Stochastic gradient adaptive algorithms for blind source separation

The aim in blind source separation is to separate linear mixtures of statistically independent non-Gaussian signals without resorting to an a priori knowledge of the sources or the mixing system. In this paper we propose a new family of adaptive algorithms that recursively compute the optimum separa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Signal processing Ročník 75; číslo 1; s. 11 - 27
Hlavní autoři: Dapena, Adriana, Castedo, Luis
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.01.1999
Elsevier Science
Témata:
ISSN:0165-1684, 1872-7557
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The aim in blind source separation is to separate linear mixtures of statistically independent non-Gaussian signals without resorting to an a priori knowledge of the sources or the mixing system. In this paper we propose a new family of adaptive algorithms that recursively compute the optimum separating system. The algorithms are of the gradient ascent type and maximize a statistical criterion that involves only second- and fourth-order cumulants. We present a complete analysis of all the stationary points in the proposed criterion for an arbitrary number of complex sources. We demonstrate that the algorithms can only converge to points where perfect separation is achieved provided that the mixing system is a square invertible matrix and all the sources have the same kurtosis sign. We also prove that the criterion is free of undesirable maxima. Das Ziel einer blinden Quellseparation ist es, lineare Überlagerungen stochastisch unabhängiger, nicht gaußverteilter Signale zu trennen, ohne daß auf a priori Kenntnisse über die Quellen oder über das Überlagerungssystem zurückgegriffen werden muß. In diesem Artikel schlagen wir eine neue Familie von adaptiven Algorithmen vor, die ein optimales Separationssystem rekursiv berechnen. Die Algorithmen sind vom Typ des Gradientenanstiegs und maximierem ein statistisches Kriterium, das ausschließlich Kumulanten zweiter und vierter Ordnung beinhaltet. Wir stellen eine vollständige Analyse aller stationären Punkte des vorgeschlagenen Kriteriums vor, wobei eine beliebige Anzahl komplexer Quellen vorliegen kann. Wir zeigen, daß die Algorithmen nur zu denjenigen Punkten konvergieren können, bei denen perfekte Separation vorliegt, vorausgesetzt, bei dem Überlagerungssystem handelt es sich um eine quadratinvertierbare Matrix und alle Quellen besitzen dasselbe Kurtosisvorzeichen. Wir zeigen ebenfalls, daß das Kriterium keine unerwünschten Maxima besitzt. Le but de la séparation de sources aveugle est de séparer des mélanges linéaires de signaux non gaussiens statistiquement indépendants sans se recourir à une connaissance a priori des sources ou du système de mélange. Dans cet article, nous proposons une nouvelle famille d'algorithmes adaptatifs qui calculent récursivement le système de séparation optimal. Les algorithmes sont du type “montée de gradient” et maximisent un critère statistique qui ne fait intervenir que des cumulants des second et quatrième ordres. Nous présentons une analyse complète de tous les points stationnaires du critère proposé, pour un nombre arbitraire de sources complexes. Nous démontrons que les algorithmes ne peuvent converger que vers des points où une séparation parfaite est atteinte, pourvu que le système de mélange ait une matrice carrée inversible et que toutes les sources aient le même signe du kurtoris. Nous prouvons aussi que ce critère ne présente pas de maxima indésirables.
AbstractList The aim in blind source separation is to separate linear mixtures of statistically independent non-Gaussian signals without resorting to an a priori knowledge of the sources or the mixing system. In this paper we propose a new family of adaptive algorithms that recursively compute the optimum separating system. The algorithms are of the gradient ascent type and maximize a statistical criterion that involves only second- and fourth-order cumulants. We present a complete analysis of all the stationary points in the proposed criterion for an arbitrary number of complex sources. We demonstrate that the algorithms can only converge to points where perfect separation is achieved provided that the mixing system is a square invertible matrix and all the sources have the same kurtosis sign. We also prove that the criterion is free of undesirable maxima.
The aim in blind source separation is to separate linear mixtures of statistically independent non-Gaussian signals without resorting to an a priori knowledge of the sources or the mixing system. In this paper we propose a new family of adaptive algorithms that recursively compute the optimum separating system. The algorithms are of the gradient ascent type and maximize a statistical criterion that involves only second- and fourth-order cumulants. We present a complete analysis of all the stationary points in the proposed criterion for an arbitrary number of complex sources. We demonstrate that the algorithms can only converge to points where perfect separation is achieved provided that the mixing system is a square invertible matrix and all the sources have the same kurtosis sign. We also prove that the criterion is free of undesirable maxima. Das Ziel einer blinden Quellseparation ist es, lineare Überlagerungen stochastisch unabhängiger, nicht gaußverteilter Signale zu trennen, ohne daß auf a priori Kenntnisse über die Quellen oder über das Überlagerungssystem zurückgegriffen werden muß. In diesem Artikel schlagen wir eine neue Familie von adaptiven Algorithmen vor, die ein optimales Separationssystem rekursiv berechnen. Die Algorithmen sind vom Typ des Gradientenanstiegs und maximierem ein statistisches Kriterium, das ausschließlich Kumulanten zweiter und vierter Ordnung beinhaltet. Wir stellen eine vollständige Analyse aller stationären Punkte des vorgeschlagenen Kriteriums vor, wobei eine beliebige Anzahl komplexer Quellen vorliegen kann. Wir zeigen, daß die Algorithmen nur zu denjenigen Punkten konvergieren können, bei denen perfekte Separation vorliegt, vorausgesetzt, bei dem Überlagerungssystem handelt es sich um eine quadratinvertierbare Matrix und alle Quellen besitzen dasselbe Kurtosisvorzeichen. Wir zeigen ebenfalls, daß das Kriterium keine unerwünschten Maxima besitzt. Le but de la séparation de sources aveugle est de séparer des mélanges linéaires de signaux non gaussiens statistiquement indépendants sans se recourir à une connaissance a priori des sources ou du système de mélange. Dans cet article, nous proposons une nouvelle famille d'algorithmes adaptatifs qui calculent récursivement le système de séparation optimal. Les algorithmes sont du type “montée de gradient” et maximisent un critère statistique qui ne fait intervenir que des cumulants des second et quatrième ordres. Nous présentons une analyse complète de tous les points stationnaires du critère proposé, pour un nombre arbitraire de sources complexes. Nous démontrons que les algorithmes ne peuvent converger que vers des points où une séparation parfaite est atteinte, pourvu que le système de mélange ait une matrice carrée inversible et que toutes les sources aient le même signe du kurtoris. Nous prouvons aussi que ce critère ne présente pas de maxima indésirables.
Author Dapena, Adriana
Castedo, Luis
Author_xml – sequence: 1
  givenname: Adriana
  surname: Dapena
  fullname: Dapena, Adriana
– sequence: 2
  givenname: Luis
  surname: Castedo
  fullname: Castedo, Luis
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1789786$$DView record in Pascal Francis
BookMark eNqFkEtLAzEURoMoWB8_QZiFiC5Gk0zzwoVI8QWCC3UdbjM3NTKd1CQV_PdOW3Hhxk3u5pwPcvbIdh97JOSI0XNGmbx4Hh5RM6nHp0afUco5q9UWGTGteK2EUNtk9Ivskr2c3ymlrJF0RCbPJbo3yCW4apagDdiXClpYlPCJFXSzmEJ5m-fKx1RNu9C3VY7L5LDKuIAEJcT-gOx46DIe_tx98np78zK5rx-f7h4m14-1a6QqNY4948hb7qVvDPWCCc9BTJFy7bR3Y8mMYapxxjfaCNHoqQdQXqLirZ-aZp-cbHYXKX4sMRc7D9lh10GPcZktV0w2WrIBPP4BITvofILehWwXKcwhfVmmtFFaDtjlBnMp5pzQWxfK-kclQegso3bV16772lU8a7Rd97VqsMUf-3f_H-9q4-GQ6jNgstkN1R22IaErto3hn4VvrKSU_w
CODEN SPRODR
CitedBy_id crossref_primary_10_1016_S1051_2004_02_00027_1
crossref_primary_10_1109_TSP_2007_892717
crossref_primary_10_1016_S0165_1684_03_00134_8
Cites_doi 10.1002/(SICI)1099-1115(199601)10:1<19::AID-ACS384>3.0.CO;2-7
10.1016/0165-1684(91)90081-S
10.1049/ip-f-1.1983.0003
10.1016/0165-1684(94)90029-9
10.1109/78.651167
10.1016/0165-1684(91)90079-X
10.1109/78.553476
10.1016/0165-1684(95)00042-C
10.1007/978-3-642-75894-2
10.1109/78.542183
10.1007/978-1-4612-3632-0
10.1016/S0893-6080(97)00039-7
10.1162/neco.1995.7.6.1129
10.1109/18.52478
10.1109/78.575706
10.1088/0954-898X/5/4/008
ContentType Journal Article
Copyright 1999 Elsevier Science B.V.
1999 INIST-CNRS
Copyright_xml – notice: 1999 Elsevier Science B.V.
– notice: 1999 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SP
8FD
L7M
DOI 10.1016/S0165-1684(98)00221-7
DatabaseName CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1872-7557
EndPage 27
ExternalDocumentID 1789786
10_1016_S0165_1684_98_00221_7
S0165168498002217
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SP
8FD
L7M
ID FETCH-LOGICAL-c367t-e4f12e2d2f6f390f515f2a5be028c8fc46199173c9f3895538bfaa7f6e72dfb93
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000080323500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-1684
IngestDate Sun Sep 28 02:56:02 EDT 2025
Mon Jul 21 09:14:59 EDT 2025
Tue Nov 18 22:18:57 EST 2025
Sat Nov 29 02:13:05 EST 2025
Fri Feb 23 02:18:39 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Adaptive algorithms
Blind source separation
Higher-order statistics
Signal mixing
Stability
Separation
Adaptive algorithm
Gaussian noise
Computer simulation
Signal processing
Cost function
Image restoration
Modeling
Signal to noise ratio
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-e4f12e2d2f6f390f515f2a5be028c8fc46199173c9f3895538bfaa7f6e72dfb93
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 27163861
PQPubID 23500
PageCount 17
ParticipantIDs proquest_miscellaneous_27163861
pascalfrancis_primary_1789786
crossref_citationtrail_10_1016_S0165_1684_98_00221_7
crossref_primary_10_1016_S0165_1684_98_00221_7
elsevier_sciencedirect_doi_10_1016_S0165_1684_98_00221_7
PublicationCentury 1900
PublicationDate 19990101
PublicationDateYYYYMMDD 1999-01-01
PublicationDate_xml – month: 01
  year: 1999
  text: 19990101
  day: 01
PublicationDecade 1990
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Signal processing
PublicationYear 1999
Publisher Elsevier B.V
Elsevier Science
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science
References Castedo, Escudero, Dapena (BIB8) 1997; 45
D.H. Brandwood, A complex gradient operator and its application in adaptive array theory, IEE Proc. 130 (F and G) (1983) 11–16.
Nadal, Parga (BIB15) 1994; 5
O. Shalvi, E. Weinstein, New criteria for blind deconvolution of nonminimum phase systems, Trans. Inform. Theory, IT-36 (1990) 312–321.
Comon (BIB9) 1994; 36
Moreau, Macchi (BIB14) 1998; 46
E. Moreau, O. Macchi, Complex self-adaptive algorithms for source separation based on high-order contrasts, Theories Appl. (1994) 1157–1160.
Sorouchyari (BIB18) 1991; 24
Amari, Chen, Cichocki (BIB2) 1997; 10
Pham (BIB16) 1996; 44
A. Benveniste, M. Métivier, P. Priouret, Adaptive algorithms and stochastic approximations, Applications Mathematics, vol. 22, Springer, Berlin, 1990.
Cardoso, Laheld (BIB7) 1996; 44
Delfosse, Loubaton (BIB10) 1995; 45
Cao, Wen-Liu (BIB6) 1996; 44
E. Moreau, O. Macchi, High-order contrasts for self-adaptive source separation, Int. J. Adaptive Control Signal Process. (1996) 19–46.
S.U. Pillai, Array Signal Processing, Springer, New York, 1989.
Bell, Sejnowski (BIB3) 1995; 7
Jutten, Herault (BIB11) 1991; 24
R. Amari, Gradient learning in structured parameter spaces: adaptive blind separation of signal sources, Proc. WCNN’96, San Diego, USA, 1996, pp. 951–956.
Pham (10.1016/S0165-1684(98)00221-7_BIB16) 1996; 44
10.1016/S0165-1684(98)00221-7_BIB13
Bell (10.1016/S0165-1684(98)00221-7_BIB3) 1995; 7
Moreau (10.1016/S0165-1684(98)00221-7_BIB14) 1998; 46
10.1016/S0165-1684(98)00221-7_BIB19
Jutten (10.1016/S0165-1684(98)00221-7_BIB11) 1991; 24
10.1016/S0165-1684(98)00221-7_BIB17
Cao (10.1016/S0165-1684(98)00221-7_BIB6) 1996; 44
Nadal (10.1016/S0165-1684(98)00221-7_BIB15) 1994; 5
10.1016/S0165-1684(98)00221-7_BIB5
Sorouchyari (10.1016/S0165-1684(98)00221-7_BIB18) 1991; 24
10.1016/S0165-1684(98)00221-7_BIB4
Cardoso (10.1016/S0165-1684(98)00221-7_BIB7) 1996; 44
Castedo (10.1016/S0165-1684(98)00221-7_BIB8) 1997; 45
10.1016/S0165-1684(98)00221-7_BIB1
Amari (10.1016/S0165-1684(98)00221-7_BIB2) 1997; 10
Comon (10.1016/S0165-1684(98)00221-7_BIB9) 1994; 36
Delfosse (10.1016/S0165-1684(98)00221-7_BIB10) 1995; 45
10.1016/S0165-1684(98)00221-7_BIB12
References_xml – volume: 5
  start-page: 565
  year: 1994
  end-page: 581
  ident: BIB15
  article-title: Nonlinear neurons in the low-noise limit: a factorial code maximizes information transfer
  publication-title: Network
– volume: 24
  start-page: 1
  year: 1991
  end-page: 10
  ident: BIB11
  article-title: Blind separation of sources. part I: an adaptive algorithm based on neuromimetic architecture
  publication-title: Signal Process.
– reference: D.H. Brandwood, A complex gradient operator and its application in adaptive array theory, IEE Proc. 130 (F and G) (1983) 11–16.
– reference: A. Benveniste, M. Métivier, P. Priouret, Adaptive algorithms and stochastic approximations, Applications Mathematics, vol. 22, Springer, Berlin, 1990.
– reference: E. Moreau, O. Macchi, High-order contrasts for self-adaptive source separation, Int. J. Adaptive Control Signal Process. (1996) 19–46.
– reference: S.U. Pillai, Array Signal Processing, Springer, New York, 1989.
– reference: E. Moreau, O. Macchi, Complex self-adaptive algorithms for source separation based on high-order contrasts, Theories Appl. (1994) 1157–1160.
– reference: O. Shalvi, E. Weinstein, New criteria for blind deconvolution of nonminimum phase systems, Trans. Inform. Theory, IT-36 (1990) 312–321.
– volume: 44
  start-page: 562
  year: 1996
  end-page: 571
  ident: BIB6
  article-title: General approach to blind source separation
  publication-title: IEEE Trans. Signal Process.
– reference: R. Amari, Gradient learning in structured parameter spaces: adaptive blind separation of signal sources, Proc. WCNN’96, San Diego, USA, 1996, pp. 951–956.
– volume: 45
  start-page: 59
  year: 1995
  end-page: 83
  ident: BIB10
  article-title: Adaptive blind separation of independent sources: a deflation approach
  publication-title: Signal Process.
– volume: 24
  start-page: 21
  year: 1991
  end-page: 29
  ident: BIB18
  article-title: Blind separation of sources, part III: stability analysis
  publication-title: Signal Process.
– volume: 36
  start-page: 287
  year: 1994
  end-page: 314
  ident: BIB9
  article-title: Independent component analysis, a new concept?
  publication-title: Signal Process.
– volume: 44
  start-page: 3017
  year: 1996
  end-page: 3030
  ident: BIB7
  article-title: Equivariant adaptive source separation
  publication-title: IEEE Trans. Signal Process.
– volume: 45
  start-page: 1343
  year: 1997
  end-page: 1348
  ident: BIB8
  article-title: A blind signal separation method for multiuser communications
  publication-title: IEEE Trans. Signal Process.
– volume: 7
  start-page: 1129
  year: 1995
  end-page: 1159
  ident: BIB3
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
– volume: 10
  start-page: 1345
  year: 1997
  end-page: 1351
  ident: BIB2
  article-title: Stability analysis of learning algorithms for blind source separation
  publication-title: Neural Networks
– volume: 44
  start-page: 2768
  year: 1996
  end-page: 2779
  ident: BIB16
  article-title: Blind separation of instantaneous mixture of sources via an independent component analysis
  publication-title: IEEE Trans. on Signal Process.
– volume: 46
  start-page: 39
  year: 1998
  end-page: 50
  ident: BIB14
  article-title: Self-adaptive source separation, part II: comparison of direct feedback and mixed neural network
  publication-title: IEEE Trans. Signal Process.
– ident: 10.1016/S0165-1684(98)00221-7_BIB12
  doi: 10.1002/(SICI)1099-1115(199601)10:1<19::AID-ACS384>3.0.CO;2-7
– volume: 24
  start-page: 21
  year: 1991
  ident: 10.1016/S0165-1684(98)00221-7_BIB18
  article-title: Blind separation of sources, part III: stability analysis
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(91)90081-S
– ident: 10.1016/S0165-1684(98)00221-7_BIB5
  doi: 10.1049/ip-f-1.1983.0003
– volume: 36
  start-page: 287
  year: 1994
  ident: 10.1016/S0165-1684(98)00221-7_BIB9
  article-title: Independent component analysis, a new concept?
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(94)90029-9
– ident: 10.1016/S0165-1684(98)00221-7_BIB13
– volume: 46
  start-page: 39
  issue: 1
  year: 1998
  ident: 10.1016/S0165-1684(98)00221-7_BIB14
  article-title: Self-adaptive source separation, part II: comparison of direct feedback and mixed neural network
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.651167
– volume: 24
  start-page: 1
  year: 1991
  ident: 10.1016/S0165-1684(98)00221-7_BIB11
  article-title: Blind separation of sources. part I: an adaptive algorithm based on neuromimetic architecture
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(91)90079-X
– volume: 44
  start-page: 3017
  issue: 12
  year: 1996
  ident: 10.1016/S0165-1684(98)00221-7_BIB7
  article-title: Equivariant adaptive source separation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.553476
– volume: 44
  start-page: 562
  issue: 4
  year: 1996
  ident: 10.1016/S0165-1684(98)00221-7_BIB6
  article-title: General approach to blind source separation
  publication-title: IEEE Trans. Signal Process.
– ident: 10.1016/S0165-1684(98)00221-7_BIB1
– volume: 45
  start-page: 59
  year: 1995
  ident: 10.1016/S0165-1684(98)00221-7_BIB10
  article-title: Adaptive blind separation of independent sources: a deflation approach
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(95)00042-C
– ident: 10.1016/S0165-1684(98)00221-7_BIB4
  doi: 10.1007/978-3-642-75894-2
– volume: 44
  start-page: 2768
  issue: 11
  year: 1996
  ident: 10.1016/S0165-1684(98)00221-7_BIB16
  article-title: Blind separation of instantaneous mixture of sources via an independent component analysis
  publication-title: IEEE Trans. on Signal Process.
  doi: 10.1109/78.542183
– ident: 10.1016/S0165-1684(98)00221-7_BIB19
  doi: 10.1007/978-1-4612-3632-0
– volume: 10
  start-page: 1345
  issue: 8
  year: 1997
  ident: 10.1016/S0165-1684(98)00221-7_BIB2
  article-title: Stability analysis of learning algorithms for blind source separation
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(97)00039-7
– volume: 7
  start-page: 1129
  issue: 6
  year: 1995
  ident: 10.1016/S0165-1684(98)00221-7_BIB3
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.6.1129
– ident: 10.1016/S0165-1684(98)00221-7_BIB17
  doi: 10.1109/18.52478
– volume: 45
  start-page: 1343
  issue: 5
  year: 1997
  ident: 10.1016/S0165-1684(98)00221-7_BIB8
  article-title: A blind signal separation method for multiuser communications
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.575706
– volume: 5
  start-page: 565
  year: 1994
  ident: 10.1016/S0165-1684(98)00221-7_BIB15
  article-title: Nonlinear neurons in the low-noise limit: a factorial code maximizes information transfer
  publication-title: Network
  doi: 10.1088/0954-898X/5/4/008
SSID ssj0001360
Score 1.5732493
Snippet The aim in blind source separation is to separate linear mixtures of statistically independent non-Gaussian signals without resorting to an a priori knowledge...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11
SubjectTerms Adaptive algorithms
Applied sciences
Blind source separation
Exact sciences and technology
Higher-order statistics
Information, signal and communications theory
Signal and communications theory
Signal, noise
Telecommunications and information theory
Title Stochastic gradient adaptive algorithms for blind source separation
URI https://dx.doi.org/10.1016/S0165-1684(98)00221-7
https://www.proquest.com/docview/27163861
Volume 75
WOSCitedRecordID wos000080323500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZbu4eNMXZl2dbODxtsBLezbOvyGErLNkYZpIO8CVmW0kBxTOyM_vwdXWwnhNF10BcTjGRhnc_nfDo5F4Q-kFxlaUaI7V7G46woVGzFHLO8LEppcMlU5ppN0PNzNpvxn6Fna-PaCdCqYtfXvL5TUcM9ELZNnb2FuPuHwg34DUKHK4gdrv8k-Gm7VJfSll8ez1cuoKsdy1LWLkZIXs2Xq0V76cswjAsgmdZvbh3440b7OuBBUIGxThdzS1hrn1DQGTrn2661TyiblPBa1RDyI60L1blgf6wXG34FX4tgy6-wm_Di_Y8kjxPiu7odaa8zGQWSnvs6051S9e1QtsDjNWRQrd7W-rIAO1rcOxSm_WLAtTn7iLklHElMB9PVBxS6sXYoZ24QvY_2Mc05qOr9ybfT2ffeOiepyxzvnz1kdR0PC37i7HNY7G985XEtG_iKjG9_smPJHT25eIqehHNFNPF4eIbu6eo5erRRbfIFOhmQEXXIiDpkRAMyIkBG5JAReWREAzJeol9npxcnX-PQQyNWKaFtrDOTYI1LbIhJ-RcD9NVgmRcaeKViRmXExr7RVHED1DUH81cYKakhmuLSFDx9hfaqZaVfo8jeS2BcoiwJp3A0I0bjQnJ7pmU6GaGs2ymhQoF52-fkSmxEEpJc2A0WnAm3wYKO0FE_rfYVVm6awDoxiEATPf0TgJ-bph5siW1YkDJOGRmh950YBahZ-9-ZrPRy3QhM7cGFJG_-f_G36OHwnb1De-1qrQ_QA_W7XTSrw4DTP8hjnRs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+gradient+adaptive+algorithms+for+blind+source+separation&rft.jtitle=Signal+processing&rft.au=Dapena%2C+Adriana&rft.au=Castedo%2C+Luis&rft.date=1999-01-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=75&rft.issue=1&rft.spage=11&rft.epage=27&rft_id=info:doi/10.1016%2FS0165-1684%2898%2900221-7&rft.externalDocID=S0165168498002217
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon