Battery thermal management of intelligent-connected electric vehicles at low temperature based on NMPC
Electric vehicles running at low temperature causes range anxiety and safety hazards because of the reduction of available battery capacity and battery degradation caused by lithium plating. An optimization strategy for low temperature heating of intelligent-connected electric vehicle battery pack i...
Uloženo v:
| Vydáno v: | Energy (Oxford) Ročník 244; s. 122571 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
01.04.2022
Elsevier BV |
| Témata: | |
| ISSN: | 0360-5442, 1873-6785 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Electric vehicles running at low temperature causes range anxiety and safety hazards because of the reduction of available battery capacity and battery degradation caused by lithium plating. An optimization strategy for low temperature heating of intelligent-connected electric vehicle battery pack is proposed in this paper. Based on the Bernardi's theory, a control-oriented model of the battery pack heating system is established, which considers the effect of low temperature discharge on battery aging. A hybrid heating method combining heat pump air conditioning and electric heater is adopted to increase the heating rate and reduce energy consumption. Aiming at the problem that the battery heating process is affected by the time-varying parameters of the battery and the running state of the electric vehicle leading to the nonlinearity of the system, a nonlinear model predictive control (NMPC) heating optimization strategy is proposed. And a multi-objective optimization function constrained by many variables such as compressor speed is established to adjust battery temperature and energy consumption. Moreover, at each sampling point in the prediction time domain of NMPC, the future vehicle speed prediction information obtained based on vehicle-to-cloud communication is introduced into the heating process as interference. The simulation results show that compared with using electric heater alone, the heating time of the method proposed in this paper is shortened by 29%, and the energy consumption is reduced by 45%.
•An electrothermal coupling model of battery pack considering aging is established.•NMPC hybrid heating method combines heat pump air conditioning and electric heater.•Vehicle-to-cloud information is integrated into the battery pack heating process. |
|---|---|
| AbstractList | Electric vehicles running at low temperature causes range anxiety and safety hazards because of the reduction of available battery capacity and battery degradation caused by lithium plating. An optimization strategy for low temperature heating of intelligent-connected electric vehicle battery pack is proposed in this paper. Based on the Bernardi's theory, a control-oriented model of the battery pack heating system is established, which considers the effect of low temperature discharge on battery aging. A hybrid heating method combining heat pump air conditioning and electric heater is adopted to increase the heating rate and reduce energy consumption. Aiming at the problem that the battery heating process is affected by the time-varying parameters of the battery and the running state of the electric vehicle leading to the nonlinearity of the system, a nonlinear model predictive control (NMPC) heating optimization strategy is proposed. And a multi-objective optimization function constrained by many variables such as compressor speed is established to adjust battery temperature and energy consumption. Moreover, at each sampling point in the prediction time domain of NMPC, the future vehicle speed prediction information obtained based on vehicle-to-cloud communication is introduced into the heating process as interference. The simulation results show that compared with using electric heater alone, the heating time of the method proposed in this paper is shortened by 29%, and the energy consumption is reduced by 45%. Electric vehicles running at low temperature causes range anxiety and safety hazards because of the reduction of available battery capacity and battery degradation caused by lithium plating. An optimization strategy for low temperature heating of intelligent-connected electric vehicle battery pack is proposed in this paper. Based on the Bernardi's theory, a control-oriented model of the battery pack heating system is established, which considers the effect of low temperature discharge on battery aging. A hybrid heating method combining heat pump air conditioning and electric heater is adopted to increase the heating rate and reduce energy consumption. Aiming at the problem that the battery heating process is affected by the time-varying parameters of the battery and the running state of the electric vehicle leading to the nonlinearity of the system, a nonlinear model predictive control (NMPC) heating optimization strategy is proposed. And a multi-objective optimization function constrained by many variables such as compressor speed is established to adjust battery temperature and energy consumption. Moreover, at each sampling point in the prediction time domain of NMPC, the future vehicle speed prediction information obtained based on vehicle-to-cloud communication is introduced into the heating process as interference. The simulation results show that compared with using electric heater alone, the heating time of the method proposed in this paper is shortened by 29%, and the energy consumption is reduced by 45%. •An electrothermal coupling model of battery pack considering aging is established.•NMPC hybrid heating method combines heat pump air conditioning and electric heater.•Vehicle-to-cloud information is integrated into the battery pack heating process. |
| ArticleNumber | 122571 |
| Author | Ding, Hao Gao, Jinwu Liu, Yongqin Ma, Yan |
| Author_xml | – sequence: 1 givenname: Yan surname: Ma fullname: Ma, Yan email: mayan_maria@163.com organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130022, China – sequence: 2 givenname: Hao surname: Ding fullname: Ding, Hao organization: Department of Control Science and Engineering, Jilin University, Changchun, 130012, China – sequence: 3 givenname: Yongqin surname: Liu fullname: Liu, Yongqin organization: Department of Control Science and Engineering, Jilin University, Changchun, 130012, China – sequence: 4 givenname: Jinwu surname: Gao fullname: Gao, Jinwu organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130022, China |
| BookMark | eNqFkMFuEzEQhi1UJNLCG3CwxIXLBs967Y05IEFEC1JpOcDZ8nrHqaNdO9hOUd4eR8upBziNRvr-XzPfJbkIMSAhr4GtgYF8t19jwLQ7rVvWwhraVvTwjKxg0_NG9htxQVaMS9aIrmtfkMuc94wxsVFqRdwnUwqmEy0PmGYz0dkEs8MZQ6HRUR8KTpPf1bWxMQS0BUeKU53JW_qID95OmKkpdIq_acH5gMmUY0I6mFzRGOjdt-_bl-S5M1PGV3_nFfl5_fnH9ktze3_zdfvxtrFc9qVBYM7V65UDsKMDJ0fkXEiOjg8Ig4Ch71TbjY4rNQAqZkaFrHeivgPO8ivyduk9pPjriLno2WdbXzAB4zHrVnLZ9VwIqOibJ-g-HlOo150pJVXXclapbqFsijkndPqQ_GzSSQPTZ_l6rxf5-ixfL_Jr7P2TmPXFFB9DScZP_wt_WMJYTT16TDpbj8Hi6FMVr8fo_13wBwgIpVk |
| CitedBy_id | crossref_primary_10_1039_D3SE00066D crossref_primary_10_1007_s43069_023_00228_1 crossref_primary_10_1016_j_energy_2025_135102 crossref_primary_10_1016_j_enconman_2024_118299 crossref_primary_10_1016_j_est_2025_115399 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124594 crossref_primary_10_1016_j_energy_2025_137908 crossref_primary_10_1016_j_applthermaleng_2022_119685 crossref_primary_10_1016_j_energy_2023_128791 crossref_primary_10_1016_j_applthermaleng_2025_126119 crossref_primary_10_1016_j_energy_2023_127878 crossref_primary_10_1016_j_applthermaleng_2024_122770 crossref_primary_10_1016_j_jpowsour_2024_234415 crossref_primary_10_1016_j_pmatsci_2024_101388 crossref_primary_10_1109_TPEL_2025_3581978 crossref_primary_10_3390_batteries10090328 crossref_primary_10_1016_j_est_2024_114075 crossref_primary_10_1016_j_apenergy_2024_122928 crossref_primary_10_1016_j_apenergy_2023_121936 crossref_primary_10_1016_j_energy_2022_126606 crossref_primary_10_1016_j_est_2023_107900 crossref_primary_10_3390_wevj16050249 crossref_primary_10_1016_j_energy_2023_129099 crossref_primary_10_3390_act11120356 crossref_primary_10_1109_ACCESS_2025_3582081 crossref_primary_10_1016_j_energy_2024_130542 crossref_primary_10_3390_electrochem3030023 crossref_primary_10_1016_j_enconman_2023_117514 crossref_primary_10_1016_j_energy_2024_132426 crossref_primary_10_1109_TIV_2023_3281032 crossref_primary_10_1016_j_energy_2023_127726 crossref_primary_10_1007_s12239_024_00009_7 crossref_primary_10_1016_j_est_2024_114446 crossref_primary_10_1016_j_etran_2024_100317 crossref_primary_10_1016_j_egyr_2025_04_032 crossref_primary_10_1016_j_est_2024_114662 crossref_primary_10_1016_j_applthermaleng_2025_127776 crossref_primary_10_3390_en16124693 crossref_primary_10_1016_j_applthermaleng_2025_125611 crossref_primary_10_1016_j_eswa_2025_127221 crossref_primary_10_1016_j_etran_2025_100396 crossref_primary_10_1109_TIV_2023_3275952 crossref_primary_10_1016_j_est_2023_107895 crossref_primary_10_3390_en16145253 crossref_primary_10_1002_celc_202300497 crossref_primary_10_1109_TITS_2023_3337786 |
| Cites_doi | 10.1016/j.energy.2016.06.010 10.1039/C8EE02892C 10.1109/JESTPE.2018.2852218 10.1016/j.jpowsour.2013.08.020 10.1007/s11630-019-1128-2 10.1016/j.jpowsour.2016.12.032 10.1016/j.energy.2019.07.063 10.1149/1.2113792 10.1002/ente.201600083 10.1016/j.applthermaleng.2014.09.083 10.1016/j.apenergy.2015.08.120 10.1109/TVT.2020.2999939 10.1016/j.applthermaleng.2020.115944 10.1016/j.energy.2020.117678 10.1016/j.jpowsour.2018.08.093 10.1016/j.applthermaleng.2016.09.034 10.1016/j.energy.2020.119236 10.1016/j.jpowsour.2014.07.168 10.1016/j.trc.2009.10.006 10.1016/j.jpowsour.2014.05.088 10.1016/j.applthermaleng.2020.116158 10.1109/TIV.2020.3032642 10.1109/ACCESS.2018.2837652 10.1016/S0140-7007(02)00002-6 10.1016/j.pecs.2019.100806 10.1016/j.jpowsour.2014.09.181 10.1016/j.apenergy.2017.08.034 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Apr 1, 2022 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Apr 1, 2022 |
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| DOI | 10.1016/j.energy.2021.122571 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1873-6785 |
| ExternalDocumentID | 10_1016_j_energy_2021_122571 S0360544221028206 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c367t-e10ff2579f11cdf1f6de33563ef3be1b51b74924df399b1e90ad9e07f50581fc3 |
| ISICitedReferencesCount | 55 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792265200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-5442 |
| IngestDate | Mon Sep 29 05:13:59 EDT 2025 Wed Aug 13 08:46:39 EDT 2025 Sat Nov 29 07:17:15 EST 2025 Tue Nov 18 22:36:41 EST 2025 Fri Feb 23 02:40:15 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Low temperature heating Intelligent-connected vehicle Nonlinear model predictive control Power battery pack |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c367t-e10ff2579f11cdf1f6de33563ef3be1b51b74924df399b1e90ad9e07f50581fc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2639694230 |
| PQPubID | 2045484 |
| ParticipantIDs | proquest_miscellaneous_2636473551 proquest_journals_2639694230 crossref_primary_10_1016_j_energy_2021_122571 crossref_citationtrail_10_1016_j_energy_2021_122571 elsevier_sciencedirect_doi_10_1016_j_energy_2021_122571 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 2022-04-00 20220401 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Connor, Wang, Malikopoulos, Advani, Prasad (bib22) 2020; 6 Ecker, Sabet, Sauer (bib3) 2017; 206 Bernardi, Pawlikowski, Newman (bib25) 1985; 132 Yuan, Wang, Wang (bib11) 2012; 3 Zhang, Li, Yang, Shao, Wang (bib23) 2020; 29 Zinth, Christian, Hofmann (bib6) 2014; 271 Ling, Wen, Zhang, Fang, Xu (bib12) 2016; 4 Wang, Jiang, Xue, Sun, Li, Zou, Yan (bib13) 2015; 88 Zhang, Ge, Li, Ding (bib8) 2015; 273 Wang, Wu, Xu, Hofmann, Du, Li, Ouyang, Song (bib9) 2018; 401 Lopez-Sanz, Ocampo-Martinez, Alvarez-Florez, Moreno-Eguilaz, Ruiz-Mansilla, Kalmus, Manuel, Lux (bib17) 2017; 66 Min, Zhang, Sun, Min, Yu, Wang (bib14) 2020; 181 Herrera, Work, Herring, Ban, Jacobson, Bayen (bib30) 2010; 18 Zhu, Lu, Zhang, Chris Mi (bib16) 2018; 6 Daviran, Kasaeian, Golzari, Mahian, Nasirivatan, Wongwises (bib27) 2017; 110 Amini, Kolmanovsky, Sun (bib31) 2020; 99 Bauer, Suchaneck, Puente León (bib19) 2014; 246 Song, Hofmann, Li, Hou, Zhang, Ouyang (bib15) 2015; 159 Mo, Liang, Meng, Liu, Li, Fan, Zhi (bib21) 2019; 12 Severino, Gana, Palma Behnke, Estévez, Calderón MuOz, Orchard, Reyes, Cortés (bib18) 2014; 267 Zheng, Jiang, Sun, Zhang, Pecht (bib1) 2016; 113 Luo, Lang, Luo (bib10) 2016; 44 Ma, Mou, Zhao (bib28) 2020; 201 Hu, Zheng, Howey, Perez, Michael (bib7) 2020; 77 Huang, Chen, Zheng, Li (bib24) 2019; 185 Saiz Jabardo, Gonzales Mamani, Ianella (bib26) 2002; 25 Du, Chen, Li (bib29) 2018; 6 Park, Ahn (bib20) 2020; 8 Ruan, Sun, Zhu, He, Su, Cruden, Gao (bib4) 2020; 186 Von, Zinth, Erhard, Osswald, Hofmann, Gilles, Jossen (bib5) 2017; 342 Huang, Chen, Zhou (bib2) 2021; 216 Mo (10.1016/j.energy.2021.122571_bib21) 2019; 12 Park (10.1016/j.energy.2021.122571_bib20) 2020; 8 Song (10.1016/j.energy.2021.122571_bib15) 2015; 159 Wang (10.1016/j.energy.2021.122571_bib9) 2018; 401 Zhu (10.1016/j.energy.2021.122571_bib16) 2018; 6 Zhang (10.1016/j.energy.2021.122571_bib23) 2020; 29 Zhang (10.1016/j.energy.2021.122571_bib8) 2015; 273 Du (10.1016/j.energy.2021.122571_bib29) 2018; 6 Hu (10.1016/j.energy.2021.122571_bib7) 2020; 77 Connor (10.1016/j.energy.2021.122571_bib22) 2020; 6 Amini (10.1016/j.energy.2021.122571_bib31) 2020; 99 Bernardi (10.1016/j.energy.2021.122571_bib25) 1985; 132 Luo (10.1016/j.energy.2021.122571_bib10) 2016; 44 Daviran (10.1016/j.energy.2021.122571_bib27) 2017; 110 Ruan (10.1016/j.energy.2021.122571_bib4) 2020; 186 Severino (10.1016/j.energy.2021.122571_bib18) 2014; 267 Bauer (10.1016/j.energy.2021.122571_bib19) 2014; 246 Von (10.1016/j.energy.2021.122571_bib5) 2017; 342 Ling (10.1016/j.energy.2021.122571_bib12) 2016; 4 Saiz Jabardo (10.1016/j.energy.2021.122571_bib26) 2002; 25 Lopez-Sanz (10.1016/j.energy.2021.122571_bib17) 2017; 66 Huang (10.1016/j.energy.2021.122571_bib24) 2019; 185 Min (10.1016/j.energy.2021.122571_bib14) 2020; 181 Yuan (10.1016/j.energy.2021.122571_bib11) 2012; 3 Ecker (10.1016/j.energy.2021.122571_bib3) 2017; 206 Huang (10.1016/j.energy.2021.122571_bib2) 2021; 216 Wang (10.1016/j.energy.2021.122571_bib13) 2015; 88 Ma (10.1016/j.energy.2021.122571_bib28) 2020; 201 Herrera (10.1016/j.energy.2021.122571_bib30) 2010; 18 Zheng (10.1016/j.energy.2021.122571_bib1) 2016; 113 Zinth (10.1016/j.energy.2021.122571_bib6) 2014; 271 |
| References_xml | – volume: 12 start-page: 706 year: 2019 end-page: 715 ident: bib21 article-title: A flexible rechargeable aqueous zinc manganese-dioxide battery working at − 20 publication-title: Energy Environ Sci – volume: 113 start-page: 64 year: 2016 end-page: 75 ident: bib1 article-title: Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles publication-title: Energy – volume: 4 start-page: 1071 year: 2016 end-page: 1076 ident: bib12 article-title: Warming-up effects of phase change materials on lithium-ion batteries operated at low temperatures publication-title: Energy Technol – volume: 6 start-page: 14 year: 2020 end-page: 23 ident: bib22 article-title: Impact of connectivity on energy consumption and battery life for electric vehicles publication-title: IEEE Trans Intel Vehic – volume: 25 start-page: 1157 year: 2002 end-page: 1172 ident: bib26 article-title: Modeling and experimental evaluation of an automotive air conditioning system with a variable capacity compressor publication-title: Int J Refrig – volume: 246 start-page: 808 year: 2014 end-page: 818 ident: bib19 article-title: Thermal and energy battery management optimization in electric vehicles using Pontryagin's maximum principle publication-title: J Power Sources – volume: 6 start-page: 44036 year: 2018 end-page: 44049 ident: bib29 article-title: Multi-objective optimization discharge method for heating lithium-ion battery at low temperatures publication-title: IEEE Access – volume: 29 start-page: 408 year: 2020 end-page: 422 ident: bib23 article-title: Exergy analysis of electric vehicle heat pump air conditioning system with battery thermal management system publication-title: J Therm Sci – volume: 88 start-page: 54 year: 2015 end-page: 60 ident: bib13 article-title: Experimental investigation on EV battery cooling and heating by heat pipes publication-title: Appl Therm Eng – volume: 216 start-page: 119236 year: 2021 ident: bib2 article-title: Model prediction-based battery-powered heating method for series-connected lithium-ion battery pack working at extremely cold temperatures publication-title: Energy – volume: 18 start-page: 568 year: 2010 end-page: 583 ident: bib30 article-title: Evaluation of traffic data obtained via GPS-enabled mobile phones: the mobile century field experiment publication-title: Transport Res Part C – volume: 132 start-page: 5 year: 1985 end-page: 12 ident: bib25 article-title: A general energy balance for battery systems publication-title: J Electrochem Soc – volume: 342 start-page: 17 year: 2017 end-page: 23 ident: bib5 article-title: Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction publication-title: J Power Sources – volume: 8 start-page: 8407 year: 2020 end-page: 8419 ident: bib20 article-title: Computationally efficient stochastic model predictive controller for battery thermal management of electric vehicle publication-title: IEEE Trans Veh Technol – volume: 185 start-page: 847 year: 2019 end-page: 861 ident: bib24 article-title: A model-based state-of-charge estimation method for series-connected lithium-ion battery pack considering fast-varying cell temperature publication-title: Energy – volume: 6 start-page: 1796 year: 2018 end-page: 1805 ident: bib16 article-title: Robust predictive battery thermal management strategy for connected and automated hybrid electric vehicles publication-title: IEEE J Emerg Select Topics Power Electr – volume: 44 start-page: 100 year: 2016 end-page: 106 ident: bib10 article-title: Investigation into heating system of lithium-ion battery pack in low-temperature environment publication-title: J S China Univ Technol – volume: 267 start-page: 288 year: 2014 end-page: 299 ident: bib18 article-title: Multi-objective optimal design of lithium-ion battery packs based on evolutionary algorithms publication-title: J Power Sources – volume: 66 start-page: 3632 year: 2017 end-page: 3644 ident: bib17 article-title: Nonlinear model predictive control for thermal management in plug-in hybrid electric vehicles publication-title: IEEE Trans Veh Technol – volume: 401 start-page: 245 year: 2018 end-page: 254 ident: bib9 article-title: Performance of plug-in hybrid electric vehicle under low temperature condition and economy analysis of battery pre-heating publication-title: J Power Sources – volume: 99 start-page: 1 year: 2020 end-page: 13 ident: bib31 article-title: Hierarchical MPC for robust eco-cooling of connected and automated vehicles and its application to electric vehicle battery thermal management publication-title: IEEE Trans Control Syst Technol – volume: 110 start-page: 1091 year: 2017 end-page: 1100 ident: bib27 article-title: A comparative study on the performance of HFO-1234yf and HFC-134a as an alternative in automotive air conditioning systems publication-title: Appl Therm Eng – volume: 201 start-page: 117678 year: 2020 ident: bib28 article-title: Cooling optimization strategy for lithium-ion batteries based on triple-step nonlinear method publication-title: Energy – volume: 206 start-page: 934 year: 2017 end-page: 946 ident: bib3 article-title: Influence of operational condition on lithium plating for commercial lithium-ion batteries–Electrochemical experiments and post-mortem-analysis publication-title: Appl Energy – volume: 3 start-page: 371 year: 2012 end-page: 380 ident: bib11 article-title: Battery thermal management system with liquid cooling and heating in electric vehicles publication-title: J Auto Saf Energy Effic – volume: 159 start-page: 576 year: 2015 end-page: 588 ident: bib15 article-title: The optimization of a hybrid energy storage system at subzero temperatures: energy management strategy design and battery heating requirement analysis publication-title: Appl Energy – volume: 181 start-page: 115944 year: 2020 ident: bib14 article-title: A thermal management system control strategy for electric vehicles under low-temperature driving conditions considering battery lifetime publication-title: Appl Therm Eng – volume: 273 start-page: 1030 year: 2015 end-page: 1037 ident: bib8 article-title: Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain publication-title: J Power Sources – volume: 186 start-page: 116158 year: 2020 ident: bib4 article-title: Compound self-heating strategies and multi-objective optimization for lithium-ion batteries at low temperature publication-title: Appl Therm Eng – volume: 77 start-page: 1 year: 2020 end-page: 28 ident: bib7 article-title: Battery warm-up methodologies at subzero temperatures for automotive applications: recent advances and perspectives publication-title: Prog Energy Combust Sci – volume: 271 start-page: 152 year: 2014 end-page: 159 ident: bib6 article-title: Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction publication-title: J Power Sources – volume: 113 start-page: 64 year: 2016 ident: 10.1016/j.energy.2021.122571_bib1 article-title: Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles publication-title: Energy doi: 10.1016/j.energy.2016.06.010 – volume: 12 start-page: 706 issue: 2 year: 2019 ident: 10.1016/j.energy.2021.122571_bib21 article-title: A flexible rechargeable aqueous zinc manganese-dioxide battery working at − 20◦C publication-title: Energy Environ Sci doi: 10.1039/C8EE02892C – volume: 6 start-page: 1796 issue: 4 year: 2018 ident: 10.1016/j.energy.2021.122571_bib16 article-title: Robust predictive battery thermal management strategy for connected and automated hybrid electric vehicles publication-title: IEEE J Emerg Select Topics Power Electr doi: 10.1109/JESTPE.2018.2852218 – volume: 246 start-page: 808 year: 2014 ident: 10.1016/j.energy.2021.122571_bib19 article-title: Thermal and energy battery management optimization in electric vehicles using Pontryagin's maximum principle publication-title: J Power Sources doi: 10.1016/j.jpowsour.2013.08.020 – volume: 29 start-page: 408 issue: 2 year: 2020 ident: 10.1016/j.energy.2021.122571_bib23 article-title: Exergy analysis of electric vehicle heat pump air conditioning system with battery thermal management system publication-title: J Therm Sci doi: 10.1007/s11630-019-1128-2 – volume: 342 start-page: 17 year: 2017 ident: 10.1016/j.energy.2021.122571_bib5 article-title: Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.12.032 – volume: 185 start-page: 847 year: 2019 ident: 10.1016/j.energy.2021.122571_bib24 article-title: A model-based state-of-charge estimation method for series-connected lithium-ion battery pack considering fast-varying cell temperature publication-title: Energy doi: 10.1016/j.energy.2019.07.063 – volume: 132 start-page: 5 issue: 1 year: 1985 ident: 10.1016/j.energy.2021.122571_bib25 article-title: A general energy balance for battery systems publication-title: J Electrochem Soc doi: 10.1149/1.2113792 – volume: 4 start-page: 1071 year: 2016 ident: 10.1016/j.energy.2021.122571_bib12 article-title: Warming-up effects of phase change materials on lithium-ion batteries operated at low temperatures publication-title: Energy Technol doi: 10.1002/ente.201600083 – volume: 88 start-page: 54 year: 2015 ident: 10.1016/j.energy.2021.122571_bib13 article-title: Experimental investigation on EV battery cooling and heating by heat pipes publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2014.09.083 – volume: 159 start-page: 576 year: 2015 ident: 10.1016/j.energy.2021.122571_bib15 article-title: The optimization of a hybrid energy storage system at subzero temperatures: energy management strategy design and battery heating requirement analysis publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.08.120 – volume: 8 start-page: 8407 issue: 69 year: 2020 ident: 10.1016/j.energy.2021.122571_bib20 article-title: Computationally efficient stochastic model predictive controller for battery thermal management of electric vehicle publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2020.2999939 – volume: 181 start-page: 115944 year: 2020 ident: 10.1016/j.energy.2021.122571_bib14 article-title: A thermal management system control strategy for electric vehicles under low-temperature driving conditions considering battery lifetime publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2020.115944 – volume: 201 start-page: 117678 year: 2020 ident: 10.1016/j.energy.2021.122571_bib28 article-title: Cooling optimization strategy for lithium-ion batteries based on triple-step nonlinear method publication-title: Energy doi: 10.1016/j.energy.2020.117678 – volume: 401 start-page: 245 issue: 15 year: 2018 ident: 10.1016/j.energy.2021.122571_bib9 article-title: Performance of plug-in hybrid electric vehicle under low temperature condition and economy analysis of battery pre-heating publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.08.093 – volume: 3 start-page: 371 year: 2012 ident: 10.1016/j.energy.2021.122571_bib11 article-title: Battery thermal management system with liquid cooling and heating in electric vehicles publication-title: J Auto Saf Energy Effic – volume: 110 start-page: 1091 issue: 1 year: 2017 ident: 10.1016/j.energy.2021.122571_bib27 article-title: A comparative study on the performance of HFO-1234yf and HFC-134a as an alternative in automotive air conditioning systems publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.09.034 – volume: 216 start-page: 119236 year: 2021 ident: 10.1016/j.energy.2021.122571_bib2 article-title: Model prediction-based battery-powered heating method for series-connected lithium-ion battery pack working at extremely cold temperatures publication-title: Energy doi: 10.1016/j.energy.2020.119236 – volume: 271 start-page: 152 year: 2014 ident: 10.1016/j.energy.2021.122571_bib6 article-title: Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.07.168 – volume: 18 start-page: 568 issue: 4 year: 2010 ident: 10.1016/j.energy.2021.122571_bib30 article-title: Evaluation of traffic data obtained via GPS-enabled mobile phones: the mobile century field experiment publication-title: Transport Res Part C doi: 10.1016/j.trc.2009.10.006 – volume: 44 start-page: 100 year: 2016 ident: 10.1016/j.energy.2021.122571_bib10 article-title: Investigation into heating system of lithium-ion battery pack in low-temperature environment publication-title: J S China Univ Technol – volume: 267 start-page: 288 year: 2014 ident: 10.1016/j.energy.2021.122571_bib18 article-title: Multi-objective optimal design of lithium-ion battery packs based on evolutionary algorithms publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.05.088 – volume: 186 start-page: 116158 year: 2020 ident: 10.1016/j.energy.2021.122571_bib4 article-title: Compound self-heating strategies and multi-objective optimization for lithium-ion batteries at low temperature publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2020.116158 – volume: 6 start-page: 14 year: 2020 ident: 10.1016/j.energy.2021.122571_bib22 article-title: Impact of connectivity on energy consumption and battery life for electric vehicles publication-title: IEEE Trans Intel Vehic doi: 10.1109/TIV.2020.3032642 – volume: 6 start-page: 44036 year: 2018 ident: 10.1016/j.energy.2021.122571_bib29 article-title: Multi-objective optimization discharge method for heating lithium-ion battery at low temperatures publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2837652 – volume: 25 start-page: 1157 issue: 8 year: 2002 ident: 10.1016/j.energy.2021.122571_bib26 article-title: Modeling and experimental evaluation of an automotive air conditioning system with a variable capacity compressor publication-title: Int J Refrig doi: 10.1016/S0140-7007(02)00002-6 – volume: 66 start-page: 3632 issue: 5 year: 2017 ident: 10.1016/j.energy.2021.122571_bib17 article-title: Nonlinear model predictive control for thermal management in plug-in hybrid electric vehicles publication-title: IEEE Trans Veh Technol – volume: 77 start-page: 1 year: 2020 ident: 10.1016/j.energy.2021.122571_bib7 article-title: Battery warm-up methodologies at subzero temperatures for automotive applications: recent advances and perspectives publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2019.100806 – volume: 273 start-page: 1030 year: 2015 ident: 10.1016/j.energy.2021.122571_bib8 article-title: Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain publication-title: J Power Sources doi: 10.1016/j.jpowsour.2014.09.181 – volume: 206 start-page: 934 issue: 15 year: 2017 ident: 10.1016/j.energy.2021.122571_bib3 article-title: Influence of operational condition on lithium plating for commercial lithium-ion batteries–Electrochemical experiments and post-mortem-analysis publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.08.034 – volume: 99 start-page: 1 year: 2020 ident: 10.1016/j.energy.2021.122571_bib31 article-title: Hierarchical MPC for robust eco-cooling of connected and automated vehicles and its application to electric vehicle battery thermal management publication-title: IEEE Trans Control Syst Technol |
| SSID | ssj0005899 |
| Score | 2.6079562 |
| Snippet | Electric vehicles running at low temperature causes range anxiety and safety hazards because of the reduction of available battery capacity and battery... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 122571 |
| SubjectTerms | Aging air Air conditioning anxiety batteries Electric vehicles energy Energy consumption Heat exchangers Heat pumps Heating Heating rate Intelligent-connected vehicle Lithium Low temperature Low temperature heating Multiple objective analysis Nonlinear control Nonlinear model predictive control nonlinear models Nonlinear systems Nonlinearity Optimization Power battery pack Power consumption prediction Predictive control Product safety temperature Thermal management Traffic speed |
| Title | Battery thermal management of intelligent-connected electric vehicles at low temperature based on NMPC |
| URI | https://dx.doi.org/10.1016/j.energy.2021.122571 https://www.proquest.com/docview/2639694230 https://www.proquest.com/docview/2636473551 |
| Volume | 244 |
| WOSCitedRecordID | wos000792265200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLagQ4ILgsFEYSAjIS6Vp7hO4uQ4jY6BurJDJ5WTlTg2ZKqSbm1H-e95ju1kg6GNA5eoSl_atO_L8_f8fiH0TkUZK7IiIEPwJ0iYc0nSJI5JFnIJy4mKCt20zB_zySSZzdIT155g2YwT4FWVbDbp4r-qGs6Bsk3p7D-ou_1QOAGvQelwBLXD8U6Ktx0zfxpGCUZ37vJTfcy_bFtwrog0SS7SUE47DKeUg0v1vcmTMzWOczNtTgGttm2XB2bBK0xwYXJ8cnBtR9_WD5rGpRubK9_uLhw33PRrB8EPbobKUVa3uUDluhGqq2_nZSv4MbMxobL6sb66NQFebZfR4kuyAhKF4TVzC3xisNijYEc4JTcacbufcLanmrsHH35InXy3aPlA_eSLODwdj8V0NJu-X5wTM07MhN3dbJX7aGvIozTpoa39T6PZ5y77J2lGi7Z36Ksqm9S_P7_4b6zlt_W7ISXTJ-ix8ybwvkXBU3RPVdvooS82X26jnVFXyAiCzpIvnyHtYIIdTHAHE1xrfCNMsIcJ9jDB2QoDTPAVmOAGJriusIHJc3R6OJoeHBE3c4NIFvMVUTTQGn5xqimVhaY6LhRjUcyUZrmieURzHoLPDo9wmuZUpUFWpCrgGph0QrVkO6hX1ZV6gbBmjIEcD4JCh3kSJ4pyCWtvHoLZCDPWR8z_p0K6hvRmLspc-MzDM2E1IYwmhNVEH5H2qoVtyHKLPPfqEo5UWrIoAG63XLnrtSvc870UQ2D0cQo-SNBHb9u3wSSbOFtWqXrdyMRmondEX95B5hV61D07u6i3ulir1-iBvFyVy4s3Dre_AJ-7rzY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Battery+thermal+management+of+intelligent-connected+electric+vehicles+at+low+temperature+based+on+NMPC&rft.jtitle=Energy+%28Oxford%29&rft.au=Ma%2C+Yan&rft.au=Ding%2C+Hao&rft.au=Liu%2C+Yongqin&rft.au=Gao%2C+Jinwu&rft.date=2022-04-01&rft.issn=0360-5442&rft.volume=244+p.122571-&rft_id=info:doi/10.1016%2Fj.energy.2021.122571&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |