MOEA/D-DE based bivariate control sequence optimization of a variable-rate fertilizer applicator

•An improved GRNN was proposed to improve the fertilization rate prediction model.•A three-objective bivariate fertilization-rate optimization model was developed.•MOEA/D-DE algorithm was proposed to optimize the control sequence. To realize precise control for a bivariate control system of a variab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and electronics in agriculture Jg. 167; S. 105063
Hauptverfasser: Zhang, Jiqin, Liu, Gang, Luo, Chengming, Hu, Hao, Huang, Jiayun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.12.2019
Elsevier BV
Schlagworte:
ISSN:0168-1699, 1872-7107
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •An improved GRNN was proposed to improve the fertilization rate prediction model.•A three-objective bivariate fertilization-rate optimization model was developed.•MOEA/D-DE algorithm was proposed to optimize the control sequence. To realize precise control for a bivariate control system of a variable-rate applicator, it is essential to determine the optimal control sequence, which depends on quantifying the appropriate combination of the active feed-roll length (L) and the rotational speed of the drive shaft (N). This paper presents a novel method to optimize the control sequence (L, N) to improve fertilization accuracy and uniformity, while guaranteeing the rapidity of equipment adjustment. First, the variable-rate fertilization process model was formed using an improved General Regression Neural Network (GRNN), in which the optimum spread parameter (σ=2.0304) was calculated using a differential evolutionary (DE) algorithm. Next, a three-objective problem model was developed, and the Pareto set of the control sequence was obtained using a Multi-Objective Evolutionary Algorithm based on a Decomposition (MOEA/D) algorithm. Finally, a group of control sequences representing different target fertilization rates at the weight vector of (0.90, 0.08, 0.02) was chosen and an indoor test was conducted. Results revealed that the optimized control sequence overall outperformed the traditional method. It decreased the mean relative error (RE) from 8.239% to 5.977% and coefficient of variation (CV) from 13.512% to 13.187%, while constraining the response time to around two seconds.
AbstractList To realize precise control for a bivariate control system of a variable-rate applicator, it is essential to determine the optimal control sequence, which depends on quantifying the appropriate combination of the active feed-roll length (L) and the rotational speed of the drive shaft (N). This paper presents a novel method to optimize the control sequence (L, N) to improve fertilization accuracy and uniformity, while guaranteeing the rapidity of equipment adjustment. First, the variable-rate fertilization process model was formed using an improved General Regression Neural Network (GRNN), in which the optimum spread parameter (σ=2.0304) was calculated using a differential evolutionary (DE) algorithm. Next, a three-objective problem model was developed, and the Pareto set of the control sequence was obtained using a Multi-Objective Evolutionary Algorithm based on a Decomposition (MOEA/D) algorithm. Finally, a group of control sequences representing different target fertilization rates at the weight vector of (0.90, 0.08, 0.02) was chosen and an indoor test was conducted. Results revealed that the optimized control sequence overall outperformed the traditional method. It decreased the mean relative error (RE) from 8.239% to 5.977% and coefficient of variation (CV) from 13.512% to 13.187%, while constraining the response time to around two seconds.
•An improved GRNN was proposed to improve the fertilization rate prediction model.•A three-objective bivariate fertilization-rate optimization model was developed.•MOEA/D-DE algorithm was proposed to optimize the control sequence. To realize precise control for a bivariate control system of a variable-rate applicator, it is essential to determine the optimal control sequence, which depends on quantifying the appropriate combination of the active feed-roll length (L) and the rotational speed of the drive shaft (N). This paper presents a novel method to optimize the control sequence (L, N) to improve fertilization accuracy and uniformity, while guaranteeing the rapidity of equipment adjustment. First, the variable-rate fertilization process model was formed using an improved General Regression Neural Network (GRNN), in which the optimum spread parameter (σ=2.0304) was calculated using a differential evolutionary (DE) algorithm. Next, a three-objective problem model was developed, and the Pareto set of the control sequence was obtained using a Multi-Objective Evolutionary Algorithm based on a Decomposition (MOEA/D) algorithm. Finally, a group of control sequences representing different target fertilization rates at the weight vector of (0.90, 0.08, 0.02) was chosen and an indoor test was conducted. Results revealed that the optimized control sequence overall outperformed the traditional method. It decreased the mean relative error (RE) from 8.239% to 5.977% and coefficient of variation (CV) from 13.512% to 13.187%, while constraining the response time to around two seconds.
ArticleNumber 105063
Author Liu, Gang
Huang, Jiayun
Zhang, Jiqin
Luo, Chengming
Hu, Hao
Author_xml – sequence: 1
  givenname: Jiqin
  surname: Zhang
  fullname: Zhang, Jiqin
  email: zhjq2010jasmine@163.com
  organization: Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agriculture University, Beijing 100083, China
– sequence: 2
  givenname: Gang
  surname: Liu
  fullname: Liu, Gang
  email: pac@cau.edu.cn
  organization: Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agriculture University, Beijing 100083, China
– sequence: 3
  givenname: Chengming
  surname: Luo
  fullname: Luo, Chengming
  email: chmluo@mail.hzau.edu.cn
  organization: Department of Agricultural Engineering, College of Engineering, Huazhong Agricultural University, Wuhan, Hubei 430070, China
– sequence: 4
  givenname: Hao
  surname: Hu
  fullname: Hu, Hao
  email: 13205600570@163.com
  organization: Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agriculture University, Beijing 100083, China
– sequence: 5
  givenname: Jiayun
  surname: Huang
  fullname: Huang, Jiayun
  email: s20183081301@cau.edu.cn
  organization: Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agriculture University, Beijing 100083, China
BookMark eNqFkMtu1DAUQC1UJKaFP2BhiQ2bTP1KHLNAqtrhIRV1A2tz7dwgjzJxsD2V2q_H07DqAlaWrXOurs85OZvjjIS85WzLGe8u91sfDwv82grGTX1qWSdfkA3vtWg0Z_qMbCrWN7wz5hU5z3nP6t30ekN-frvbXV3eNDc76iDjQF24hxSgIPVxLilONOPvI84eaVxKOIRHKCHONI4U6BPqJmzSSRgxlTCFR0wUlmUKHkpMr8nLEaaMb_6eF-THp9336y_N7d3nr9dXt42XnS4N6hYGp7DjXiAfXcsF16xrRwlCdW4wwBwI1wMwNFx5LmSnnHS-5d44gfKCvF_nLinWfXOxh5A9ThPMGI_ZCiWNklq1bUXfPUP38Zjmup0VUirNeW90pT6slE8x54Sj9aE8_b0kCJPlzJ7i271d49tTfLvGr7J6Ji8pHCA9_E_7uGpYS90HTDb7cGo_hIS-2CGGfw_4A18jomo
CitedBy_id crossref_primary_10_3390_agriculture12071019
crossref_primary_10_1016_j_compag_2025_110903
crossref_primary_10_3390_agronomy10111648
crossref_primary_10_1016_j_compag_2021_106594
crossref_primary_10_3390_agriculture13061138
crossref_primary_10_1016_j_compag_2025_110312
crossref_primary_10_1016_j_engappai_2022_105559
crossref_primary_10_3390_agriculture12091492
crossref_primary_10_3390_pr10020357
crossref_primary_10_1007_s13399_024_06336_0
crossref_primary_10_1002_rob_22393
crossref_primary_10_3390_agriculture12122100
crossref_primary_10_3390_sym17060926
Cites_doi 10.1016/j.enconman.2016.05.061
10.1016/j.energy.2017.06.089
10.1016/j.advengsoft.2009.10.003
10.1016/j.compag.2008.07.006
10.1007/s00521-014-1788-5
10.1109/TEVC.2007.892759
10.1016/j.compag.2009.08.009
10.1109/TEVC.2008.925798
10.1007/s11269-010-9601-4
10.1016/j.powtec.2007.09.004
10.1016/j.biosystemseng.2008.03.007
10.1016/j.asoc.2018.03.028
10.1109/ACCESS.2018.2814054
10.1016/j.compag.2018.08.016
10.3390/en10122066
10.1016/j.asoc.2018.08.038
10.1016/j.asoc.2017.10.023
10.13031/2013.20086
10.1016/j.compag.2010.04.004
10.1016/j.jclepro.2017.11.107
10.1016/j.compag.2010.01.001
10.1016/j.compag.2017.12.015
10.1016/j.neucom.2016.09.027
10.1016/j.still.2006.07.016
10.1023/A:1008202821328
10.1016/j.asoc.2013.07.004
10.1016/j.energy.2016.08.090
10.1007/s11119-014-9358-5
10.1016/j.autcon.2013.10.024
10.1016/j.compag.2010.03.001
10.1016/j.biosystemseng.2008.05.007
10.1016/j.chemolab.2018.10.008
10.1016/j.asoc.2018.03.053
10.1007/s12633-017-9667-1
10.13031/2013.6429
10.1016/j.jeconom.2015.02.006
10.1016/j.compag.2019.03.011
10.1007/s11069-016-2613-5
10.1016/j.asoc.2015.01.051
10.1016/j.compag.2015.03.003
10.1016/j.asoc.2017.05.030
10.1016/j.biosystemseng.2008.09.019
10.1002/ird.197
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Dec 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 2019
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.compag.2019.105063
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
ExternalDocumentID 10_1016_j_compag_2019_105063
S016816991930746X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
AGCQF
AGRNS
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c367t-e75adb4e61c2e1fb51217065f3a246bd9a0ba2b8aa0e914c12364b3bc51c9b2e3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000503314100039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-1699
IngestDate Thu Oct 02 10:22:38 EDT 2025
Fri Jul 25 23:27:41 EDT 2025
Sat Nov 29 07:26:55 EST 2025
Tue Nov 18 22:11:16 EST 2025
Fri Feb 23 02:49:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Precision agriculture
General Regression Neural Network (GRNN)
Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D)
Variable-rate fertilization
Differential evolution (DE)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-e75adb4e61c2e1fb51217065f3a246bd9a0ba2b8aa0e914c12364b3bc51c9b2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2334711897
PQPubID 2045491
ParticipantIDs proquest_miscellaneous_2439437455
proquest_journals_2334711897
crossref_citationtrail_10_1016_j_compag_2019_105063
crossref_primary_10_1016_j_compag_2019_105063
elsevier_sciencedirect_doi_10_1016_j_compag_2019_105063
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers and electronics in agriculture
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Xu, Ding, Qu, Li (b0245) 2018; 68
Bendu, Deepak, Murugan (b0025) 2016; 122
Colaço, de Andrade Rosa, Molin (b0035) 2014; 15
Su, Xu, Song, Wang, Wei (b0200) 2015; 8
Jones, Lawrence, Yule (b0085) 2008; 184
Topuz (b0225) 2010; 41
Maleki, Ramon, De Baerdemaeker, Mouazen (b0140) 2008; 100
Huang, Chen, Li, Guo (b0070) 2016; 114
Huang, Lan, Thomson, Fang, Hoffmann, Lacey (b0065) 2010; 71
Panda, Raju Bahubalendruni, Biswal (b0155) 2014
Zoraghi, Shahsavar, Niaki (b0295) 2017; 58
Ehtesham (b0040) 2012; 26
Taheri-Rad, Khojastehpour, Rohani, Khoramdel, Nikkhah (b0205) 2017; 135
Alameen, Al-Gaadi, Tola (b0005) 2019; 160
Yuan, Liu, Li, Zeng, Zha (b0275) 2010; 70
Hou, Zhang, Wang, Yang, Wang, Xiu, Zhao (b0055) 2017; 4
Hu, Wen, Zeng, Huang (b0060) 2017; 221
Liu, Yuan, Liu, Li, Zhou, Gu (b0125) 2010; 2
Reyes, Esquivel, Cifuentes, Ortega (b0175) 2015; 113
Trivedi, Srinivasan, Sanyal, Ghosh (b0230) 2017; 1
Fulton, Shearer, Chabra, Higgins (b0050) 2001; 44
Tola, Kataoka, Burce, Okamoto, Hata (b0215) 2008; 101
Jafari, Hemmat, Sadeghi (b0075) 2010; 73
Panda, Bahubalendruni, Biswal (b0150) 2015; 26
Kong, Guo, Pan (b0100) 2018; 38
.
Yinyan, Man, Xiaochan, Odhiambo, Weimin (b0250) 2018; 144
Zheng, Song, Chen (b0290) 2013; 13
Taki, Rohani, Soheili-Fard, Abdeshahi (b0210) 2018; 172
Fulton, Shearer, Higgins, Darr, Stombaugh (b0045) 2005; 48
Yu, Yu, Lu, Yen, Cai (b0265) 2018; 67
Xin, Ni, Li, Zhou (b0235) 2018; 6
Zhang, Zang, Li, Ma, Liu (b0280) 2018; 154
Lin, Sheng, Yan, Dai, Jiang (b0115) 2018; 11
Yip, Fan, Chiang (b0255) 2014; 38
Xu, Hu, Guo, Zhang, Lu, Cai, Xie, Goodarzi, Fu, She (b0240) 2018; 183
Chen, Lu, Wang, Sun, Zhang (b0030) 2016; 02
Sayah (b0185) 2018; 73
Anantachar, Kumar, Guruswamy (b0010) 2010; 72
Back, Yu, Kim, Chung, Lee (b0015) 2014; 57
Tolis, P., 2017. Precision agriculture: future of the CAP? [WWW Document].
URL
Zhang, Li (b0170) 2007; 11
Liu, Yu (b0120) 2010
Maleki, Mouazen, Ramon, De Baerdemaeker (b0135) 2008; 94
Li, Zhang (b0110) 2009; 13
Majumder, Maity (b0130) 2018; 10
Pérez-González, Begovich-Mendoza, Ruiz-León (b0160) 2018; 62
Kim, Kim, Ryu, Rhee (b0095) 2008; 100
Balafoutis, Beck, Fountas, Vangeyte, Van Der Wal, Soto, Gómez-Barbero, Barnes, Eory (b0020) 2017; 9
Zhang, Yang (b0285) 2015; 187
Niu, Wang, Chen, Liang (b0145) 2017; 10
Lanza-Gutierrez, Gomez-Pulido (b0105) 2015; 30
Storn, Price (b0195) 1997; 23
Srinivasa Raju, Nagesh Kumar (b0190) 1999; 54
Jia, Feng, Qi, Liu, Liu, Yang, Li (b0080) 2014
Kilic, Anac (b0090) 2010; 24
Prasanna Kumar, Srivastava, Nagesh (b0165) 2009; 65
Yu (b0260) 2017; 85
Yuan, Liu, Gu, Miao (b0270) 2011
Zhang (10.1016/j.compag.2019.105063_b0280) 2018; 154
Fulton (10.1016/j.compag.2019.105063_b0045) 2005; 48
Srinivasa Raju (10.1016/j.compag.2019.105063_b0190) 1999; 54
Balafoutis (10.1016/j.compag.2019.105063_b0020) 2017; 9
Zhang (10.1016/j.compag.2019.105063_b0285) 2015; 187
Trivedi (10.1016/j.compag.2019.105063_b0230) 2017; 1
Liu (10.1016/j.compag.2019.105063_b0125) 2010; 2
Maleki (10.1016/j.compag.2019.105063_b0135) 2008; 94
Anantachar (10.1016/j.compag.2019.105063_b0010) 2010; 72
Colaço (10.1016/j.compag.2019.105063_b0035) 2014; 15
Tola (10.1016/j.compag.2019.105063_b0215) 2008; 101
Prasanna Kumar (10.1016/j.compag.2019.105063_b0165) 2009; 65
Yu (10.1016/j.compag.2019.105063_b0265) 2018; 67
Fulton (10.1016/j.compag.2019.105063_b0050) 2001; 44
Zhang (10.1016/j.compag.2019.105063_b0170) 2007; 11
Xin (10.1016/j.compag.2019.105063_b0235) 2018; 6
Yuan (10.1016/j.compag.2019.105063_b0270) 2011
Bendu (10.1016/j.compag.2019.105063_b0025) 2016; 122
Maleki (10.1016/j.compag.2019.105063_b0140) 2008; 100
Panda (10.1016/j.compag.2019.105063_b0155) 2014
Xu (10.1016/j.compag.2019.105063_b0245) 2018; 68
Sayah (10.1016/j.compag.2019.105063_b0185) 2018; 73
Taheri-Rad (10.1016/j.compag.2019.105063_b0205) 2017; 135
Zheng (10.1016/j.compag.2019.105063_b0290) 2013; 13
Li (10.1016/j.compag.2019.105063_b0110) 2009; 13
Liu (10.1016/j.compag.2019.105063_b0120) 2010
Huang (10.1016/j.compag.2019.105063_b0070) 2016; 114
Taki (10.1016/j.compag.2019.105063_b0210) 2018; 172
Lin (10.1016/j.compag.2019.105063_b0115) 2018; 11
Hu (10.1016/j.compag.2019.105063_b0060) 2017; 221
Back (10.1016/j.compag.2019.105063_b0015) 2014; 57
Kilic (10.1016/j.compag.2019.105063_b0090) 2010; 24
Niu (10.1016/j.compag.2019.105063_b0145) 2017; 10
Jia (10.1016/j.compag.2019.105063_b0080) 2014
Yuan (10.1016/j.compag.2019.105063_b0275) 2010; 70
Jafari (10.1016/j.compag.2019.105063_b0075) 2010; 73
Kim (10.1016/j.compag.2019.105063_b0095) 2008; 100
Panda (10.1016/j.compag.2019.105063_b0150) 2015; 26
Chen (10.1016/j.compag.2019.105063_b0030) 2016; 02
Majumder (10.1016/j.compag.2019.105063_b0130) 2018; 10
Kong (10.1016/j.compag.2019.105063_b0100) 2018; 38
Jones (10.1016/j.compag.2019.105063_b0085) 2008; 184
Zoraghi (10.1016/j.compag.2019.105063_b0295) 2017; 58
Hou (10.1016/j.compag.2019.105063_b0055) 2017; 4
Pérez-González (10.1016/j.compag.2019.105063_b0160) 2018; 62
Xu (10.1016/j.compag.2019.105063_b0240) 2018; 183
Storn (10.1016/j.compag.2019.105063_b0195) 1997; 23
Topuz (10.1016/j.compag.2019.105063_b0225) 2010; 41
Reyes (10.1016/j.compag.2019.105063_b0175) 2015; 113
Yip (10.1016/j.compag.2019.105063_b0255) 2014; 38
Alameen (10.1016/j.compag.2019.105063_b0005) 2019; 160
Yu (10.1016/j.compag.2019.105063_b0260) 2017; 85
Ehtesham (10.1016/j.compag.2019.105063_b0040) 2012; 26
Yinyan (10.1016/j.compag.2019.105063_b0250) 2018; 144
Huang (10.1016/j.compag.2019.105063_b0065) 2010; 71
10.1016/j.compag.2019.105063_b0220
Su (10.1016/j.compag.2019.105063_b0200) 2015; 8
Lanza-Gutierrez (10.1016/j.compag.2019.105063_b0105) 2015; 30
References_xml – volume: 26
  year: 2012
  ident: b0040
  article-title: Design, development and field evaluation of a map-based variable rate granular fertilizer application control system
  publication-title: Contact Dermatitis
– volume: 113
  start-page: 260
  year: 2015
  end-page: 265
  ident: b0175
  article-title: Field testing of an automatic control system for variable rate fertilizer application
  publication-title: Comput. Electron. Agric.
– volume: 85
  start-page: 959
  year: 2017
  end-page: 976
  ident: b0260
  article-title: Disaster prediction model based on support vector machine for regression and improved differential evolution
  publication-title: Nat. Hazards
– volume: 100
  start-page: 498
  year: 2008
  end-page: 510
  ident: b0095
  article-title: Fertiliser application performance of a variable-rate pneumatic granular applicator for rice production
  publication-title: Biosyst. Eng.
– volume: 72
  start-page: 87
  year: 2010
  end-page: 98
  ident: b0010
  article-title: Neural network prediction of performance parameters of an inclined plate seed metering device and its reverse mapping for the determination of optimum design and operational parameters
  publication-title: Comput. Electron. Agric.
– volume: 15
  start-page: 304
  year: 2014
  end-page: 320
  ident: b0035
  article-title: A model to analyze as-applied reports from variable rate applications
  publication-title: Precis. Agric.
– start-page: 381
  year: 2014
  end-page: 391
  ident: b0080
  article-title: Research and application of variable rate fertilizer applicator system based on a DC Motor
  publication-title: 7th International Conference on Computer and Computing Technologies in Agriculture
– volume: 172
  start-page: 3028
  year: 2018
  end-page: 3041
  ident: b0210
  article-title: Assessment of energy consumption and modeling of output energy for wheat production by neural network (MLP and RBF) and Gaussian process regression (GPR) models
  publication-title: J. Clean. Prod.
– reference: . URL
– volume: 160
  start-page: 31
  year: 2019
  end-page: 39
  ident: b0005
  article-title: Development and performance evaluation of a control system for variable rate granular fertilizer application
  publication-title: Comput. Electron. Agric.
– volume: 122
  start-page: 165
  year: 2016
  end-page: 173
  ident: b0025
  article-title: Application of GRNN for the prediction of performance and exhaust emissions in HCCI engine using ethanol
  publication-title: Energy Convers. Manag.
– volume: 26
  start-page: 1129
  year: 2015
  end-page: 1136
  ident: b0150
  article-title: A general regression neural network approach for the evaluation of compressive strength of FDM prototypes
  publication-title: Neural Comput. Appl.
– volume: 101
  start-page: 411
  year: 2008
  end-page: 416
  ident: b0215
  article-title: Granular fertiliser application rate control system with integrated output volume measurement
  publication-title: Biosyst. Eng.
– volume: 1
  start-page: 93
  year: 2017
  end-page: 100
  ident: b0230
  article-title: A survey of multiobjective evolutionary algorithms based on decomposition
  publication-title: Proc. – 2017 IEEE Int. Conf. Comput. Sci. Eng. IEEE/IFIP Int. Conf. Embed. Ubiquitous Comput. CSE EUC 2017
– year: 2011
  ident: b0270
  article-title: Bivariate fertilization control sequence optimization based on relevance vector machine
  publication-title: J. Agric. Mach.
– volume: 2
  year: 2010
  ident: b0125
  article-title: ARM and DSP-based bivariable fertilizing control system design and implementation
  publication-title: J. Agric. Mach.
– volume: 73
  start-page: 56
  year: 2010
  end-page: 65
  ident: b0075
  article-title: Development and performance assessment of a DC electric variable-rate controller for use on grain drills
  publication-title: Comput. Electron. Agric.
– volume: 54
  start-page: 455
  year: 1999
  end-page: 465
  ident: b0190
  article-title: Multicriterion decision making in irrigation planning
  publication-title: Irrig. Drain.
– volume: 38
  start-page: 30
  year: 2014
  end-page: 38
  ident: b0255
  article-title: Predicting the maintenance cost of construction equipment: comparison between general regression neural network and Box-Jenkins time series models
  publication-title: Autom. Constr.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b0170
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 450
  year: 2010
  end-page: 453
  ident: b0120
  article-title: A modified differential evolution algorithm and its application in thermal process model identification
  publication-title: Proc. 2010 IEEE Int. Conf. Intell. Syst. Knowl. Eng. ISKE 2010
– volume: 6
  start-page: 19278
  year: 2018
  end-page: 19286
  ident: b0235
  article-title: General regression neural network and artificial-bee-colony based general regression neural network approaches to the number of end-of-life vehicles in China
  publication-title: IEEE Access
– volume: 114
  start-page: 1164
  year: 2016
  end-page: 1175
  ident: b0070
  article-title: Modeling of chemical exergy of agricultural biomass using improved general regression neural network
  publication-title: Energy
– volume: 23
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0195
  article-title: Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
– volume: 154
  start-page: 10
  year: 2018
  end-page: 17
  ident: b0280
  article-title: Prediction of soybean price in China using QR-RBF neural network model
  publication-title: Comput. Electron. Agric.
– volume: 13
  start-page: 284
  year: 2009
  end-page: 302
  ident: b0110
  article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 41
  start-page: 464
  year: 2010
  end-page: 470
  ident: b0225
  article-title: Predicting moisture content of agricultural products using artificial neural networks
  publication-title: Adv. Eng. Softw.
– volume: 187
  start-page: 95
  year: 2015
  end-page: 112
  ident: b0285
  article-title: Cross-validation for selecting a model selection procedure
  publication-title: J. Econom.
– volume: 48
  start-page: 2095
  year: 2005
  end-page: 2103
  ident: b0045
  article-title: Rate response assessment from various granular Vrt applicators
  publication-title: Trans. ASAE
– volume: 65
  start-page: 26
  year: 2009
  end-page: 35
  ident: b0165
  article-title: Modeling and optimization of parameters of flow rate of paddy rice grains through the horizontal rotating cylindrical drum of drum seeder
  publication-title: Comput. Electron. Agric.
– reference: Tolis, P., 2017. Precision agriculture: future of the CAP? [WWW Document].
– volume: 100
  start-page: 160
  year: 2008
  end-page: 166
  ident: b0140
  article-title: A study on the time response of a soil sensor-based variable rate granular fertiliser applicator
  publication-title: Biosyst. Eng.
– volume: 221
  start-page: 24
  year: 2017
  end-page: 31
  ident: b0060
  article-title: A short-term power load forecasting model based on the generalized regression neural network with decreasing step fruit fly optimization algorithm
  publication-title: Neurocomputing
– volume: 67
  start-page: 452
  year: 2018
  end-page: 466
  ident: b0265
  article-title: Differential evolution mutation operators for constrained multi-objective optimization
  publication-title: Appl. Soft Comput. J.
– volume: 10
  start-page: 1763
  year: 2018
  end-page: 1776
  ident: b0130
  article-title: Predictive analysis on responses in WEDM of titanium grade 6 using General Regression Neural Network (GRNN) and Multiple Regression Analysis (MRA)
  publication-title: Silicon
– volume: 68
  start-page: 268
  year: 2018
  end-page: 282
  ident: b0245
  article-title: Hybrid multi-objective evolutionary algorithms based on decomposition for wireless sensor network coverage optimization
  publication-title: Appl. Soft Comput. J.
– volume: 144
  start-page: 249
  year: 2018
  end-page: 259
  ident: b0250
  article-title: Numerical simulation of spreading performance and distribution pattern of centrifugal variable-rate fertilizer applicator based on DEM software
  publication-title: Comput. Electron. Agric.
– volume: 184
  start-page: 337
  year: 2008
  end-page: 351
  ident: b0085
  article-title: A statistical comparison of international fertiliser spreader test methods – confidence in bout width calculations
  publication-title: Powder Technol.
– volume: 8
  start-page: 19
  year: 2015
  end-page: 26
  ident: b0200
  article-title: Variable rate fertilization system with adjustable active feed-roll length
  publication-title: Int. J. Agric. Biol. Eng.
– volume: 11
  year: 2018
  ident: b0115
  article-title: Prediction of dissolved gas concentrations in transformer oil based on the KPCA-FFOA-GRNN model
  publication-title: Energies
– volume: 73
  start-page: 591
  year: 2018
  end-page: 606
  ident: b0185
  article-title: Modified differential evolution approach for practical optimal reactive power dispatch of hybrid AC–DC power systems
  publication-title: Appl. Soft Comput. J.
– volume: 24
  start-page: 3173
  year: 2010
  end-page: 3194
  ident: b0090
  article-title: Multi-objective planning model for large scale irrigation systems: method and application
  publication-title: Water Resour. Manag.
– volume: 02
  start-page: 71
  year: 2016
  end-page: 76
  ident: b0030
  article-title: Design and experiment of optimization control system for variable fertilization in winter wheat field based on fuzzy PID
  publication-title: J. Agric. Mach.
– volume: 38
  start-page: 201
  year: 2018
  end-page: 210
  ident: b0100
  article-title: Evaluation on overfertilization and its spatial-temporal difference about major grain crops in China
  publication-title: Econ. Geogr.
– volume: 183
  start-page: 29
  year: 2018
  end-page: 35
  ident: b0240
  article-title: Representative splitting cross validation
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 30
  start-page: 675
  year: 2015
  end-page: 687
  ident: b0105
  article-title: Assuming multiobjective metaheuristics to solve a three-objective optimisation problem for relay node deployment in wireless sensor networks
  publication-title: Appl. Soft Comput. J.
– volume: 62
  start-page: 86
  year: 2018
  end-page: 100
  ident: b0160
  article-title: Modeling of a greenhouse prototype using PSO and differential evolution algorithms based on a real-time LabView
  publication-title: Appl. Soft Comput. J.
– volume: 13
  start-page: 4253
  year: 2013
  end-page: 4263
  ident: b0290
  article-title: Multiobjective fireworks optimization for variable-rate fertilization in oil crop production
  publication-title: Appl. Soft Comput. J.
– volume: 10
  year: 2017
  ident: b0145
  article-title: The general regression neural network based on the fruit fly optimization algorithm and the data inconsistency rate for transmission line icing prediction
  publication-title: Energies
– start-page: 50
  year: 2014
  end-page: 55
  ident: b0155
  article-title: Optimization of resistance spot welding parameters using differential evolution algorithm and GRNN
  publication-title: 2014 IEEE 8th Int. Conf. Intell. Syst. Control Green Challenges Smart Solut. ISCO 2014 – Proc.
– reference: .
– volume: 44
  start-page: 1071
  year: 2001
  end-page: 1081
  ident: b0050
  article-title: Performance assessment and model development of a variable rate, spinner disc fertilizer applicator
  publication-title: Trans. ASAE
– volume: 58
  start-page: 700
  year: 2017
  end-page: 713
  ident: b0295
  article-title: A hybrid project scheduling and material ordering problem: Modeling and solution algorithms
  publication-title: Appl. Soft Comput. J.
– volume: 94
  start-page: 239
  year: 2008
  end-page: 250
  ident: b0135
  article-title: Optimisation of soil VIS-NIR sensor-based variable rate application system of soil phosphorus
  publication-title: Soil Tillage Res.
– volume: 4
  start-page: 360
  year: 2017
  end-page: 367
  ident: b0055
  article-title: Estimation of fertilizer usage from main crops in China
  publication-title: J. Agric. Resour. Environ.
– volume: 9
  start-page: 1
  year: 2017
  end-page: 28
  ident: b0020
  article-title: Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics
  publication-title: Sustain.
– volume: 135
  start-page: 405
  year: 2017
  end-page: 412
  ident: b0205
  article-title: Energy flow modeling and predicting the yield of Iranian paddy cultivars using artificial neural networks
  publication-title: Energy
– volume: 70
  start-page: 33
  year: 2010
  end-page: 41
  ident: b0275
  article-title: Gaussian processes based bivariate control parameters optimization of variable-rate granular fertilizer applicator
  publication-title: Comput. Electron. Agric.
– volume: 57
  start-page: 679
  year: 2014
  end-page: 687
  ident: b0015
  article-title: An image-based application rate measurement system for a granular fertilizer applicator
  publication-title: Trans. ASABE
– volume: 71
  start-page: 107
  year: 2010
  end-page: 127
  ident: b0065
  article-title: Development of soft computing and applications in agricultural and biological engineering
  publication-title: Comput. Electron. Agric.
– volume: 122
  start-page: 165
  year: 2016
  ident: 10.1016/j.compag.2019.105063_b0025
  article-title: Application of GRNN for the prediction of performance and exhaust emissions in HCCI engine using ethanol
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.05.061
– start-page: 381
  year: 2014
  ident: 10.1016/j.compag.2019.105063_b0080
  article-title: Research and application of variable rate fertilizer applicator system based on a DC Motor
– volume: 38
  start-page: 201
  year: 2018
  ident: 10.1016/j.compag.2019.105063_b0100
  article-title: Evaluation on overfertilization and its spatial-temporal difference about major grain crops in China
  publication-title: Econ. Geogr.
– volume: 135
  start-page: 405
  year: 2017
  ident: 10.1016/j.compag.2019.105063_b0205
  article-title: Energy flow modeling and predicting the yield of Iranian paddy cultivars using artificial neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2017.06.089
– volume: 41
  start-page: 464
  year: 2010
  ident: 10.1016/j.compag.2019.105063_b0225
  article-title: Predicting moisture content of agricultural products using artificial neural networks
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2009.10.003
– volume: 65
  start-page: 26
  year: 2009
  ident: 10.1016/j.compag.2019.105063_b0165
  article-title: Modeling and optimization of parameters of flow rate of paddy rice grains through the horizontal rotating cylindrical drum of drum seeder
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2008.07.006
– volume: 26
  start-page: 1129
  year: 2015
  ident: 10.1016/j.compag.2019.105063_b0150
  article-title: A general regression neural network approach for the evaluation of compressive strength of FDM prototypes
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1788-5
– volume: 11
  start-page: 712
  year: 2007
  ident: 10.1016/j.compag.2019.105063_b0170
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 70
  start-page: 33
  year: 2010
  ident: 10.1016/j.compag.2019.105063_b0275
  article-title: Gaussian processes based bivariate control parameters optimization of variable-rate granular fertilizer applicator
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2009.08.009
– volume: 13
  start-page: 284
  year: 2009
  ident: 10.1016/j.compag.2019.105063_b0110
  article-title: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.925798
– volume: 2
  year: 2010
  ident: 10.1016/j.compag.2019.105063_b0125
  article-title: ARM and DSP-based bivariable fertilizing control system design and implementation
  publication-title: J. Agric. Mach.
– volume: 24
  start-page: 3173
  year: 2010
  ident: 10.1016/j.compag.2019.105063_b0090
  article-title: Multi-objective planning model for large scale irrigation systems: method and application
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-010-9601-4
– volume: 184
  start-page: 337
  year: 2008
  ident: 10.1016/j.compag.2019.105063_b0085
  article-title: A statistical comparison of international fertiliser spreader test methods – confidence in bout width calculations
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2007.09.004
– volume: 100
  start-page: 160
  year: 2008
  ident: 10.1016/j.compag.2019.105063_b0140
  article-title: A study on the time response of a soil sensor-based variable rate granular fertiliser applicator
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2008.03.007
– volume: 4
  start-page: 360
  year: 2017
  ident: 10.1016/j.compag.2019.105063_b0055
  article-title: Estimation of fertilizer usage from main crops in China
  publication-title: J. Agric. Resour. Environ.
– volume: 67
  start-page: 452
  year: 2018
  ident: 10.1016/j.compag.2019.105063_b0265
  article-title: Differential evolution mutation operators for constrained multi-objective optimization
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2018.03.028
– ident: 10.1016/j.compag.2019.105063_b0220
– volume: 6
  start-page: 19278
  year: 2018
  ident: 10.1016/j.compag.2019.105063_b0235
  article-title: General regression neural network and artificial-bee-colony based general regression neural network approaches to the number of end-of-life vehicles in China
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2814054
– volume: 02
  start-page: 71
  year: 2016
  ident: 10.1016/j.compag.2019.105063_b0030
  article-title: Design and experiment of optimization control system for variable fertilization in winter wheat field based on fuzzy PID
  publication-title: J. Agric. Mach.
– volume: 57
  start-page: 679
  year: 2014
  ident: 10.1016/j.compag.2019.105063_b0015
  article-title: An image-based application rate measurement system for a granular fertilizer applicator
  publication-title: Trans. ASABE
– volume: 26
  year: 2012
  ident: 10.1016/j.compag.2019.105063_b0040
  article-title: Design, development and field evaluation of a map-based variable rate granular fertilizer application control system
  publication-title: Contact Dermatitis
– volume: 154
  start-page: 10
  year: 2018
  ident: 10.1016/j.compag.2019.105063_b0280
  article-title: Prediction of soybean price in China using QR-RBF neural network model
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.08.016
– volume: 10
  year: 2017
  ident: 10.1016/j.compag.2019.105063_b0145
  article-title: The general regression neural network based on the fruit fly optimization algorithm and the data inconsistency rate for transmission line icing prediction
  publication-title: Energies
  doi: 10.3390/en10122066
– volume: 73
  start-page: 591
  year: 2018
  ident: 10.1016/j.compag.2019.105063_b0185
  article-title: Modified differential evolution approach for practical optimal reactive power dispatch of hybrid AC–DC power systems
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2018.08.038
– start-page: 450
  year: 2010
  ident: 10.1016/j.compag.2019.105063_b0120
  article-title: A modified differential evolution algorithm and its application in thermal process model identification
– volume: 62
  start-page: 86
  year: 2018
  ident: 10.1016/j.compag.2019.105063_b0160
  article-title: Modeling of a greenhouse prototype using PSO and differential evolution algorithms based on a real-time LabViewTM application
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2017.10.023
– volume: 48
  start-page: 2095
  year: 2005
  ident: 10.1016/j.compag.2019.105063_b0045
  article-title: Rate response assessment from various granular Vrt applicators
  publication-title: Trans. ASAE
  doi: 10.13031/2013.20086
– volume: 73
  start-page: 56
  year: 2010
  ident: 10.1016/j.compag.2019.105063_b0075
  article-title: Development and performance assessment of a DC electric variable-rate controller for use on grain drills
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2010.04.004
– volume: 172
  start-page: 3028
  year: 2018
  ident: 10.1016/j.compag.2019.105063_b0210
  article-title: Assessment of energy consumption and modeling of output energy for wheat production by neural network (MLP and RBF) and Gaussian process regression (GPR) models
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.11.107
– volume: 71
  start-page: 107
  year: 2010
  ident: 10.1016/j.compag.2019.105063_b0065
  article-title: Development of soft computing and applications in agricultural and biological engineering
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2010.01.001
– volume: 144
  start-page: 249
  year: 2018
  ident: 10.1016/j.compag.2019.105063_b0250
  article-title: Numerical simulation of spreading performance and distribution pattern of centrifugal variable-rate fertilizer applicator based on DEM software
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.12.015
– volume: 221
  start-page: 24
  year: 2017
  ident: 10.1016/j.compag.2019.105063_b0060
  article-title: A short-term power load forecasting model based on the generalized regression neural network with decreasing step fruit fly optimization algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.027
– volume: 94
  start-page: 239
  year: 2008
  ident: 10.1016/j.compag.2019.105063_b0135
  article-title: Optimisation of soil VIS-NIR sensor-based variable rate application system of soil phosphorus
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2006.07.016
– volume: 23
  start-page: 341
  year: 1997
  ident: 10.1016/j.compag.2019.105063_b0195
  article-title: Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 11
  year: 2018
  ident: 10.1016/j.compag.2019.105063_b0115
  article-title: Prediction of dissolved gas concentrations in transformer oil based on the KPCA-FFOA-GRNN model
  publication-title: Energies
– volume: 13
  start-page: 4253
  year: 2013
  ident: 10.1016/j.compag.2019.105063_b0290
  article-title: Multiobjective fireworks optimization for variable-rate fertilization in oil crop production
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2013.07.004
– volume: 114
  start-page: 1164
  year: 2016
  ident: 10.1016/j.compag.2019.105063_b0070
  article-title: Modeling of chemical exergy of agricultural biomass using improved general regression neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.090
– volume: 15
  start-page: 304
  year: 2014
  ident: 10.1016/j.compag.2019.105063_b0035
  article-title: A model to analyze as-applied reports from variable rate applications
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-014-9358-5
– volume: 9
  start-page: 1
  year: 2017
  ident: 10.1016/j.compag.2019.105063_b0020
  article-title: Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics
  publication-title: Sustain.
– year: 2011
  ident: 10.1016/j.compag.2019.105063_b0270
  article-title: Bivariate fertilization control sequence optimization based on relevance vector machine
  publication-title: J. Agric. Mach.
– volume: 38
  start-page: 30
  year: 2014
  ident: 10.1016/j.compag.2019.105063_b0255
  article-title: Predicting the maintenance cost of construction equipment: comparison between general regression neural network and Box-Jenkins time series models
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2013.10.024
– volume: 72
  start-page: 87
  year: 2010
  ident: 10.1016/j.compag.2019.105063_b0010
  article-title: Neural network prediction of performance parameters of an inclined plate seed metering device and its reverse mapping for the determination of optimum design and operational parameters
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2010.03.001
– volume: 100
  start-page: 498
  year: 2008
  ident: 10.1016/j.compag.2019.105063_b0095
  article-title: Fertiliser application performance of a variable-rate pneumatic granular applicator for rice production
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2008.05.007
– volume: 183
  start-page: 29
  year: 2018
  ident: 10.1016/j.compag.2019.105063_b0240
  article-title: Representative splitting cross validation
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2018.10.008
– volume: 68
  start-page: 268
  year: 2018
  ident: 10.1016/j.compag.2019.105063_b0245
  article-title: Hybrid multi-objective evolutionary algorithms based on decomposition for wireless sensor network coverage optimization
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2018.03.053
– volume: 10
  start-page: 1763
  year: 2018
  ident: 10.1016/j.compag.2019.105063_b0130
  article-title: Predictive analysis on responses in WEDM of titanium grade 6 using General Regression Neural Network (GRNN) and Multiple Regression Analysis (MRA)
  publication-title: Silicon
  doi: 10.1007/s12633-017-9667-1
– volume: 44
  start-page: 1071
  year: 2001
  ident: 10.1016/j.compag.2019.105063_b0050
  article-title: Performance assessment and model development of a variable rate, spinner disc fertilizer applicator
  publication-title: Trans. ASAE
  doi: 10.13031/2013.6429
– volume: 187
  start-page: 95
  year: 2015
  ident: 10.1016/j.compag.2019.105063_b0285
  article-title: Cross-validation for selecting a model selection procedure
  publication-title: J. Econom.
  doi: 10.1016/j.jeconom.2015.02.006
– volume: 160
  start-page: 31
  year: 2019
  ident: 10.1016/j.compag.2019.105063_b0005
  article-title: Development and performance evaluation of a control system for variable rate granular fertilizer application
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.03.011
– volume: 85
  start-page: 959
  year: 2017
  ident: 10.1016/j.compag.2019.105063_b0260
  article-title: Disaster prediction model based on support vector machine for regression and improved differential evolution
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-016-2613-5
– volume: 30
  start-page: 675
  year: 2015
  ident: 10.1016/j.compag.2019.105063_b0105
  article-title: Assuming multiobjective metaheuristics to solve a three-objective optimisation problem for relay node deployment in wireless sensor networks
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2015.01.051
– start-page: 50
  year: 2014
  ident: 10.1016/j.compag.2019.105063_b0155
  article-title: Optimization of resistance spot welding parameters using differential evolution algorithm and GRNN
– volume: 113
  start-page: 260
  year: 2015
  ident: 10.1016/j.compag.2019.105063_b0175
  article-title: Field testing of an automatic control system for variable rate fertilizer application
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.03.003
– volume: 58
  start-page: 700
  year: 2017
  ident: 10.1016/j.compag.2019.105063_b0295
  article-title: A hybrid project scheduling and material ordering problem: Modeling and solution algorithms
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2017.05.030
– volume: 101
  start-page: 411
  year: 2008
  ident: 10.1016/j.compag.2019.105063_b0215
  article-title: Granular fertiliser application rate control system with integrated output volume measurement
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2008.09.019
– volume: 54
  start-page: 455
  year: 1999
  ident: 10.1016/j.compag.2019.105063_b0190
  article-title: Multicriterion decision making in irrigation planning
  publication-title: Irrig. Drain.
  doi: 10.1002/ird.197
– volume: 8
  start-page: 19
  year: 2015
  ident: 10.1016/j.compag.2019.105063_b0200
  article-title: Variable rate fertilization system with adjustable active feed-roll length
  publication-title: Int. J. Agric. Biol. Eng.
– volume: 1
  start-page: 93
  year: 2017
  ident: 10.1016/j.compag.2019.105063_b0230
  article-title: A survey of multiobjective evolutionary algorithms based on decomposition
SSID ssj0016987
Score 2.3507757
Snippet •An improved GRNN was proposed to improve the fertilization rate prediction model.•A three-objective bivariate fertilization-rate optimization model was...
To realize precise control for a bivariate control system of a variable-rate applicator, it is essential to determine the optimal control sequence, which...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105063
SubjectTerms Algorithms
applicators
Bivariate analysis
Coefficient of variation
Differential evolution (DE)
Evolutionary algorithms
Fertilization
fertilizers
General Regression Neural Network (GRNN)
General regression neural networks
Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D)
Multiple objective analysis
Optimal control
Optimization
Precision agriculture
Response time
Shafts (machine elements)
Variable-rate fertilization
Title MOEA/D-DE based bivariate control sequence optimization of a variable-rate fertilizer applicator
URI https://dx.doi.org/10.1016/j.compag.2019.105063
https://www.proquest.com/docview/2334711897
https://www.proquest.com/docview/2439437455
Volume 167
WOSCitedRecordID wos000503314100039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZKxwM8IH6KwkBG4q3KaOIkth8rVlQmGEgMqW_BdpwuU5eMrK0mHvjbOcdO0q5CAyReosp16sr3-Xw-f3eH0GtYy0oGIvWY5IEHCAk9xqLQM7uNJqlKU1VXLflAj4_ZbMY_93o_m1iY9YIWBbu64hf_VdTQBsI2obN_Ie72R6EBPoPQ4Qlih-cfCf7jp8kY3j70DidDs0eBhZmv4UQMRmVLTG8I1MMSNMa5C8W0oZJ1V7nQnskhMcwM7XqR_9DVsLnqLqtNg7apCmFTPXdFdWqarZhXLrVHC5_WQX2Uf887OlC-qh30wu2jpmllnbinupif5137tO45FeWmv8Ln17gfu4E01q8Zw2E2trWSDrTVxYwGhipKt5S1Ld6xo_itD-LsoGbuzw1lj5sSxiOnPbdTan8xw5nRwHo19VZmt9BeQCPO-mhv_H4yO2rvoWLObMC9-3tN8GXNENwd63fGzbVtvrZdTu6je-7QgccWLA9QTxcP0d1xJ51H6JuBzRsDGlyDBregwQ40uAEN3gQNLjMs8BZocAca3IHmMfr6bnLyduq56hueIjFdeppGIpWhjn0VaD-TYBmaVEtRRkQQxjLlYiRFIJkQI839UJk0PqEkUkW-4jLQ5AnqF2WhnyLMBQ2ZCgOVURFmQcbTiPCUyCjORARNA0SaaUuUS01vKqQskoaDeJbYyU7MZCd2sgfIa9-6sKlZbuhPG4kkzry0ZmMCILrhzf1GgIlb6ZdJQAgYdj7jdIBetV-DcjY3bqLQ5Qr6mLhzQsMoevbPgz9Hd7pltI_6y2qlX6Dbar3ML6uXDrC_AJRCuSY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOEA%2FD-DE+based+bivariate+control+sequence+optimization+of+a+variable-rate+fertilizer+applicator&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Zhang%2C+Jiqin&rft.au=Liu%2C+Gang&rft.au=Luo%2C+Chengming&rft.au=Hu%2C+Hao&rft.date=2019-12-01&rft.pub=Elsevier+B.V&rft.issn=0168-1699&rft.eissn=1872-7107&rft.volume=167&rft_id=info:doi/10.1016%2Fj.compag.2019.105063&rft.externalDocID=S016816991930746X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon