Gaussian Process Regression for foreground removal in H i Intensity Mapping experiments

ABSTRACT We apply for the first time Gaussian Process Regression (GPR) as a foreground removal technique in the context of single-dish, low redshift H i intensity mapping, and present an open-source python toolkit for doing so. We use MeerKAT and SKA1-MID-like simulations of 21 cm foregrounds (inclu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Monthly notices of the Royal Astronomical Society Ročník 510; číslo 4; s. 5872 - 5890
Hlavní autoři: Soares, Paula S, Watkinson, Catherine A, Cunnington, Steven, Pourtsidou, Alkistis
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Oxford University Press 01.03.2022
Témata:
ISSN:0035-8711, 1365-2966
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABSTRACT We apply for the first time Gaussian Process Regression (GPR) as a foreground removal technique in the context of single-dish, low redshift H i intensity mapping, and present an open-source python toolkit for doing so. We use MeerKAT and SKA1-MID-like simulations of 21 cm foregrounds (including polarization leakage), H i cosmological signal, and instrumental noise. We find that it is possible to use GPR as a foreground removal technique in this context, and that it is better suited in some cases to recover the H i power spectrum than principal component analysis (PCA), especially on small scales. GPR is especially good at recovering the radial power spectrum, outperforming PCA when considering the full bandwidth of our data. Both methods are worse at recovering the transverse power spectrum, since they rely on frequency-only covariance information. When halving our data along frequency, we find that GPR performs better in the low-frequency range, where foregrounds are brighter. It performs worse than PCA when frequency channels are missing, to emulate RFI flagging. We conclude that GPR is an excellent foreground removal option for the case of single-dish, low-redshift H i intensity mapping in the absence of missing frequency channels. Our python toolkit gpr4im and the data used in this analysis are publicly available on GitHub.
AbstractList We apply for the first time Gaussian Process Regression (GPR) as a foreground removal technique in the context of single-dish, low redshift H i intensity mapping, and present an open-source python toolkit for doing so. We use MeerKAT and SKA1-MID-like simulations of 21 cm foregrounds (including polarization leakage), H i cosmological signal, and instrumental noise. We find that it is possible to use GPR as a foreground removal technique in this context, and that it is better suited in some cases to recover the H i power spectrum than principal component analysis (PCA), especially on small scales. GPR is especially good at recovering the radial power spectrum, outperforming PCA when considering the full bandwidth of our data. Both methods are worse at recovering the transverse power spectrum, since they rely on frequency-only covariance information. When halving our data along frequency, we find that GPR performs better in the low-frequency range, where foregrounds are brighter. It performs worse than PCA when frequency channels are missing, to emulate RFI flagging. We conclude that GPR is an excellent foreground removal option for the case of single-dish, low-redshift H i intensity mapping in the absence of missing frequency channels. Our python toolkit gpr4im and the data used in this analysis are publicly available on GitHub.
ABSTRACT We apply for the first time Gaussian Process Regression (GPR) as a foreground removal technique in the context of single-dish, low redshift H i intensity mapping, and present an open-source python toolkit for doing so. We use MeerKAT and SKA1-MID-like simulations of 21 cm foregrounds (including polarization leakage), H i cosmological signal, and instrumental noise. We find that it is possible to use GPR as a foreground removal technique in this context, and that it is better suited in some cases to recover the H i power spectrum than principal component analysis (PCA), especially on small scales. GPR is especially good at recovering the radial power spectrum, outperforming PCA when considering the full bandwidth of our data. Both methods are worse at recovering the transverse power spectrum, since they rely on frequency-only covariance information. When halving our data along frequency, we find that GPR performs better in the low-frequency range, where foregrounds are brighter. It performs worse than PCA when frequency channels are missing, to emulate RFI flagging. We conclude that GPR is an excellent foreground removal option for the case of single-dish, low-redshift H i intensity mapping in the absence of missing frequency channels. Our python toolkit gpr4im and the data used in this analysis are publicly available on GitHub.
We apply for the first time Gaussian Process Regression (GPR) as a foreground removal technique in the context of single-dish, low redshift H i intensity mapping, and present an open-source python toolkit for doing so. We use MeerKAT and SKA1-MID-like simulations of 21 cm foregrounds (including polarization leakage), H i cosmological signal, and instrumental noise. We find that it is possible to use GPR as a foreground removal technique in this context, and that it is better suited in some cases to recover the H i power spectrum than principal component analysis (PCA), especially on small scales. GPR is especially good at recovering the radial power spectrum, outperforming PCA when considering the full bandwidth of our data. Both methods are worse at recovering the transverse power spectrum, since they rely on frequency-only covariance information. When halving our data along frequency, we find that GPR performs better in the low-frequency range, where foregrounds are brighter. It performs worse than PCA when frequency channels are missing, to emulate RFI flagging. We conclude that GPR is an excellent foreground removal option for the case of single-dish, low-redshift H i intensity mapping in the absence of missing frequency channels. Our python toolkit gpr4im and the data used in this analysis are publicly available on GitHub.
Author Watkinson, Catherine A
Pourtsidou, Alkistis
Soares, Paula S
Cunnington, Steven
Author_xml – sequence: 1
  givenname: Paula S
  orcidid: 0000-0002-5218-6033
  surname: Soares
  fullname: Soares, Paula S
  email: p.s.soares@qmul.ac.uk
– sequence: 2
  givenname: Catherine A
  surname: Watkinson
  fullname: Watkinson, Catherine A
– sequence: 3
  givenname: Steven
  orcidid: 0000-0001-6594-107X
  surname: Cunnington
  fullname: Cunnington, Steven
– sequence: 4
  givenname: Alkistis
  orcidid: 0000-0001-9110-5550
  surname: Pourtsidou
  fullname: Pourtsidou, Alkistis
BookMark eNqFkE9LAzEQxYNUsFavngOePGybSfbvUYq2hYoievC0pLuTktIma5IVe_Pq1_STuLV6EcTD8GB4vxneOyY9Yw0ScgZsCKwQo41x0o98kAueFPEB6YNIk4gXadojfcZEEuUZwBE59n7FGIsFT_vkaSJb77U09M7ZCr2n97h0nWprqLJuN93CtqamDjf2Ra6pNnT68fau6cwENF6HLb2RTaPNkuJrg05v0AR_Qg6VXHs8_dYBeby-ehhPo_ntZDa-nEeVSLMQYYzAOVQF1JUCQCaVACmQZ4C8rlDEEjPJM5amLCuUUIznvK45W4DKkyIRA3K-v9s4-9yiD-XKts50L0sBPGciLrqsAxLvXZWz3jtUZaWDDF3K4KRel8DKXYnlV4nlT4kdNvyFNV086bZ_Axd7wLbNf95PU_WJkw
CitedBy_id crossref_primary_10_1093_mnras_stab3064
crossref_primary_10_1093_mnras_stad685
crossref_primary_10_1093_mnras_stac576
crossref_primary_10_1093_mnras_stad127
crossref_primary_10_1088_1475_7516_2023_06_052
crossref_primary_10_1007_s41114_022_00040_z
crossref_primary_10_1016_j_ascom_2023_100710
crossref_primary_10_3847_1538_4357_ac7a34
crossref_primary_10_3847_1538_4357_acb822
crossref_primary_10_1093_mnras_stad526
crossref_primary_10_1088_1475_7516_2022_01_004
crossref_primary_10_3847_1538_4357_ac6875
crossref_primary_10_1093_mnras_stad2102
crossref_primary_10_3847_1538_4357_add72b
crossref_primary_10_1093_mnras_stad1567
crossref_primary_10_1088_1475_7516_2023_02_010
crossref_primary_10_1093_mnras_stac2484
crossref_primary_10_1093_mnras_staf195
crossref_primary_10_1093_mnras_stab2811
crossref_primary_10_1007_s11433_022_2104_7
crossref_primary_10_3847_1538_4357_ad8bab
Cites_doi 10.3847/1538-4357/833/2/289
10.1093/mnras/stz175
10.1111/j.1365-2966.2009.14548.x
10.1088/2041-8205/763/1/L20
10.1109/MCSE.2011.37
10.1088/1538-3873/ab5bfd
10.3847/1538-3881/abfdb9
10.1086/309179
10.1093/mnras/sty1207
10.1016/j.crhy.2011.11.003
10.1093/mnras/sty346
10.1093/mnras/stx2662
10.1093/mnras/stw3224
10.1088/0004-637X/803/1/21
10.22323/1.215.0019
10.1051/0004-6361:200809484
10.1051/0004-6361/201322971
10.1093/mnras/staa2986
10.1093/mnras/stu2474
10.1093/mnras/stw248
10.1093/mnrasl/slt074
10.1093/mnras/sty1814
10.1088/0004-637X/815/1/51
10.1111/j.1365-2966.2008.13634.x
10.1093/mnras/sts333
10.1086/429857
10.3847/0067-0049/222/2/22
10.1051/0004-6361/201525830
10.1088/0004-637X/721/1/164
10.22323/1.215.0035
10.1103/PhysRevD.83.103006
10.1093/mnras/stx2621
10.1093/mnras/stv2884
10.1093/mnras/stab027
10.1046/j.1365-8711.2003.06439.x
10.1093/mnras/sty410
10.1093/mnras/staa327
10.1111/j.1365-2966.2004.08416.x
10.1111/j.1365-2966.2010.17407.x
10.1093/mnras/stv2153
10.3847/1538-4357/aadba0
10.1038/nature09187
10.1093/mnras/248.1.1
10.1093/mnras/stab856
10.1007/BF02933588
10.1093/mnras/staa3446
10.1093/mnras/stab1688
10.1093/mnras/staa1524
10.1093/mnras/stx1479
10.1093/mnras/staa1331
10.1093/mnras/stt1082
10.1109/MCSE.2007.55
10.1093/mnras/staa3856
10.1093/mnras/staa2854
10.1088/0004-637X/769/2/154
10.1093/mnras/stu1666
10.1093/mnras/stw2556
10.1093/mnras/stab1365
10.1093/mnras/stz1937
ContentType Journal Article
Copyright 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021
2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society
Copyright_xml – notice: 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2021
– notice: 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1093/mnras/stab2594
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 5890
ExternalDocumentID 10_1093_mnras_stab2594
10.1093/mnras/stab2594
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABGNP
ABVLG
ACUXJ
AHGBF
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
8FD
ABAZT
H8D
L7M
ID FETCH-LOGICAL-c367t-e4e1221c91dcf11e0af31a3e271e2dce34ae7a27066079f3f0282dd20b1f85953
IEDL.DBID TOX
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000764893600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0035-8711
IngestDate Sat Jul 26 00:05:48 EDT 2025
Sat Nov 29 02:38:26 EST 2025
Tue Nov 18 22:06:54 EST 2025
Fri Nov 15 02:52:50 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords radio lines: general
cosmology: observations
methods: data analysis
large-scale structure of Universe
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-e4e1221c91dcf11e0af31a3e271e2dce34ae7a27066079f3f0282dd20b1f85953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6594-107X
0000-0002-5218-6033
0000-0001-9110-5550
PQID 3128034904
PQPubID 42411
PageCount 19
ParticipantIDs proquest_journals_3128034904
crossref_citationtrail_10_1093_mnras_stab2594
crossref_primary_10_1093_mnras_stab2594
oup_primary_10_1093_mnras_stab2594
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Battye (2022012709435715500_bib5) 2004; 355
Wolz (2022012709435715500_bib73) 2021
Blake (2022012709435715500_bib9) 2018; 479
Moore (2022012709435715500_bib50) 2013; 769
Cunnington (2022012709435715500_bib21) 2021; 504
Bull (2022012709435715500_bib11) 2015; 803
Castorina (2022012709435715500_bib13) 2018; 476
Matshawule (2022012709435715500_bib45) 2021
Alonso (2022012709435715500_bib2) 2014; 447
Jones (2022012709435715500_bib31) 2001
Miville-Deschenes (2022012709435715500_bib49) 2008; 490
Kern (2022012709435715500_bib33) 2020
Dickinson (2022012709435715500_bib22) 2003; 341
Lewis (2022012709435715500_bib38) 2000; 538
Hothi (2022012709435715500_bib27) 2020; 500
Liu (2022012709435715500_bib42) 2011; 83
Chang (2022012709435715500_bib15) 2010; 466
Cunnington (2022012709435715500_bib19) 2020; 496
Jelic (2022012709435715500_bib30) 2010; 409
GPy since (2022012709435715500_bib26) 2012
Anderson (2022012709435715500_bib3) 2018; 476
Switzer (2022012709435715500_bib65) 2013; 434
Villaescusa-Navarro (2022012709435715500_bib68) 2016; 466
Li (2022012709435715500_bib39) 2020; 501
van der Walt (2022012709435715500_bib67) 2011; 13
Carucci (2022012709435715500_bib12) 2020; 499
Switzer (2022012709435715500_bib66) 2015; 815
Buchner (2022012709435715500_bib10) 2014; 564
Feroz (2022012709435715500_bib23) 2009; 398
Chang (2022012709435715500_bib14) 2008; 100
Liu (2022012709435715500_bib41) 2020; 132
Mertens (2022012709435715500_bib48) 2020; 493
Klypin (2022012709435715500_bib34) 2016; 457
Bigot-Sazy (2022012709435715500_bib8) 2015; 454
Rasmussen (2022012709435715500_bib57) 2006
Battye (2022012709435715500_bib6) 2013; 434
Kennedy (2022012709435715500_bib32) 2021
Soares (2022012709435715500_bib64) 2021; 502
Wolz (2022012709435715500_bib72) 2016; 464
Croton (2022012709435715500_bib18) 2016; 222
Knebe (2022012709435715500_bib35) 2018; 474
Gehlot (2022012709435715500_bib24) 2019; 488
Cunnington (2022012709435715500_bib20) 2020; 499
Lewis (2022012709435715500_bib37) 2019
Alonso (2022012709435715500_bib1) 2014; 444
Luger (2022012709435715500_bib43) 2021
Wolz (2022012709435715500_bib71) 2015
Masui (2022012709435715500_bib44) 2013; 763
Remazeilles (2022012709435715500_bib58) 2015
Liao (2022012709435715500_bib40) 2016; 833
Santos (2022012709435715500_bib61) 2017
Ansari (2022012709435715500_bib4) 2012; 13
Pourtsidou (2022012709435715500_bib56) 2017; 470
McKinney (2022012709435715500_bib46) 2010
Peterson (2022012709435715500_bib54) 2009
Mertens (2022012709435715500_bib47) 2018; 478
Jelic (2022012709435715500_bib29) 2008; 389
Olivari (2022012709435715500_bib52) 2015; 456
Santos (2022012709435715500_bib59) 2005; 625
Villaescusa-Navarro (2022012709435715500_bib69) 2018; 866
Hunter (2022012709435715500_bib28) 2007; 9
Kovetz (2022012709435715500_bib36) 2017
Wang (2022012709435715500_bib70) 2020
Ghosh (2022012709435715500_bib25) 2020; 495
Coles (2022012709435715500_bib17) 1991; 248
Chapman (2022012709435715500_bib16) 2012; 429
Planck Collaboration (2022012709435715500_bib55) 2016; 594
Seo (2022012709435715500_bib62) 2010; 721
Simpson (2022012709435715500_bib63) 2020
Santos (2022012709435715500_bib60) 2015
Bharadwaj (2022012709435715500_bib7) 2001; 22
Offringa (2022012709435715500_bib51) 2019; 484
Olivari (2022012709435715500_bib53) 2017; 473
References_xml – volume: 833
  start-page: 289
  year: 2016
  ident: 2022012709435715500_bib40
  publication-title: ApJ
  doi: 10.3847/1538-4357/833/2/289
– volume: 484
  start-page: 2866
  year: 2019
  ident: 2022012709435715500_bib51
  publication-title: MNRAS
  doi: 10.1093/mnras/stz175
– volume: 398
  start-page: 1601
  year: 2009
  ident: 2022012709435715500_bib23
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.14548.x
– volume: 763
  start-page: L20
  year: 2013
  ident: 2022012709435715500_bib44
  publication-title: ApJ
  doi: 10.1088/2041-8205/763/1/L20
– volume: 100
  year: 2008
  ident: 2022012709435715500_bib14
  publication-title: Phys. Rev. Lett.
– start-page: 56
  volume-title: Data Structures for Statistical Computing in Python
  year: 2010
  ident: 2022012709435715500_bib46
– volume: 13
  start-page: 22
  year: 2011
  ident: 2022012709435715500_bib67
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2011.37
– volume: 132
  start-page: 062001
  year: 2020
  ident: 2022012709435715500_bib41
  publication-title: PASP
  doi: 10.1088/1538-3873/ab5bfd
– start-page: 124
  volume-title: AJ
  year: 2021
  ident: 2022012709435715500_bib43
  doi: 10.3847/1538-3881/abfdb9
– volume-title: Meerklass: MeerKAT Large Area Synoptic Survey
  year: 2017
  ident: 2022012709435715500_bib61
– volume: 538
  start-page: 473
  year: 2000
  ident: 2022012709435715500_bib38
  publication-title: ApJ
  doi: 10.1086/309179
– start-page: 4311
  volume-title: MNRAS
  year: 2015
  ident: 2022012709435715500_bib58
– volume: 478
  start-page: 3640
  year: 2018
  ident: 2022012709435715500_bib47
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1207
– volume: 13
  start-page: 46
  year: 2012
  ident: 2022012709435715500_bib4
  publication-title: Comptes Rendus Physique
  doi: 10.1016/j.crhy.2011.11.003
– volume: 476
  start-page: 3382
  year: 2018
  ident: 2022012709435715500_bib3
  publication-title: MNRAS
  doi: 10.1093/mnras/sty346
– volume-title: Getdist: A Python Package for Analysing Monte Carlo Samples
  year: 2019
  ident: 2022012709435715500_bib37
– volume: 474
  start-page: 5206
  year: 2018
  ident: 2022012709435715500_bib35
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2662
– volume: 466
  start-page: 2736
  year: 2016
  ident: 2022012709435715500_bib68
  publication-title: MNRAS
  doi: 10.1093/mnras/stw3224
– volume: 803
  start-page: 21
  year: 2015
  ident: 2022012709435715500_bib11
  publication-title: ApJ
  doi: 10.1088/0004-637X/803/1/21
– volume-title: HI Constraints from the Cross-Correlation of eBOSS Galaxies and Green Bank Telescope Intensity Maps
  year: 2021
  ident: 2022012709435715500_bib73
– volume-title: Cosmology with a SKA Hi Intensity Mapping Survey
  year: 2015
  ident: 2022012709435715500_bib60
  doi: 10.22323/1.215.0019
– start-page: 2638
  volume-title: MNRAS
  year: 2021
  ident: 2022012709435715500_bib32
– volume: 490
  start-page: 1093
  year: 2008
  ident: 2022012709435715500_bib49
  publication-title: A&A
  doi: 10.1051/0004-6361:200809484
– volume: 564
  start-page: A125
  year: 2014
  ident: 2022012709435715500_bib10
  publication-title: A&A
  doi: 10.1051/0004-6361/201322971
– volume: 499
  start-page: 4054
  year: 2020
  ident: 2022012709435715500_bib20
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2986
– volume: 447
  start-page: 400
  year: 2014
  ident: 2022012709435715500_bib2
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2474
– volume: 457
  start-page: 4340
  year: 2016
  ident: 2022012709435715500_bib34
  publication-title: MNRAS
  doi: 10.1093/mnras/stw248
– volume: 434
  start-page: L46
  year: 2013
  ident: 2022012709435715500_bib65
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slt074
– volume: 479
  start-page: 5168
  year: 2018
  ident: 2022012709435715500_bib9
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1814
– volume: 815
  start-page: 51
  year: 2015
  ident: 2022012709435715500_bib66
  publication-title: ApJ
  doi: 10.1088/0004-637X/815/1/51
– volume: 389
  start-page: 1319
  year: 2008
  ident: 2022012709435715500_bib29
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13634.x
– volume: 429
  start-page: 165
  year: 2012
  ident: 2022012709435715500_bib16
  publication-title: MNRAS
  doi: 10.1093/mnras/sts333
– volume: 625
  start-page: 575
  year: 2005
  ident: 2022012709435715500_bib59
  publication-title: ApJ
  doi: 10.1086/429857
– volume: 222
  start-page: 22
  year: 2016
  ident: 2022012709435715500_bib18
  publication-title: ApJS
  doi: 10.3847/0067-0049/222/2/22
– volume: 594
  start-page: A13
  year: 2016
  ident: 2022012709435715500_bib55
  publication-title: A&A
  doi: 10.1051/0004-6361/201525830
– volume: 721
  start-page: 164
  year: 2010
  ident: 2022012709435715500_bib62
  publication-title: ApJ
  doi: 10.1088/0004-637X/721/1/164
– volume-title: Foreground Subtraction in Intensity Mapping with the SKA
  year: 2015
  ident: 2022012709435715500_bib71
  doi: 10.22323/1.215.0035
– volume: 83
  start-page: 103006
  year: 2011
  ident: 2022012709435715500_bib42
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.83.103006
– volume: 473
  start-page: 4242
  year: 2017
  ident: 2022012709435715500_bib53
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2621
– volume: 456
  start-page: 2749
  year: 2015
  ident: 2022012709435715500_bib52
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2884
– volume: 502
  start-page: 2549
  year: 2021
  ident: 2022012709435715500_bib64
  publication-title: MNRAS
  doi: 10.1093/mnras/stab027
– volume: 341
  start-page: 369
  year: 2003
  ident: 2022012709435715500_bib22
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06439.x
– volume: 476
  start-page: 4403
  year: 2018
  ident: 2022012709435715500_bib13
  publication-title: MNRAS
  doi: 10.1093/mnras/sty410
– volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: 2022012709435715500_bib57
– volume: 493
  start-page: 1662
  year: 2020
  ident: 2022012709435715500_bib48
  publication-title: MNRAS
  doi: 10.1093/mnras/staa327
– volume: 355
  start-page: 1339
  year: 2004
  ident: 2022012709435715500_bib5
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.08416.x
– volume: 409
  start-page: 1647
  year: 2010
  ident: 2022012709435715500_bib30
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17407.x
– volume: 454
  start-page: 3240
  year: 2015
  ident: 2022012709435715500_bib8
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2153
– volume: 866
  start-page: 135
  year: 2018
  ident: 2022012709435715500_bib69
  publication-title: ApJ
  doi: 10.3847/1538-4357/aadba0
– volume: 466
  start-page: 463
  year: 2010
  ident: 2022012709435715500_bib15
  publication-title: Nature
  doi: 10.1038/nature09187
– volume: 248
  start-page: 1
  year: 1991
  ident: 2022012709435715500_bib17
  publication-title: MNRAS
  doi: 10.1093/mnras/248.1.1
– volume: 504
  start-page: 208
  year: 2021
  ident: 2022012709435715500_bib21
  publication-title: MNRAS
  doi: 10.1093/mnras/stab856
– volume-title: GPy: A Gaussian Process Framework in Python
  year: 2012
  ident: 2022012709435715500_bib26
– volume-title: 21 cm Intensity Mapping
  year: 2009
  ident: 2022012709435715500_bib54
– volume: 22
  start-page: 21
  year: 2001
  ident: 2022012709435715500_bib7
  publication-title: J. Astrophys. Astron.
  doi: 10.1007/BF02933588
– volume: 500
  start-page: 2264
  year: 2020
  ident: 2022012709435715500_bib27
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3446
– volume-title: Line-Intensity Mapping: 2017 Status Report
  year: 2017
  ident: 2022012709435715500_bib36
– start-page: 5075
  volume-title: MNRAS
  year: 2021
  ident: 2022012709435715500_bib45
  doi: 10.1093/mnras/stab1688
– volume: 496
  start-page: 415
  year: 2020
  ident: 2022012709435715500_bib19
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1524
– volume: 470
  start-page: 4251
  year: 2017
  ident: 2022012709435715500_bib56
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1479
– volume: 495
  start-page: 2813
  year: 2020
  ident: 2022012709435715500_bib25
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1331
– volume: 434
  start-page: 1239
  year: 2013
  ident: 2022012709435715500_bib6
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1082
– volume: 9
  start-page: 90
  year: 2007
  ident: 2022012709435715500_bib28
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 501
  start-page: 4344
  year: 2020
  ident: 2022012709435715500_bib39
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3856
– volume: 499
  start-page: 304
  year: 2020
  ident: 2022012709435715500_bib12
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2854
– volume: 769
  start-page: 154
  year: 2013
  ident: 2022012709435715500_bib50
  publication-title: ApJ
  doi: 10.1088/0004-637X/769/2/154
– volume: 444
  start-page: 3183
  year: 2014
  ident: 2022012709435715500_bib1
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1666
– volume: 464
  start-page: 4938
  year: 2016
  ident: 2022012709435715500_bib72
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2556
– volume-title: SciPy: Open Source Scientific Tools for Python
  year: 2001
  ident: 2022012709435715500_bib31
– start-page: 1463
  volume-title: MNRAS
  year: 2020
  ident: 2022012709435715500_bib33
– volume-title: Marginalised Gaussian Processes with Nested Sampling
  year: 2020
  ident: 2022012709435715500_bib63
– start-page:  3698
  volume-title: MNRAS
  year: 2020
  ident: 2022012709435715500_bib70
  doi: 10.1093/mnras/stab1365
– volume: 488
  start-page: 4271
  year: 2019
  ident: 2022012709435715500_bib24
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1937
SSID ssj0004326
Score 2.5046217
Snippet ABSTRACT We apply for the first time Gaussian Process Regression (GPR) as a foreground removal technique in the context of single-dish, low redshift H i...
We apply for the first time Gaussian Process Regression (GPR) as a foreground removal technique in the context of single-dish, low redshift H i intensity...
We apply for the first time Gaussian Process Regression (GPR) as a foreground removal technique in the context of single-dish, low redshift H i intensity...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5872
SubjectTerms Channels
Context
Frequency ranges
Gaussian process
Mapping
Principal components analysis
Red shift
Toolkits
Title Gaussian Process Regression for foreground removal in H i Intensity Mapping experiments
URI https://www.proquest.com/docview/3128034904
Volume 510
WOSCitedRecordID wos000764893600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Academic Journals (Open Access)
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004326
  issn: 0035-8711
  databaseCode: TOX
  dateStart: 18591101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8iHrz4MRWnU4KInorNx8x6HMO5g1ORCfNU0uRFBq6Tdgq7efXf9C8xSbuNiaIeCi1NS3kvzfvlffweQsci4aGuawgSYOcB51QFDQkQcGDGGvRI1Y1n178S19eNfj-6Lcmi829C-BE7G6aZzM8sVkosVHfMn6TecDO6d9OfV0Ay31jNEzDaLQCZ0TN-fXzB_CyUtE3XYG9Y2uv_-KQNtFaiR9ws1L2JliCtoN1m7vzZo-EEn2B_Xrgr8gqqdi0mHmXedW5vtp4GFqD6qy30cClfcldCictiAXwHj0VWbIotlHUHuKKPVOMMhiM7JfEgxZ2Pt_cBLjPfxxPclY7h4RHPWwXk2-i-fdFrdYKy0UKg2LkYB8CBUEpURLQyhEAoDSOSARUEqFbAuAQhqbDwJBSRYcZt1LSmYUKM40djO2g5HaWwizDXKpFESguD7PJgIim0lMrFt6kyiWBVFEzlH6uShdw1w3iKi2g4i71s46lsq-h0Nv654N_4ceSRVeevg2pTbcflz5rHjLgWXTwK-d5f3rGPVqmrgfCJaDW0PM5e4ACtqNfxIM8O_bz8BGEo5n4
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gaussian+Process+Regression+for+foreground+removal+in+H%E2%80%89+i+Intensity+Mapping+experiments&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Soares%2C+Paula+S&rft.au=Watkinson%2C+Catherine+A&rft.au=Cunnington%2C+Steven&rft.au=Pourtsidou%2C+Alkistis&rft.date=2022-03-01&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=510&rft.issue=4&rft.spage=5872&rft.epage=5890&rft_id=info:doi/10.1093%2Fmnras%2Fstab2594&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_stab2594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon