Gaussian Process Regression for foreground removal in H i Intensity Mapping experiments
ABSTRACT We apply for the first time Gaussian Process Regression (GPR) as a foreground removal technique in the context of single-dish, low redshift H i intensity mapping, and present an open-source python toolkit for doing so. We use MeerKAT and SKA1-MID-like simulations of 21 cm foregrounds (inclu...
Uloženo v:
| Vydáno v: | Monthly notices of the Royal Astronomical Society Ročník 510; číslo 4; s. 5872 - 5890 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Oxford University Press
01.03.2022
|
| Témata: | |
| ISSN: | 0035-8711, 1365-2966 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | ABSTRACT
We apply for the first time Gaussian Process Regression (GPR) as a foreground removal technique in the context of single-dish, low redshift H i intensity mapping, and present an open-source python toolkit for doing so. We use MeerKAT and SKA1-MID-like simulations of 21 cm foregrounds (including polarization leakage), H i cosmological signal, and instrumental noise. We find that it is possible to use GPR as a foreground removal technique in this context, and that it is better suited in some cases to recover the H i power spectrum than principal component analysis (PCA), especially on small scales. GPR is especially good at recovering the radial power spectrum, outperforming PCA when considering the full bandwidth of our data. Both methods are worse at recovering the transverse power spectrum, since they rely on frequency-only covariance information. When halving our data along frequency, we find that GPR performs better in the low-frequency range, where foregrounds are brighter. It performs worse than PCA when frequency channels are missing, to emulate RFI flagging. We conclude that GPR is an excellent foreground removal option for the case of single-dish, low-redshift H i intensity mapping in the absence of missing frequency channels. Our python toolkit gpr4im and the data used in this analysis are publicly available on GitHub. |
|---|---|
| AbstractList | We apply for the first time Gaussian Process Regression (GPR) as a foreground removal technique in the context of single-dish, low redshift H i intensity mapping, and present an open-source python toolkit for doing so. We use MeerKAT and SKA1-MID-like simulations of 21 cm foregrounds (including polarization leakage), H i cosmological signal, and instrumental noise. We find that it is possible to use GPR as a foreground removal technique in this context, and that it is better suited in some cases to recover the H i power spectrum than principal component analysis (PCA), especially on small scales. GPR is especially good at recovering the radial power spectrum, outperforming PCA when considering the full bandwidth of our data. Both methods are worse at recovering the transverse power spectrum, since they rely on frequency-only covariance information. When halving our data along frequency, we find that GPR performs better in the low-frequency range, where foregrounds are brighter. It performs worse than PCA when frequency channels are missing, to emulate RFI flagging. We conclude that GPR is an excellent foreground removal option for the case of single-dish, low-redshift H i intensity mapping in the absence of missing frequency channels. Our python toolkit gpr4im and the data used in this analysis are publicly available on GitHub. ABSTRACT We apply for the first time Gaussian Process Regression (GPR) as a foreground removal technique in the context of single-dish, low redshift H i intensity mapping, and present an open-source python toolkit for doing so. We use MeerKAT and SKA1-MID-like simulations of 21 cm foregrounds (including polarization leakage), H i cosmological signal, and instrumental noise. We find that it is possible to use GPR as a foreground removal technique in this context, and that it is better suited in some cases to recover the H i power spectrum than principal component analysis (PCA), especially on small scales. GPR is especially good at recovering the radial power spectrum, outperforming PCA when considering the full bandwidth of our data. Both methods are worse at recovering the transverse power spectrum, since they rely on frequency-only covariance information. When halving our data along frequency, we find that GPR performs better in the low-frequency range, where foregrounds are brighter. It performs worse than PCA when frequency channels are missing, to emulate RFI flagging. We conclude that GPR is an excellent foreground removal option for the case of single-dish, low-redshift H i intensity mapping in the absence of missing frequency channels. Our python toolkit gpr4im and the data used in this analysis are publicly available on GitHub. We apply for the first time Gaussian Process Regression (GPR) as a foreground removal technique in the context of single-dish, low redshift H i intensity mapping, and present an open-source python toolkit for doing so. We use MeerKAT and SKA1-MID-like simulations of 21 cm foregrounds (including polarization leakage), H i cosmological signal, and instrumental noise. We find that it is possible to use GPR as a foreground removal technique in this context, and that it is better suited in some cases to recover the H i power spectrum than principal component analysis (PCA), especially on small scales. GPR is especially good at recovering the radial power spectrum, outperforming PCA when considering the full bandwidth of our data. Both methods are worse at recovering the transverse power spectrum, since they rely on frequency-only covariance information. When halving our data along frequency, we find that GPR performs better in the low-frequency range, where foregrounds are brighter. It performs worse than PCA when frequency channels are missing, to emulate RFI flagging. We conclude that GPR is an excellent foreground removal option for the case of single-dish, low-redshift H i intensity mapping in the absence of missing frequency channels. Our python toolkit gpr4im and the data used in this analysis are publicly available on GitHub. |
| Author | Watkinson, Catherine A Pourtsidou, Alkistis Soares, Paula S Cunnington, Steven |
| Author_xml | – sequence: 1 givenname: Paula S orcidid: 0000-0002-5218-6033 surname: Soares fullname: Soares, Paula S email: p.s.soares@qmul.ac.uk – sequence: 2 givenname: Catherine A surname: Watkinson fullname: Watkinson, Catherine A – sequence: 3 givenname: Steven orcidid: 0000-0001-6594-107X surname: Cunnington fullname: Cunnington, Steven – sequence: 4 givenname: Alkistis orcidid: 0000-0001-9110-5550 surname: Pourtsidou fullname: Pourtsidou, Alkistis |
| BookMark | eNqFkE9LAzEQxYNUsFavngOePGybSfbvUYq2hYoievC0pLuTktIma5IVe_Pq1_STuLV6EcTD8GB4vxneOyY9Yw0ScgZsCKwQo41x0o98kAueFPEB6YNIk4gXadojfcZEEuUZwBE59n7FGIsFT_vkaSJb77U09M7ZCr2n97h0nWprqLJuN93CtqamDjf2Ra6pNnT68fau6cwENF6HLb2RTaPNkuJrg05v0AR_Qg6VXHs8_dYBeby-ehhPo_ntZDa-nEeVSLMQYYzAOVQF1JUCQCaVACmQZ4C8rlDEEjPJM5amLCuUUIznvK45W4DKkyIRA3K-v9s4-9yiD-XKts50L0sBPGciLrqsAxLvXZWz3jtUZaWDDF3K4KRel8DKXYnlV4nlT4kdNvyFNV086bZ_Axd7wLbNf95PU_WJkw |
| CitedBy_id | crossref_primary_10_1093_mnras_stab3064 crossref_primary_10_1093_mnras_stad685 crossref_primary_10_1093_mnras_stac576 crossref_primary_10_1093_mnras_stad127 crossref_primary_10_1088_1475_7516_2023_06_052 crossref_primary_10_1007_s41114_022_00040_z crossref_primary_10_1016_j_ascom_2023_100710 crossref_primary_10_3847_1538_4357_ac7a34 crossref_primary_10_3847_1538_4357_acb822 crossref_primary_10_1093_mnras_stad526 crossref_primary_10_1088_1475_7516_2022_01_004 crossref_primary_10_3847_1538_4357_ac6875 crossref_primary_10_1093_mnras_stad2102 crossref_primary_10_3847_1538_4357_add72b crossref_primary_10_1093_mnras_stad1567 crossref_primary_10_1088_1475_7516_2023_02_010 crossref_primary_10_1093_mnras_stac2484 crossref_primary_10_1093_mnras_staf195 crossref_primary_10_1093_mnras_stab2811 crossref_primary_10_1007_s11433_022_2104_7 crossref_primary_10_3847_1538_4357_ad8bab |
| Cites_doi | 10.3847/1538-4357/833/2/289 10.1093/mnras/stz175 10.1111/j.1365-2966.2009.14548.x 10.1088/2041-8205/763/1/L20 10.1109/MCSE.2011.37 10.1088/1538-3873/ab5bfd 10.3847/1538-3881/abfdb9 10.1086/309179 10.1093/mnras/sty1207 10.1016/j.crhy.2011.11.003 10.1093/mnras/sty346 10.1093/mnras/stx2662 10.1093/mnras/stw3224 10.1088/0004-637X/803/1/21 10.22323/1.215.0019 10.1051/0004-6361:200809484 10.1051/0004-6361/201322971 10.1093/mnras/staa2986 10.1093/mnras/stu2474 10.1093/mnras/stw248 10.1093/mnrasl/slt074 10.1093/mnras/sty1814 10.1088/0004-637X/815/1/51 10.1111/j.1365-2966.2008.13634.x 10.1093/mnras/sts333 10.1086/429857 10.3847/0067-0049/222/2/22 10.1051/0004-6361/201525830 10.1088/0004-637X/721/1/164 10.22323/1.215.0035 10.1103/PhysRevD.83.103006 10.1093/mnras/stx2621 10.1093/mnras/stv2884 10.1093/mnras/stab027 10.1046/j.1365-8711.2003.06439.x 10.1093/mnras/sty410 10.1093/mnras/staa327 10.1111/j.1365-2966.2004.08416.x 10.1111/j.1365-2966.2010.17407.x 10.1093/mnras/stv2153 10.3847/1538-4357/aadba0 10.1038/nature09187 10.1093/mnras/248.1.1 10.1093/mnras/stab856 10.1007/BF02933588 10.1093/mnras/staa3446 10.1093/mnras/stab1688 10.1093/mnras/staa1524 10.1093/mnras/stx1479 10.1093/mnras/staa1331 10.1093/mnras/stt1082 10.1109/MCSE.2007.55 10.1093/mnras/staa3856 10.1093/mnras/staa2854 10.1088/0004-637X/769/2/154 10.1093/mnras/stu1666 10.1093/mnras/stw2556 10.1093/mnras/stab1365 10.1093/mnras/stz1937 |
| ContentType | Journal Article |
| Copyright | 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society |
| Copyright_xml | – notice: 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021 – notice: 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society |
| DBID | AAYXX CITATION 8FD H8D L7M |
| DOI | 10.1093/mnras/stab2594 |
| DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | CrossRef Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Astronomy & Astrophysics |
| EISSN | 1365-2966 |
| EndPage | 5890 |
| ExternalDocumentID | 10_1093_mnras_stab2594 10.1093/mnras/stab2594 |
| GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP ABCQN ABCQX ABEJV ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACUTJ ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNP RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX ABGNP ABVLG ACUXJ AHGBF ALXQX AMNDL ANAKG CITATION JXSIZ 8FD ABAZT H8D L7M |
| ID | FETCH-LOGICAL-c367t-e4e1221c91dcf11e0af31a3e271e2dce34ae7a27066079f3f0282dd20b1f85953 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000764893600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0035-8711 |
| IngestDate | Sat Jul 26 00:05:48 EDT 2025 Sat Nov 29 02:38:26 EST 2025 Tue Nov 18 22:06:54 EST 2025 Fri Nov 15 02:52:50 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | radio lines: general cosmology: observations methods: data analysis large-scale structure of Universe |
| Language | English |
| License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c367t-e4e1221c91dcf11e0af31a3e271e2dce34ae7a27066079f3f0282dd20b1f85953 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6594-107X 0000-0002-5218-6033 0000-0001-9110-5550 |
| PQID | 3128034904 |
| PQPubID | 42411 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_3128034904 crossref_citationtrail_10_1093_mnras_stab2594 crossref_primary_10_1093_mnras_stab2594 oup_primary_10_1093_mnras_stab2594 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Monthly notices of the Royal Astronomical Society |
| PublicationYear | 2022 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Battye (2022012709435715500_bib5) 2004; 355 Wolz (2022012709435715500_bib73) 2021 Blake (2022012709435715500_bib9) 2018; 479 Moore (2022012709435715500_bib50) 2013; 769 Cunnington (2022012709435715500_bib21) 2021; 504 Bull (2022012709435715500_bib11) 2015; 803 Castorina (2022012709435715500_bib13) 2018; 476 Matshawule (2022012709435715500_bib45) 2021 Alonso (2022012709435715500_bib2) 2014; 447 Jones (2022012709435715500_bib31) 2001 Miville-Deschenes (2022012709435715500_bib49) 2008; 490 Kern (2022012709435715500_bib33) 2020 Dickinson (2022012709435715500_bib22) 2003; 341 Lewis (2022012709435715500_bib38) 2000; 538 Hothi (2022012709435715500_bib27) 2020; 500 Liu (2022012709435715500_bib42) 2011; 83 Chang (2022012709435715500_bib15) 2010; 466 Cunnington (2022012709435715500_bib19) 2020; 496 Jelic (2022012709435715500_bib30) 2010; 409 GPy since (2022012709435715500_bib26) 2012 Anderson (2022012709435715500_bib3) 2018; 476 Switzer (2022012709435715500_bib65) 2013; 434 Villaescusa-Navarro (2022012709435715500_bib68) 2016; 466 Li (2022012709435715500_bib39) 2020; 501 van der Walt (2022012709435715500_bib67) 2011; 13 Carucci (2022012709435715500_bib12) 2020; 499 Switzer (2022012709435715500_bib66) 2015; 815 Buchner (2022012709435715500_bib10) 2014; 564 Feroz (2022012709435715500_bib23) 2009; 398 Chang (2022012709435715500_bib14) 2008; 100 Liu (2022012709435715500_bib41) 2020; 132 Mertens (2022012709435715500_bib48) 2020; 493 Klypin (2022012709435715500_bib34) 2016; 457 Bigot-Sazy (2022012709435715500_bib8) 2015; 454 Rasmussen (2022012709435715500_bib57) 2006 Battye (2022012709435715500_bib6) 2013; 434 Kennedy (2022012709435715500_bib32) 2021 Soares (2022012709435715500_bib64) 2021; 502 Wolz (2022012709435715500_bib72) 2016; 464 Croton (2022012709435715500_bib18) 2016; 222 Knebe (2022012709435715500_bib35) 2018; 474 Gehlot (2022012709435715500_bib24) 2019; 488 Cunnington (2022012709435715500_bib20) 2020; 499 Lewis (2022012709435715500_bib37) 2019 Alonso (2022012709435715500_bib1) 2014; 444 Luger (2022012709435715500_bib43) 2021 Wolz (2022012709435715500_bib71) 2015 Masui (2022012709435715500_bib44) 2013; 763 Remazeilles (2022012709435715500_bib58) 2015 Liao (2022012709435715500_bib40) 2016; 833 Santos (2022012709435715500_bib61) 2017 Ansari (2022012709435715500_bib4) 2012; 13 Pourtsidou (2022012709435715500_bib56) 2017; 470 McKinney (2022012709435715500_bib46) 2010 Peterson (2022012709435715500_bib54) 2009 Mertens (2022012709435715500_bib47) 2018; 478 Jelic (2022012709435715500_bib29) 2008; 389 Olivari (2022012709435715500_bib52) 2015; 456 Santos (2022012709435715500_bib59) 2005; 625 Villaescusa-Navarro (2022012709435715500_bib69) 2018; 866 Hunter (2022012709435715500_bib28) 2007; 9 Kovetz (2022012709435715500_bib36) 2017 Wang (2022012709435715500_bib70) 2020 Ghosh (2022012709435715500_bib25) 2020; 495 Coles (2022012709435715500_bib17) 1991; 248 Chapman (2022012709435715500_bib16) 2012; 429 Planck Collaboration (2022012709435715500_bib55) 2016; 594 Seo (2022012709435715500_bib62) 2010; 721 Simpson (2022012709435715500_bib63) 2020 Santos (2022012709435715500_bib60) 2015 Bharadwaj (2022012709435715500_bib7) 2001; 22 Offringa (2022012709435715500_bib51) 2019; 484 Olivari (2022012709435715500_bib53) 2017; 473 |
| References_xml | – volume: 833 start-page: 289 year: 2016 ident: 2022012709435715500_bib40 publication-title: ApJ doi: 10.3847/1538-4357/833/2/289 – volume: 484 start-page: 2866 year: 2019 ident: 2022012709435715500_bib51 publication-title: MNRAS doi: 10.1093/mnras/stz175 – volume: 398 start-page: 1601 year: 2009 ident: 2022012709435715500_bib23 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.14548.x – volume: 763 start-page: L20 year: 2013 ident: 2022012709435715500_bib44 publication-title: ApJ doi: 10.1088/2041-8205/763/1/L20 – volume: 100 year: 2008 ident: 2022012709435715500_bib14 publication-title: Phys. Rev. Lett. – start-page: 56 volume-title: Data Structures for Statistical Computing in Python year: 2010 ident: 2022012709435715500_bib46 – volume: 13 start-page: 22 year: 2011 ident: 2022012709435715500_bib67 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2011.37 – volume: 132 start-page: 062001 year: 2020 ident: 2022012709435715500_bib41 publication-title: PASP doi: 10.1088/1538-3873/ab5bfd – start-page: 124 volume-title: AJ year: 2021 ident: 2022012709435715500_bib43 doi: 10.3847/1538-3881/abfdb9 – volume-title: Meerklass: MeerKAT Large Area Synoptic Survey year: 2017 ident: 2022012709435715500_bib61 – volume: 538 start-page: 473 year: 2000 ident: 2022012709435715500_bib38 publication-title: ApJ doi: 10.1086/309179 – start-page: 4311 volume-title: MNRAS year: 2015 ident: 2022012709435715500_bib58 – volume: 478 start-page: 3640 year: 2018 ident: 2022012709435715500_bib47 publication-title: MNRAS doi: 10.1093/mnras/sty1207 – volume: 13 start-page: 46 year: 2012 ident: 2022012709435715500_bib4 publication-title: Comptes Rendus Physique doi: 10.1016/j.crhy.2011.11.003 – volume: 476 start-page: 3382 year: 2018 ident: 2022012709435715500_bib3 publication-title: MNRAS doi: 10.1093/mnras/sty346 – volume-title: Getdist: A Python Package for Analysing Monte Carlo Samples year: 2019 ident: 2022012709435715500_bib37 – volume: 474 start-page: 5206 year: 2018 ident: 2022012709435715500_bib35 publication-title: MNRAS doi: 10.1093/mnras/stx2662 – volume: 466 start-page: 2736 year: 2016 ident: 2022012709435715500_bib68 publication-title: MNRAS doi: 10.1093/mnras/stw3224 – volume: 803 start-page: 21 year: 2015 ident: 2022012709435715500_bib11 publication-title: ApJ doi: 10.1088/0004-637X/803/1/21 – volume-title: HI Constraints from the Cross-Correlation of eBOSS Galaxies and Green Bank Telescope Intensity Maps year: 2021 ident: 2022012709435715500_bib73 – volume-title: Cosmology with a SKA Hi Intensity Mapping Survey year: 2015 ident: 2022012709435715500_bib60 doi: 10.22323/1.215.0019 – start-page: 2638 volume-title: MNRAS year: 2021 ident: 2022012709435715500_bib32 – volume: 490 start-page: 1093 year: 2008 ident: 2022012709435715500_bib49 publication-title: A&A doi: 10.1051/0004-6361:200809484 – volume: 564 start-page: A125 year: 2014 ident: 2022012709435715500_bib10 publication-title: A&A doi: 10.1051/0004-6361/201322971 – volume: 499 start-page: 4054 year: 2020 ident: 2022012709435715500_bib20 publication-title: MNRAS doi: 10.1093/mnras/staa2986 – volume: 447 start-page: 400 year: 2014 ident: 2022012709435715500_bib2 publication-title: MNRAS doi: 10.1093/mnras/stu2474 – volume: 457 start-page: 4340 year: 2016 ident: 2022012709435715500_bib34 publication-title: MNRAS doi: 10.1093/mnras/stw248 – volume: 434 start-page: L46 year: 2013 ident: 2022012709435715500_bib65 publication-title: MNRAS doi: 10.1093/mnrasl/slt074 – volume: 479 start-page: 5168 year: 2018 ident: 2022012709435715500_bib9 publication-title: MNRAS doi: 10.1093/mnras/sty1814 – volume: 815 start-page: 51 year: 2015 ident: 2022012709435715500_bib66 publication-title: ApJ doi: 10.1088/0004-637X/815/1/51 – volume: 389 start-page: 1319 year: 2008 ident: 2022012709435715500_bib29 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13634.x – volume: 429 start-page: 165 year: 2012 ident: 2022012709435715500_bib16 publication-title: MNRAS doi: 10.1093/mnras/sts333 – volume: 625 start-page: 575 year: 2005 ident: 2022012709435715500_bib59 publication-title: ApJ doi: 10.1086/429857 – volume: 222 start-page: 22 year: 2016 ident: 2022012709435715500_bib18 publication-title: ApJS doi: 10.3847/0067-0049/222/2/22 – volume: 594 start-page: A13 year: 2016 ident: 2022012709435715500_bib55 publication-title: A&A doi: 10.1051/0004-6361/201525830 – volume: 721 start-page: 164 year: 2010 ident: 2022012709435715500_bib62 publication-title: ApJ doi: 10.1088/0004-637X/721/1/164 – volume-title: Foreground Subtraction in Intensity Mapping with the SKA year: 2015 ident: 2022012709435715500_bib71 doi: 10.22323/1.215.0035 – volume: 83 start-page: 103006 year: 2011 ident: 2022012709435715500_bib42 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.83.103006 – volume: 473 start-page: 4242 year: 2017 ident: 2022012709435715500_bib53 publication-title: MNRAS doi: 10.1093/mnras/stx2621 – volume: 456 start-page: 2749 year: 2015 ident: 2022012709435715500_bib52 publication-title: MNRAS doi: 10.1093/mnras/stv2884 – volume: 502 start-page: 2549 year: 2021 ident: 2022012709435715500_bib64 publication-title: MNRAS doi: 10.1093/mnras/stab027 – volume: 341 start-page: 369 year: 2003 ident: 2022012709435715500_bib22 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06439.x – volume: 476 start-page: 4403 year: 2018 ident: 2022012709435715500_bib13 publication-title: MNRAS doi: 10.1093/mnras/sty410 – volume-title: Gaussian Processes for Machine Learning year: 2006 ident: 2022012709435715500_bib57 – volume: 493 start-page: 1662 year: 2020 ident: 2022012709435715500_bib48 publication-title: MNRAS doi: 10.1093/mnras/staa327 – volume: 355 start-page: 1339 year: 2004 ident: 2022012709435715500_bib5 publication-title: MNRAS doi: 10.1111/j.1365-2966.2004.08416.x – volume: 409 start-page: 1647 year: 2010 ident: 2022012709435715500_bib30 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.17407.x – volume: 454 start-page: 3240 year: 2015 ident: 2022012709435715500_bib8 publication-title: MNRAS doi: 10.1093/mnras/stv2153 – volume: 866 start-page: 135 year: 2018 ident: 2022012709435715500_bib69 publication-title: ApJ doi: 10.3847/1538-4357/aadba0 – volume: 466 start-page: 463 year: 2010 ident: 2022012709435715500_bib15 publication-title: Nature doi: 10.1038/nature09187 – volume: 248 start-page: 1 year: 1991 ident: 2022012709435715500_bib17 publication-title: MNRAS doi: 10.1093/mnras/248.1.1 – volume: 504 start-page: 208 year: 2021 ident: 2022012709435715500_bib21 publication-title: MNRAS doi: 10.1093/mnras/stab856 – volume-title: GPy: A Gaussian Process Framework in Python year: 2012 ident: 2022012709435715500_bib26 – volume-title: 21 cm Intensity Mapping year: 2009 ident: 2022012709435715500_bib54 – volume: 22 start-page: 21 year: 2001 ident: 2022012709435715500_bib7 publication-title: J. Astrophys. Astron. doi: 10.1007/BF02933588 – volume: 500 start-page: 2264 year: 2020 ident: 2022012709435715500_bib27 publication-title: MNRAS doi: 10.1093/mnras/staa3446 – volume-title: Line-Intensity Mapping: 2017 Status Report year: 2017 ident: 2022012709435715500_bib36 – start-page: 5075 volume-title: MNRAS year: 2021 ident: 2022012709435715500_bib45 doi: 10.1093/mnras/stab1688 – volume: 496 start-page: 415 year: 2020 ident: 2022012709435715500_bib19 publication-title: MNRAS doi: 10.1093/mnras/staa1524 – volume: 470 start-page: 4251 year: 2017 ident: 2022012709435715500_bib56 publication-title: MNRAS doi: 10.1093/mnras/stx1479 – volume: 495 start-page: 2813 year: 2020 ident: 2022012709435715500_bib25 publication-title: MNRAS doi: 10.1093/mnras/staa1331 – volume: 434 start-page: 1239 year: 2013 ident: 2022012709435715500_bib6 publication-title: MNRAS doi: 10.1093/mnras/stt1082 – volume: 9 start-page: 90 year: 2007 ident: 2022012709435715500_bib28 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 501 start-page: 4344 year: 2020 ident: 2022012709435715500_bib39 publication-title: MNRAS doi: 10.1093/mnras/staa3856 – volume: 499 start-page: 304 year: 2020 ident: 2022012709435715500_bib12 publication-title: MNRAS doi: 10.1093/mnras/staa2854 – volume: 769 start-page: 154 year: 2013 ident: 2022012709435715500_bib50 publication-title: ApJ doi: 10.1088/0004-637X/769/2/154 – volume: 444 start-page: 3183 year: 2014 ident: 2022012709435715500_bib1 publication-title: MNRAS doi: 10.1093/mnras/stu1666 – volume: 464 start-page: 4938 year: 2016 ident: 2022012709435715500_bib72 publication-title: MNRAS doi: 10.1093/mnras/stw2556 – volume-title: SciPy: Open Source Scientific Tools for Python year: 2001 ident: 2022012709435715500_bib31 – start-page: 1463 volume-title: MNRAS year: 2020 ident: 2022012709435715500_bib33 – volume-title: Marginalised Gaussian Processes with Nested Sampling year: 2020 ident: 2022012709435715500_bib63 – start-page: 3698 volume-title: MNRAS year: 2020 ident: 2022012709435715500_bib70 doi: 10.1093/mnras/stab1365 – volume: 488 start-page: 4271 year: 2019 ident: 2022012709435715500_bib24 publication-title: MNRAS doi: 10.1093/mnras/stz1937 |
| SSID | ssj0004326 |
| Score | 2.5046217 |
| Snippet | ABSTRACT
We apply for the first time Gaussian Process Regression (GPR) as a foreground removal technique in the context of single-dish, low redshift H i... We apply for the first time Gaussian Process Regression (GPR) as a foreground removal technique in the context of single-dish, low redshift H i intensity... We apply for the first time Gaussian Process Regression (GPR) as a foreground removal technique in the context of single-dish, low redshift H i intensity... |
| SourceID | proquest crossref oup |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5872 |
| SubjectTerms | Channels Context Frequency ranges Gaussian process Mapping Principal components analysis Red shift Toolkits |
| Title | Gaussian Process Regression for foreground removal in H i Intensity Mapping experiments |
| URI | https://www.proquest.com/docview/3128034904 |
| Volume | 510 |
| WOSCitedRecordID | wos000764893600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1365-2966 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004326 issn: 0035-8711 databaseCode: TOX dateStart: 18591101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yPHjxx1Q2nRJE9FTW_Gi7Hsdw7uCmyIR5Kmn7MgZbJ-0m7ObVf9O_xCTtNiaKeii09LWUvNfky0u-7yF0KZVT3dihFgBQi4fCtnyXh5bDhRoMJaPSNUThO6_XawwG_kMhFp19s4Tvs_okSUVWV1gpVFBdK38Sp6Ejun8_WDMgmSmsZgQY1RSArOQZvz6-MfxsUNqWfbAZWNp7__ikfbRboEfczN19gLYgKaNKM9P57Olkga-wOc_TFVkZVbsKE09TkzpXN1vjkQKo5uoQPd-KeaYplLggC-BHGOa7YhOsoKw-QJM-khinMJmqkMSjBHc-3t5HuNj5PlvgrtAKD0O8LhWQHaGn9k2_1bGKQgtWxFxvZgEHQimJfBJHkhCwhWREMKAeARpHwLgAT1BPwRPb8yWTeqIWx9QOidT6aOwYlZJpAhWEXa7mH-DHDriCh34UCkEh1pI3IFXnIavIWrZ_EBUq5LoYxjjIV8NZYNo2WLZtFV2v7F9y_Y0fLS-UO381qi29HRQ_axYwokt0cd_mJ395xynaoZoDYTai1VBpls7hDG1Hr7NRlp6buPwEMhrmEg |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gaussian+Process+Regression+for+foreground+removal+in+H%E2%80%89+i+Intensity+Mapping+experiments&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Soares%2C+Paula+S&rft.au=Watkinson%2C+Catherine+A&rft.au=Cunnington%2C+Steven&rft.au=Pourtsidou%2C+Alkistis&rft.date=2022-03-01&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=510&rft.issue=4&rft.spage=5872&rft.epage=5890&rft_id=info:doi/10.1093%2Fmnras%2Fstab2594&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_stab2594 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |