Stochastic gradient adaptive algorithms for blind source separation
The aim in blind source separation is to separate linear mixtures of statistically independent non-Gaussian signals without resorting to an a priori knowledge of the sources or the mixing system. In this paper we propose a new family of adaptive algorithms that recursively compute the optimum separa...
Uloženo v:
| Vydáno v: | Signal processing Ročník 75; číslo 1; s. 11 - 27 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.01.1999
Elsevier Science |
| Témata: | |
| ISSN: | 0165-1684, 1872-7557 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The aim in blind source separation is to separate linear mixtures of statistically independent non-Gaussian signals without resorting to an a priori knowledge of the sources or the mixing system. In this paper we propose a new family of adaptive algorithms that recursively compute the optimum separating system. The algorithms are of the gradient ascent type and maximize a statistical criterion that involves only second- and fourth-order cumulants. We present a complete analysis of all the stationary points in the proposed criterion for an arbitrary number of complex sources. We demonstrate that the algorithms can only converge to points where perfect separation is achieved provided that the mixing system is a square invertible matrix and all the sources have the same kurtosis sign. We also prove that the criterion is free of undesirable maxima.
Das Ziel einer blinden Quellseparation ist es, lineare Überlagerungen stochastisch unabhängiger, nicht gaußverteilter Signale zu trennen, ohne daß auf
a priori Kenntnisse über die Quellen oder über das Überlagerungssystem zurückgegriffen werden muß. In diesem Artikel schlagen wir eine neue Familie von adaptiven Algorithmen vor, die ein optimales Separationssystem rekursiv berechnen. Die Algorithmen sind vom Typ des Gradientenanstiegs und maximierem ein statistisches Kriterium, das ausschließlich Kumulanten zweiter und vierter Ordnung beinhaltet. Wir stellen eine vollständige Analyse aller stationären Punkte des vorgeschlagenen Kriteriums vor, wobei eine beliebige Anzahl komplexer Quellen vorliegen kann. Wir zeigen, daß die Algorithmen nur zu denjenigen Punkten konvergieren können, bei denen perfekte Separation vorliegt, vorausgesetzt, bei dem Überlagerungssystem handelt es sich um eine quadratinvertierbare Matrix und alle Quellen besitzen dasselbe Kurtosisvorzeichen. Wir zeigen ebenfalls, daß das Kriterium keine unerwünschten Maxima besitzt.
Le but de la séparation de sources aveugle est de séparer des mélanges linéaires de signaux non gaussiens statistiquement indépendants sans se recourir à une connaissance
a priori des sources ou du système de mélange. Dans cet article, nous proposons une nouvelle famille d'algorithmes adaptatifs qui calculent récursivement le système de séparation optimal. Les algorithmes sont du type “montée de gradient” et maximisent un critère statistique qui ne fait intervenir que des cumulants des second et quatrième ordres. Nous présentons une analyse complète de tous les points stationnaires du critère proposé, pour un nombre arbitraire de sources complexes. Nous démontrons que les algorithmes ne peuvent converger que vers des points où une séparation parfaite est atteinte, pourvu que le système de mélange ait une matrice carrée inversible et que toutes les sources aient le même signe du kurtoris. Nous prouvons aussi que ce critère ne présente pas de maxima indésirables. |
|---|---|
| AbstractList | The aim in blind source separation is to separate linear mixtures of statistically independent non-Gaussian signals without resorting to an a priori knowledge of the sources or the mixing system. In this paper we propose a new family of adaptive algorithms that recursively compute the optimum separating system. The algorithms are of the gradient ascent type and maximize a statistical criterion that involves only second- and fourth-order cumulants. We present a complete analysis of all the stationary points in the proposed criterion for an arbitrary number of complex sources. We demonstrate that the algorithms can only converge to points where perfect separation is achieved provided that the mixing system is a square invertible matrix and all the sources have the same kurtosis sign. We also prove that the criterion is free of undesirable maxima. The aim in blind source separation is to separate linear mixtures of statistically independent non-Gaussian signals without resorting to an a priori knowledge of the sources or the mixing system. In this paper we propose a new family of adaptive algorithms that recursively compute the optimum separating system. The algorithms are of the gradient ascent type and maximize a statistical criterion that involves only second- and fourth-order cumulants. We present a complete analysis of all the stationary points in the proposed criterion for an arbitrary number of complex sources. We demonstrate that the algorithms can only converge to points where perfect separation is achieved provided that the mixing system is a square invertible matrix and all the sources have the same kurtosis sign. We also prove that the criterion is free of undesirable maxima. Das Ziel einer blinden Quellseparation ist es, lineare Überlagerungen stochastisch unabhängiger, nicht gaußverteilter Signale zu trennen, ohne daß auf a priori Kenntnisse über die Quellen oder über das Überlagerungssystem zurückgegriffen werden muß. In diesem Artikel schlagen wir eine neue Familie von adaptiven Algorithmen vor, die ein optimales Separationssystem rekursiv berechnen. Die Algorithmen sind vom Typ des Gradientenanstiegs und maximierem ein statistisches Kriterium, das ausschließlich Kumulanten zweiter und vierter Ordnung beinhaltet. Wir stellen eine vollständige Analyse aller stationären Punkte des vorgeschlagenen Kriteriums vor, wobei eine beliebige Anzahl komplexer Quellen vorliegen kann. Wir zeigen, daß die Algorithmen nur zu denjenigen Punkten konvergieren können, bei denen perfekte Separation vorliegt, vorausgesetzt, bei dem Überlagerungssystem handelt es sich um eine quadratinvertierbare Matrix und alle Quellen besitzen dasselbe Kurtosisvorzeichen. Wir zeigen ebenfalls, daß das Kriterium keine unerwünschten Maxima besitzt. Le but de la séparation de sources aveugle est de séparer des mélanges linéaires de signaux non gaussiens statistiquement indépendants sans se recourir à une connaissance a priori des sources ou du système de mélange. Dans cet article, nous proposons une nouvelle famille d'algorithmes adaptatifs qui calculent récursivement le système de séparation optimal. Les algorithmes sont du type “montée de gradient” et maximisent un critère statistique qui ne fait intervenir que des cumulants des second et quatrième ordres. Nous présentons une analyse complète de tous les points stationnaires du critère proposé, pour un nombre arbitraire de sources complexes. Nous démontrons que les algorithmes ne peuvent converger que vers des points où une séparation parfaite est atteinte, pourvu que le système de mélange ait une matrice carrée inversible et que toutes les sources aient le même signe du kurtoris. Nous prouvons aussi que ce critère ne présente pas de maxima indésirables. |
| Author | Dapena, Adriana Castedo, Luis |
| Author_xml | – sequence: 1 givenname: Adriana surname: Dapena fullname: Dapena, Adriana – sequence: 2 givenname: Luis surname: Castedo fullname: Castedo, Luis |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1789786$$DView record in Pascal Francis |
| BookMark | eNqFkEtLAzEURoMoWB8_QZiFiC5Gk0zzwoVI8QWCC3UdbjM3NTKd1CQV_PdOW3Hhxk3u5pwPcvbIdh97JOSI0XNGmbx4Hh5RM6nHp0afUco5q9UWGTGteK2EUNtk9Ivskr2c3ymlrJF0RCbPJbo3yCW4apagDdiXClpYlPCJFXSzmEJ5m-fKx1RNu9C3VY7L5LDKuIAEJcT-gOx46DIe_tx98np78zK5rx-f7h4m14-1a6QqNY4948hb7qVvDPWCCc9BTJFy7bR3Y8mMYapxxjfaCNHoqQdQXqLirZ-aZp-cbHYXKX4sMRc7D9lh10GPcZktV0w2WrIBPP4BITvofILehWwXKcwhfVmmtFFaDtjlBnMp5pzQWxfK-kclQegso3bV16772lU8a7Rd97VqsMUf-3f_H-9q4-GQ6jNgstkN1R22IaErto3hn4VvrKSU_w |
| CODEN | SPRODR |
| CitedBy_id | crossref_primary_10_1016_S1051_2004_02_00027_1 crossref_primary_10_1109_TSP_2007_892717 crossref_primary_10_1016_S0165_1684_03_00134_8 |
| Cites_doi | 10.1002/(SICI)1099-1115(199601)10:1<19::AID-ACS384>3.0.CO;2-7 10.1016/0165-1684(91)90081-S 10.1049/ip-f-1.1983.0003 10.1016/0165-1684(94)90029-9 10.1109/78.651167 10.1016/0165-1684(91)90079-X 10.1109/78.553476 10.1016/0165-1684(95)00042-C 10.1007/978-3-642-75894-2 10.1109/78.542183 10.1007/978-1-4612-3632-0 10.1016/S0893-6080(97)00039-7 10.1162/neco.1995.7.6.1129 10.1109/18.52478 10.1109/78.575706 10.1088/0954-898X/5/4/008 |
| ContentType | Journal Article |
| Copyright | 1999 Elsevier Science B.V. 1999 INIST-CNRS |
| Copyright_xml | – notice: 1999 Elsevier Science B.V. – notice: 1999 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SP 8FD L7M |
| DOI | 10.1016/S0165-1684(98)00221-7 |
| DatabaseName | CrossRef Pascal-Francis Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1872-7557 |
| EndPage | 27 |
| ExternalDocumentID | 1789786 10_1016_S0165_1684_98_00221_7 S0165168498002217 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c367t-e4f12e2d2f6f390f515f2a5be028c8fc46199173c9f3895538bfaa7f6e72dfb93 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000080323500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0165-1684 |
| IngestDate | Sun Sep 28 02:56:02 EDT 2025 Mon Jul 21 09:14:59 EDT 2025 Tue Nov 18 22:18:57 EST 2025 Sat Nov 29 02:13:05 EST 2025 Fri Feb 23 02:18:39 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Adaptive algorithms Blind source separation Higher-order statistics Signal mixing Stability Separation Adaptive algorithm Gaussian noise Computer simulation Signal processing Cost function Image restoration Modeling Signal to noise ratio |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c367t-e4f12e2d2f6f390f515f2a5be028c8fc46199173c9f3895538bfaa7f6e72dfb93 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 27163861 |
| PQPubID | 23500 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_27163861 pascalfrancis_primary_1789786 crossref_citationtrail_10_1016_S0165_1684_98_00221_7 crossref_primary_10_1016_S0165_1684_98_00221_7 elsevier_sciencedirect_doi_10_1016_S0165_1684_98_00221_7 |
| PublicationCentury | 1900 |
| PublicationDate | 19990101 |
| PublicationDateYYYYMMDD | 1999-01-01 |
| PublicationDate_xml | – month: 01 year: 1999 text: 19990101 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Signal processing |
| PublicationYear | 1999 |
| Publisher | Elsevier B.V Elsevier Science |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science |
| References | Castedo, Escudero, Dapena (BIB8) 1997; 45 D.H. Brandwood, A complex gradient operator and its application in adaptive array theory, IEE Proc. 130 (F and G) (1983) 11–16. Nadal, Parga (BIB15) 1994; 5 O. Shalvi, E. Weinstein, New criteria for blind deconvolution of nonminimum phase systems, Trans. Inform. Theory, IT-36 (1990) 312–321. Comon (BIB9) 1994; 36 Moreau, Macchi (BIB14) 1998; 46 E. Moreau, O. Macchi, Complex self-adaptive algorithms for source separation based on high-order contrasts, Theories Appl. (1994) 1157–1160. Sorouchyari (BIB18) 1991; 24 Amari, Chen, Cichocki (BIB2) 1997; 10 Pham (BIB16) 1996; 44 A. Benveniste, M. Métivier, P. Priouret, Adaptive algorithms and stochastic approximations, Applications Mathematics, vol. 22, Springer, Berlin, 1990. Cardoso, Laheld (BIB7) 1996; 44 Delfosse, Loubaton (BIB10) 1995; 45 Cao, Wen-Liu (BIB6) 1996; 44 E. Moreau, O. Macchi, High-order contrasts for self-adaptive source separation, Int. J. Adaptive Control Signal Process. (1996) 19–46. S.U. Pillai, Array Signal Processing, Springer, New York, 1989. Bell, Sejnowski (BIB3) 1995; 7 Jutten, Herault (BIB11) 1991; 24 R. Amari, Gradient learning in structured parameter spaces: adaptive blind separation of signal sources, Proc. WCNN’96, San Diego, USA, 1996, pp. 951–956. Pham (10.1016/S0165-1684(98)00221-7_BIB16) 1996; 44 10.1016/S0165-1684(98)00221-7_BIB13 Bell (10.1016/S0165-1684(98)00221-7_BIB3) 1995; 7 Moreau (10.1016/S0165-1684(98)00221-7_BIB14) 1998; 46 10.1016/S0165-1684(98)00221-7_BIB19 Jutten (10.1016/S0165-1684(98)00221-7_BIB11) 1991; 24 10.1016/S0165-1684(98)00221-7_BIB17 Cao (10.1016/S0165-1684(98)00221-7_BIB6) 1996; 44 Nadal (10.1016/S0165-1684(98)00221-7_BIB15) 1994; 5 10.1016/S0165-1684(98)00221-7_BIB5 Sorouchyari (10.1016/S0165-1684(98)00221-7_BIB18) 1991; 24 10.1016/S0165-1684(98)00221-7_BIB4 Cardoso (10.1016/S0165-1684(98)00221-7_BIB7) 1996; 44 Castedo (10.1016/S0165-1684(98)00221-7_BIB8) 1997; 45 10.1016/S0165-1684(98)00221-7_BIB1 Amari (10.1016/S0165-1684(98)00221-7_BIB2) 1997; 10 Comon (10.1016/S0165-1684(98)00221-7_BIB9) 1994; 36 Delfosse (10.1016/S0165-1684(98)00221-7_BIB10) 1995; 45 10.1016/S0165-1684(98)00221-7_BIB12 |
| References_xml | – volume: 5 start-page: 565 year: 1994 end-page: 581 ident: BIB15 article-title: Nonlinear neurons in the low-noise limit: a factorial code maximizes information transfer publication-title: Network – volume: 24 start-page: 1 year: 1991 end-page: 10 ident: BIB11 article-title: Blind separation of sources. part I: an adaptive algorithm based on neuromimetic architecture publication-title: Signal Process. – reference: D.H. Brandwood, A complex gradient operator and its application in adaptive array theory, IEE Proc. 130 (F and G) (1983) 11–16. – reference: A. Benveniste, M. Métivier, P. Priouret, Adaptive algorithms and stochastic approximations, Applications Mathematics, vol. 22, Springer, Berlin, 1990. – reference: E. Moreau, O. Macchi, High-order contrasts for self-adaptive source separation, Int. J. Adaptive Control Signal Process. (1996) 19–46. – reference: S.U. Pillai, Array Signal Processing, Springer, New York, 1989. – reference: E. Moreau, O. Macchi, Complex self-adaptive algorithms for source separation based on high-order contrasts, Theories Appl. (1994) 1157–1160. – reference: O. Shalvi, E. Weinstein, New criteria for blind deconvolution of nonminimum phase systems, Trans. Inform. Theory, IT-36 (1990) 312–321. – volume: 44 start-page: 562 year: 1996 end-page: 571 ident: BIB6 article-title: General approach to blind source separation publication-title: IEEE Trans. Signal Process. – reference: R. Amari, Gradient learning in structured parameter spaces: adaptive blind separation of signal sources, Proc. WCNN’96, San Diego, USA, 1996, pp. 951–956. – volume: 45 start-page: 59 year: 1995 end-page: 83 ident: BIB10 article-title: Adaptive blind separation of independent sources: a deflation approach publication-title: Signal Process. – volume: 24 start-page: 21 year: 1991 end-page: 29 ident: BIB18 article-title: Blind separation of sources, part III: stability analysis publication-title: Signal Process. – volume: 36 start-page: 287 year: 1994 end-page: 314 ident: BIB9 article-title: Independent component analysis, a new concept? publication-title: Signal Process. – volume: 44 start-page: 3017 year: 1996 end-page: 3030 ident: BIB7 article-title: Equivariant adaptive source separation publication-title: IEEE Trans. Signal Process. – volume: 45 start-page: 1343 year: 1997 end-page: 1348 ident: BIB8 article-title: A blind signal separation method for multiuser communications publication-title: IEEE Trans. Signal Process. – volume: 7 start-page: 1129 year: 1995 end-page: 1159 ident: BIB3 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput. – volume: 10 start-page: 1345 year: 1997 end-page: 1351 ident: BIB2 article-title: Stability analysis of learning algorithms for blind source separation publication-title: Neural Networks – volume: 44 start-page: 2768 year: 1996 end-page: 2779 ident: BIB16 article-title: Blind separation of instantaneous mixture of sources via an independent component analysis publication-title: IEEE Trans. on Signal Process. – volume: 46 start-page: 39 year: 1998 end-page: 50 ident: BIB14 article-title: Self-adaptive source separation, part II: comparison of direct feedback and mixed neural network publication-title: IEEE Trans. Signal Process. – ident: 10.1016/S0165-1684(98)00221-7_BIB12 doi: 10.1002/(SICI)1099-1115(199601)10:1<19::AID-ACS384>3.0.CO;2-7 – volume: 24 start-page: 21 year: 1991 ident: 10.1016/S0165-1684(98)00221-7_BIB18 article-title: Blind separation of sources, part III: stability analysis publication-title: Signal Process. doi: 10.1016/0165-1684(91)90081-S – ident: 10.1016/S0165-1684(98)00221-7_BIB5 doi: 10.1049/ip-f-1.1983.0003 – volume: 36 start-page: 287 year: 1994 ident: 10.1016/S0165-1684(98)00221-7_BIB9 article-title: Independent component analysis, a new concept? publication-title: Signal Process. doi: 10.1016/0165-1684(94)90029-9 – ident: 10.1016/S0165-1684(98)00221-7_BIB13 – volume: 46 start-page: 39 issue: 1 year: 1998 ident: 10.1016/S0165-1684(98)00221-7_BIB14 article-title: Self-adaptive source separation, part II: comparison of direct feedback and mixed neural network publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.651167 – volume: 24 start-page: 1 year: 1991 ident: 10.1016/S0165-1684(98)00221-7_BIB11 article-title: Blind separation of sources. part I: an adaptive algorithm based on neuromimetic architecture publication-title: Signal Process. doi: 10.1016/0165-1684(91)90079-X – volume: 44 start-page: 3017 issue: 12 year: 1996 ident: 10.1016/S0165-1684(98)00221-7_BIB7 article-title: Equivariant adaptive source separation publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.553476 – volume: 44 start-page: 562 issue: 4 year: 1996 ident: 10.1016/S0165-1684(98)00221-7_BIB6 article-title: General approach to blind source separation publication-title: IEEE Trans. Signal Process. – ident: 10.1016/S0165-1684(98)00221-7_BIB1 – volume: 45 start-page: 59 year: 1995 ident: 10.1016/S0165-1684(98)00221-7_BIB10 article-title: Adaptive blind separation of independent sources: a deflation approach publication-title: Signal Process. doi: 10.1016/0165-1684(95)00042-C – ident: 10.1016/S0165-1684(98)00221-7_BIB4 doi: 10.1007/978-3-642-75894-2 – volume: 44 start-page: 2768 issue: 11 year: 1996 ident: 10.1016/S0165-1684(98)00221-7_BIB16 article-title: Blind separation of instantaneous mixture of sources via an independent component analysis publication-title: IEEE Trans. on Signal Process. doi: 10.1109/78.542183 – ident: 10.1016/S0165-1684(98)00221-7_BIB19 doi: 10.1007/978-1-4612-3632-0 – volume: 10 start-page: 1345 issue: 8 year: 1997 ident: 10.1016/S0165-1684(98)00221-7_BIB2 article-title: Stability analysis of learning algorithms for blind source separation publication-title: Neural Networks doi: 10.1016/S0893-6080(97)00039-7 – volume: 7 start-page: 1129 issue: 6 year: 1995 ident: 10.1016/S0165-1684(98)00221-7_BIB3 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput. doi: 10.1162/neco.1995.7.6.1129 – ident: 10.1016/S0165-1684(98)00221-7_BIB17 doi: 10.1109/18.52478 – volume: 45 start-page: 1343 issue: 5 year: 1997 ident: 10.1016/S0165-1684(98)00221-7_BIB8 article-title: A blind signal separation method for multiuser communications publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.575706 – volume: 5 start-page: 565 year: 1994 ident: 10.1016/S0165-1684(98)00221-7_BIB15 article-title: Nonlinear neurons in the low-noise limit: a factorial code maximizes information transfer publication-title: Network doi: 10.1088/0954-898X/5/4/008 |
| SSID | ssj0001360 |
| Score | 1.5732493 |
| Snippet | The aim in blind source separation is to separate linear mixtures of statistically independent non-Gaussian signals without resorting to an a priori knowledge... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 11 |
| SubjectTerms | Adaptive algorithms Applied sciences Blind source separation Exact sciences and technology Higher-order statistics Information, signal and communications theory Signal and communications theory Signal, noise Telecommunications and information theory |
| Title | Stochastic gradient adaptive algorithms for blind source separation |
| URI | https://dx.doi.org/10.1016/S0165-1684(98)00221-7 https://www.proquest.com/docview/27163861 |
| Volume | 75 |
| WOSCitedRecordID | wos000080323500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7557 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001360 issn: 0165-1684 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZbu4eNMXZl2dbODxtsBLezbOvyGErLNkYZpIO8CVmW0kBxTOyM_vwdXWwnhNF10BcTjGRhnc_nfDo5F4Q-kFxlaUaI7V7G46woVGzFHLO8LEppcMlU5ppN0PNzNpvxn6Fna-PaCdCqYtfXvL5TUcM9ELZNnb2FuPuHwg34DUKHK4gdrv8k-Gm7VJfSll8ez1cuoKsdy1LWLkZIXs2Xq0V76cswjAsgmdZvbh3440b7OuBBUIGxThdzS1hrn1DQGTrn2661TyiblPBa1RDyI60L1blgf6wXG34FX4tgy6-wm_Di_Y8kjxPiu7odaa8zGQWSnvs6051S9e1QtsDjNWRQrd7W-rIAO1rcOxSm_WLAtTn7iLklHElMB9PVBxS6sXYoZ24QvY_2Mc05qOr9ybfT2ffeOiepyxzvnz1kdR0PC37i7HNY7G985XEtG_iKjG9_smPJHT25eIqehHNFNPF4eIbu6eo5erRRbfIFOhmQEXXIiDpkRAMyIkBG5JAReWREAzJeol9npxcnX-PQQyNWKaFtrDOTYI1LbIhJ-RcD9NVgmRcaeKViRmXExr7RVHED1DUH81cYKakhmuLSFDx9hfaqZaVfo8jeS2BcoiwJp3A0I0bjQnJ7pmU6GaGs2ymhQoF52-fkSmxEEpJc2A0WnAm3wYKO0FE_rfYVVm6awDoxiEATPf0TgJ-bph5siW1YkDJOGRmh950YBahZ-9-ZrPRy3QhM7cGFJG_-f_G36OHwnb1De-1qrQ_QA_W7XTSrw4DTP8hjnRs |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+gradient+adaptive+algorithms+for+blind+source+separation&rft.jtitle=Signal+processing&rft.au=Dapena%2C+Adriana&rft.au=Castedo%2C+Luis&rft.date=1999-01-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=75&rft.issue=1&rft.spage=11&rft.epage=27&rft_id=info:doi/10.1016%2FS0165-1684%2898%2900221-7&rft.externalDocID=S0165168498002217 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |