsCov7UYcEN7slhO0GeuxfP1zekKazAjFMpBVxkBeCJzz1WfARSzNBFWfKMgMTF0ka4LaVYckaZ6U-c95w5rjRUoMF20TzxaRwWwh7I4FkOu-9sVwrkSmqqNeZToTx4KUOOvma69w0suOh-8U4h_QjeCZve6aDDr-t32q5jV_sesFt3zZBJDt-gNDJm9DJ_wqdDtr9cnrerNwyh_wugzSPU7r9H2PsoMXzUAUTC2B20Xw1nbk9tGDeq1E53Y9B-wkvwPMf
  priority: 102
  providerName: Directory of Open Access Journals
Title K-Means-Based Nature-Inspired Metaheuristic Algorithms for Automatic Data Clustering Problems: Recent Advances and Future Directions
URI https://www.proquest.com/docview/2608086411
https://doaj.org/article/96831dd5adf544b5a783982dd1f5bb67
Volume 11
WOSCitedRecordID wos000735151300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BwgEOlBYQgRLtASQQWjXb9WPdS5WURlQokYVAKidrny1ScErs8Av44cyuN2kkBCcOPtgeadea2ZlvZ8ffALySzHOcZ5ymhkuauDyjKrGcFipxLsMApaQJzSby-VxcXhZl_D26iWWVG58YHHXH9uzrttEJH5ml9hnzI0ThAsF4wtjpzQ_qe0j5s9bYUOMu9D3x1qgH_fJiVn7d5lw8B6Zgo67-neNu358SI-DgeHkEvBOZAoH_H_45BJ3p3v-d7iN4GMEnGXfWsg93bH0AD3YoCQ9gPy72hryJjNRvH8Ovj3RmMabRCcY8Q-aBDJRe1P6UHu9ntpXXdt1xPpPx4gqHbq-_NwQBMRmv22WghSXvZSvJ2WLtqRlwLFJ2vWyaE4LYFb-DjLt6hIbI2pBpIDsh0SXj2ngCX6bnn88-0Ni-gWqe5S21uPlEdTvmhDcEnouMyYRLwzXqISBBBAem8H5BW1OokXU64TbRqlAowZ9Cr17W9hkQpwtEstY5p02iZCYkk8wpodJMO2PYAN5tVFfpyG3uW2wsKtzjeEVXu4oewOut9E3H6fEXuYm3gq2MZ-IOD5arqyou7KrIBGfGpNI4tDmVyhwhpzjGSblUqSwfwOHGQKroHprq1h6e__v1C7h_7ItoQv3MIfTa1dq-hHv6Z_utWQ2hPzmfl5-GIZEwjNb-G4xQEG8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFAk4AC2gBgrsgUogtCKbXX8hIZS2RI3SRDkUqZzc_WwrBafEDog7v4ffyOzaCZEQ3Hrg4IPtlb22n-e9XY_fALyQzHucx5xGhksqXBJTJSynmRLOxUhQSppQbCIZj9PT02yyAT-X_8L4tMplTAyB2sy0nyN_g7o7RfktGHt_9YX6qlH-6-qyhEYNi6H9_g2HbOW7wSE-371ut__h5OCINlUFqOZxUlGLYyLshWMu9f3jSRozKbg0XGeMB4GCnGUyD1dtTaY61mnBrdAqU9iC43FvwKZAsHdasDkZjCafVrM63mUzZZ06w57zrOO_Q6Ok4bh4jb3GfaFEwB8MEGitf-9_uyH34W4joEmvRvwWbNhiG-6s2Spuw1YTsErysnHVfvUAfgzpyCIv033kbUPGwdCUDgqfaYDrI1vJC7uofatJb3qOl1pdfC4JinrSW1SzYG1LDmUlycF04e0l8FxkUtfjKd8S1N_I36RX51SURBaG9INhC2loBd_vh_DxWu7NI2gVs8LuAHE6QzVunXPaCCXjVDLJnEpVFGtnDGvD6yU4ct34s_syIdMcx2keSvk6lNqwt2p9VfuS_KXdvsfZqo13Ew8bZvPzvAlOeRannBkTSeMiIVQkE5TNaRc75SKl4qQNu0sI5k2IK_Pf-Hv8793P4dbRyeg4Px6Mh0_gdtcnBYV8oF1oVfOFfQo39dfqspw_a94mAmfXjddfF7Vd7g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCE4AC2gBgrsgUogtGo2608khJKmEVGoFSGQejP72VYKTokdEHd-Fb-O2bUdIiG49cDBB9sre22_nffWHr8BeCaY8ziPOA01FzSwcURlYDhNZWBthAQlhfbFJuIsS05P09kW_Gz_hXFplW1M9IFaL5R7R36IujtB-R0wdmibtIjZaPzm8gt1FaTcl9a2nEYNkan5_g2nb-XryQif9UG_Pz7-cPSWNhUGqOJRXFGD8yPskWU2cX3lcRIxEXChuUoZ92IF-UunDrrK6FT2jFUBN4GSqcQWHI97DbZjjpOeDmwPj7PZ-_UbHue4mbBenW3Pedpz36RR3nBcnN7e4EFfLuAPNvAUN77zP9-cu3C7EdZkUI-EHdgyxS7c2rBb3IWdJpCV5Hnjtv3iHvyY0hODfE2HyOeaZN7olE4Kl4GA6yemEudmVftZk8H8DC-1Ov9cEhT7ZLCqFt7yloxEJcjRfOVsJ_BcZFbX6SlfEdTlyOtkUOdalEQUmoy9kQtp6AbH_X34eCX35gF0ikVh9oBYlaJKN9ZapQMpokQwwaxMZBgpqzXrwssWKLlqfNtd-ZB5jvM3B6t8E1ZdOFi3vqz9Sv7Sbugwt27jXMb9hsXyLG-CVp5GCWdah0LbMAhkKGKU00kfO2VDKaO4C_stHPMm9JX5byw-_Pfup3ADQZq_m2TTR3Cz73KFfJrQPnSq5co8huvqa3VRLp80A4vAp6uG6y_0YmaI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=K-Means-Based+Nature-Inspired+Metaheuristic+Algorithms+for+Automatic+Data+Clustering+Problems%3A+Recent+Advances+and+Future+Directions&rft.jtitle=Applied+sciences&rft.au=Ikotun%2C+Abiodun+M.&rft.au=Almutari%2C+Mubarak+S.&rft.au=Ezugwu%2C+Absalom+E.&rft.date=2021-12-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=11&rft.issue=23&rft.spage=11246&rft_id=info:doi/10.3390%2Fapp112311246&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app112311246
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon