Battery thermal management of intelligent-connected electric vehicles at low temperature based on NMPC

Electric vehicles running at low temperature causes range anxiety and safety hazards because of the reduction of available battery capacity and battery degradation caused by lithium plating. An optimization strategy for low temperature heating of intelligent-connected electric vehicle battery pack i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy (Oxford) Ročník 244; s. 122571
Hlavní autoři: Ma, Yan, Ding, Hao, Liu, Yongqin, Gao, Jinwu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.04.2022
Elsevier BV
Témata:
ISSN:0360-5442, 1873-6785
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Electric vehicles running at low temperature causes range anxiety and safety hazards because of the reduction of available battery capacity and battery degradation caused by lithium plating. An optimization strategy for low temperature heating of intelligent-connected electric vehicle battery pack is proposed in this paper. Based on the Bernardi's theory, a control-oriented model of the battery pack heating system is established, which considers the effect of low temperature discharge on battery aging. A hybrid heating method combining heat pump air conditioning and electric heater is adopted to increase the heating rate and reduce energy consumption. Aiming at the problem that the battery heating process is affected by the time-varying parameters of the battery and the running state of the electric vehicle leading to the nonlinearity of the system, a nonlinear model predictive control (NMPC) heating optimization strategy is proposed. And a multi-objective optimization function constrained by many variables such as compressor speed is established to adjust battery temperature and energy consumption. Moreover, at each sampling point in the prediction time domain of NMPC, the future vehicle speed prediction information obtained based on vehicle-to-cloud communication is introduced into the heating process as interference. The simulation results show that compared with using electric heater alone, the heating time of the method proposed in this paper is shortened by 29%, and the energy consumption is reduced by 45%. •An electrothermal coupling model of battery pack considering aging is established.•NMPC hybrid heating method combines heat pump air conditioning and electric heater.•Vehicle-to-cloud information is integrated into the battery pack heating process.
AbstractList Electric vehicles running at low temperature causes range anxiety and safety hazards because of the reduction of available battery capacity and battery degradation caused by lithium plating. An optimization strategy for low temperature heating of intelligent-connected electric vehicle battery pack is proposed in this paper. Based on the Bernardi's theory, a control-oriented model of the battery pack heating system is established, which considers the effect of low temperature discharge on battery aging. A hybrid heating method combining heat pump air conditioning and electric heater is adopted to increase the heating rate and reduce energy consumption. Aiming at the problem that the battery heating process is affected by the time-varying parameters of the battery and the running state of the electric vehicle leading to the nonlinearity of the system, a nonlinear model predictive control (NMPC) heating optimization strategy is proposed. And a multi-objective optimization function constrained by many variables such as compressor speed is established to adjust battery temperature and energy consumption. Moreover, at each sampling point in the prediction time domain of NMPC, the future vehicle speed prediction information obtained based on vehicle-to-cloud communication is introduced into the heating process as interference. The simulation results show that compared with using electric heater alone, the heating time of the method proposed in this paper is shortened by 29%, and the energy consumption is reduced by 45%.
Electric vehicles running at low temperature causes range anxiety and safety hazards because of the reduction of available battery capacity and battery degradation caused by lithium plating. An optimization strategy for low temperature heating of intelligent-connected electric vehicle battery pack is proposed in this paper. Based on the Bernardi's theory, a control-oriented model of the battery pack heating system is established, which considers the effect of low temperature discharge on battery aging. A hybrid heating method combining heat pump air conditioning and electric heater is adopted to increase the heating rate and reduce energy consumption. Aiming at the problem that the battery heating process is affected by the time-varying parameters of the battery and the running state of the electric vehicle leading to the nonlinearity of the system, a nonlinear model predictive control (NMPC) heating optimization strategy is proposed. And a multi-objective optimization function constrained by many variables such as compressor speed is established to adjust battery temperature and energy consumption. Moreover, at each sampling point in the prediction time domain of NMPC, the future vehicle speed prediction information obtained based on vehicle-to-cloud communication is introduced into the heating process as interference. The simulation results show that compared with using electric heater alone, the heating time of the method proposed in this paper is shortened by 29%, and the energy consumption is reduced by 45%. •An electrothermal coupling model of battery pack considering aging is established.•NMPC hybrid heating method combines heat pump air conditioning and electric heater.•Vehicle-to-cloud information is integrated into the battery pack heating process.
ArticleNumber 122571
Author Ding, Hao
Gao, Jinwu
Liu, Yongqin
Ma, Yan
Author_xml – sequence: 1
  givenname: Yan
  surname: Ma
  fullname: Ma, Yan
  email: mayan_maria@163.com
  organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130022, China
– sequence: 2
  givenname: Hao
  surname: Ding
  fullname: Ding, Hao
  organization: Department of Control Science and Engineering, Jilin University, Changchun, 130012, China
– sequence: 3
  givenname: Yongqin
  surname: Liu
  fullname: Liu, Yongqin
  organization: Department of Control Science and Engineering, Jilin University, Changchun, 130012, China
– sequence: 4
  givenname: Jinwu
  surname: Gao
  fullname: Gao, Jinwu
  organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130022, China
BookMark eNqFkMFuEzEQhi1UJNLCG3CwxIXLBs967Y05IEFEC1JpOcDZ8nrHqaNdO9hOUd4eR8upBziNRvr-XzPfJbkIMSAhr4GtgYF8t19jwLQ7rVvWwhraVvTwjKxg0_NG9htxQVaMS9aIrmtfkMuc94wxsVFqRdwnUwqmEy0PmGYz0dkEs8MZQ6HRUR8KTpPf1bWxMQS0BUeKU53JW_qID95OmKkpdIq_acH5gMmUY0I6mFzRGOjdt-_bl-S5M1PGV3_nFfl5_fnH9ktze3_zdfvxtrFc9qVBYM7V65UDsKMDJ0fkXEiOjg8Ig4Ch71TbjY4rNQAqZkaFrHeivgPO8ivyduk9pPjriLno2WdbXzAB4zHrVnLZ9VwIqOibJ-g-HlOo150pJVXXclapbqFsijkndPqQ_GzSSQPTZ_l6rxf5-ixfL_Jr7P2TmPXFFB9DScZP_wt_WMJYTT16TDpbj8Hi6FMVr8fo_13wBwgIpVk
CitedBy_id crossref_primary_10_1039_D3SE00066D
crossref_primary_10_1007_s43069_023_00228_1
crossref_primary_10_1016_j_energy_2025_135102
crossref_primary_10_1016_j_enconman_2024_118299
crossref_primary_10_1016_j_est_2025_115399
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124594
crossref_primary_10_1016_j_energy_2025_137908
crossref_primary_10_1016_j_applthermaleng_2022_119685
crossref_primary_10_1016_j_energy_2023_128791
crossref_primary_10_1016_j_applthermaleng_2025_126119
crossref_primary_10_1016_j_energy_2023_127878
crossref_primary_10_1016_j_applthermaleng_2024_122770
crossref_primary_10_1016_j_jpowsour_2024_234415
crossref_primary_10_1016_j_pmatsci_2024_101388
crossref_primary_10_1109_TPEL_2025_3581978
crossref_primary_10_3390_batteries10090328
crossref_primary_10_1016_j_est_2024_114075
crossref_primary_10_1016_j_apenergy_2024_122928
crossref_primary_10_1016_j_apenergy_2023_121936
crossref_primary_10_1016_j_energy_2022_126606
crossref_primary_10_1016_j_est_2023_107900
crossref_primary_10_3390_wevj16050249
crossref_primary_10_1016_j_energy_2023_129099
crossref_primary_10_3390_act11120356
crossref_primary_10_1109_ACCESS_2025_3582081
crossref_primary_10_1016_j_energy_2024_130542
crossref_primary_10_3390_electrochem3030023
crossref_primary_10_1016_j_enconman_2023_117514
crossref_primary_10_1016_j_energy_2024_132426
crossref_primary_10_1109_TIV_2023_3281032
crossref_primary_10_1016_j_energy_2023_127726
crossref_primary_10_1007_s12239_024_00009_7
crossref_primary_10_1016_j_est_2024_114446
crossref_primary_10_1016_j_etran_2024_100317
crossref_primary_10_1016_j_egyr_2025_04_032
crossref_primary_10_1016_j_est_2024_114662
crossref_primary_10_1016_j_applthermaleng_2025_127776
crossref_primary_10_3390_en16124693
crossref_primary_10_1016_j_applthermaleng_2025_125611
crossref_primary_10_1016_j_eswa_2025_127221
crossref_primary_10_1016_j_etran_2025_100396
crossref_primary_10_1109_TIV_2023_3275952
crossref_primary_10_1016_j_est_2023_107895
crossref_primary_10_3390_en16145253
crossref_primary_10_1002_celc_202300497
crossref_primary_10_1109_TITS_2023_3337786
Cites_doi 10.1016/j.energy.2016.06.010
10.1039/C8EE02892C
10.1109/JESTPE.2018.2852218
10.1016/j.jpowsour.2013.08.020
10.1007/s11630-019-1128-2
10.1016/j.jpowsour.2016.12.032
10.1016/j.energy.2019.07.063
10.1149/1.2113792
10.1002/ente.201600083
10.1016/j.applthermaleng.2014.09.083
10.1016/j.apenergy.2015.08.120
10.1109/TVT.2020.2999939
10.1016/j.applthermaleng.2020.115944
10.1016/j.energy.2020.117678
10.1016/j.jpowsour.2018.08.093
10.1016/j.applthermaleng.2016.09.034
10.1016/j.energy.2020.119236
10.1016/j.jpowsour.2014.07.168
10.1016/j.trc.2009.10.006
10.1016/j.jpowsour.2014.05.088
10.1016/j.applthermaleng.2020.116158
10.1109/TIV.2020.3032642
10.1109/ACCESS.2018.2837652
10.1016/S0140-7007(02)00002-6
10.1016/j.pecs.2019.100806
10.1016/j.jpowsour.2014.09.181
10.1016/j.apenergy.2017.08.034
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Apr 1, 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Apr 1, 2022
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2021.122571
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID 10_1016_j_energy_2021_122571
S0360544221028206
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7SP
7ST
7TB
8FD
AGCQF
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c367t-e10ff2579f11cdf1f6de33563ef3be1b51b74924df399b1e90ad9e07f50581fc3
ISICitedReferencesCount 55
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000792265200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-5442
IngestDate Mon Sep 29 05:13:59 EDT 2025
Wed Aug 13 08:46:39 EDT 2025
Sat Nov 29 07:17:15 EST 2025
Tue Nov 18 22:36:41 EST 2025
Fri Feb 23 02:40:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Low temperature heating
Intelligent-connected vehicle
Nonlinear model predictive control
Power battery pack
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-e10ff2579f11cdf1f6de33563ef3be1b51b74924df399b1e90ad9e07f50581fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2639694230
PQPubID 2045484
ParticipantIDs proquest_miscellaneous_2636473551
proquest_journals_2639694230
crossref_primary_10_1016_j_energy_2021_122571
crossref_citationtrail_10_1016_j_energy_2021_122571
elsevier_sciencedirect_doi_10_1016_j_energy_2021_122571
PublicationCentury 2000
PublicationDate 2022-04-01
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Connor, Wang, Malikopoulos, Advani, Prasad (bib22) 2020; 6
Ecker, Sabet, Sauer (bib3) 2017; 206
Bernardi, Pawlikowski, Newman (bib25) 1985; 132
Yuan, Wang, Wang (bib11) 2012; 3
Zhang, Li, Yang, Shao, Wang (bib23) 2020; 29
Zinth, Christian, Hofmann (bib6) 2014; 271
Ling, Wen, Zhang, Fang, Xu (bib12) 2016; 4
Wang, Jiang, Xue, Sun, Li, Zou, Yan (bib13) 2015; 88
Zhang, Ge, Li, Ding (bib8) 2015; 273
Wang, Wu, Xu, Hofmann, Du, Li, Ouyang, Song (bib9) 2018; 401
Lopez-Sanz, Ocampo-Martinez, Alvarez-Florez, Moreno-Eguilaz, Ruiz-Mansilla, Kalmus, Manuel, Lux (bib17) 2017; 66
Min, Zhang, Sun, Min, Yu, Wang (bib14) 2020; 181
Herrera, Work, Herring, Ban, Jacobson, Bayen (bib30) 2010; 18
Zhu, Lu, Zhang, Chris Mi (bib16) 2018; 6
Daviran, Kasaeian, Golzari, Mahian, Nasirivatan, Wongwises (bib27) 2017; 110
Amini, Kolmanovsky, Sun (bib31) 2020; 99
Bauer, Suchaneck, Puente León (bib19) 2014; 246
Song, Hofmann, Li, Hou, Zhang, Ouyang (bib15) 2015; 159
Mo, Liang, Meng, Liu, Li, Fan, Zhi (bib21) 2019; 12
Severino, Gana, Palma Behnke, Estévez, Calderón MuOz, Orchard, Reyes, Cortés (bib18) 2014; 267
Zheng, Jiang, Sun, Zhang, Pecht (bib1) 2016; 113
Luo, Lang, Luo (bib10) 2016; 44
Ma, Mou, Zhao (bib28) 2020; 201
Hu, Zheng, Howey, Perez, Michael (bib7) 2020; 77
Huang, Chen, Zheng, Li (bib24) 2019; 185
Saiz Jabardo, Gonzales Mamani, Ianella (bib26) 2002; 25
Du, Chen, Li (bib29) 2018; 6
Park, Ahn (bib20) 2020; 8
Ruan, Sun, Zhu, He, Su, Cruden, Gao (bib4) 2020; 186
Von, Zinth, Erhard, Osswald, Hofmann, Gilles, Jossen (bib5) 2017; 342
Huang, Chen, Zhou (bib2) 2021; 216
Mo (10.1016/j.energy.2021.122571_bib21) 2019; 12
Park (10.1016/j.energy.2021.122571_bib20) 2020; 8
Song (10.1016/j.energy.2021.122571_bib15) 2015; 159
Wang (10.1016/j.energy.2021.122571_bib9) 2018; 401
Zhu (10.1016/j.energy.2021.122571_bib16) 2018; 6
Zhang (10.1016/j.energy.2021.122571_bib23) 2020; 29
Zhang (10.1016/j.energy.2021.122571_bib8) 2015; 273
Du (10.1016/j.energy.2021.122571_bib29) 2018; 6
Hu (10.1016/j.energy.2021.122571_bib7) 2020; 77
Connor (10.1016/j.energy.2021.122571_bib22) 2020; 6
Amini (10.1016/j.energy.2021.122571_bib31) 2020; 99
Bernardi (10.1016/j.energy.2021.122571_bib25) 1985; 132
Luo (10.1016/j.energy.2021.122571_bib10) 2016; 44
Daviran (10.1016/j.energy.2021.122571_bib27) 2017; 110
Ruan (10.1016/j.energy.2021.122571_bib4) 2020; 186
Severino (10.1016/j.energy.2021.122571_bib18) 2014; 267
Bauer (10.1016/j.energy.2021.122571_bib19) 2014; 246
Von (10.1016/j.energy.2021.122571_bib5) 2017; 342
Ling (10.1016/j.energy.2021.122571_bib12) 2016; 4
Saiz Jabardo (10.1016/j.energy.2021.122571_bib26) 2002; 25
Lopez-Sanz (10.1016/j.energy.2021.122571_bib17) 2017; 66
Huang (10.1016/j.energy.2021.122571_bib24) 2019; 185
Min (10.1016/j.energy.2021.122571_bib14) 2020; 181
Yuan (10.1016/j.energy.2021.122571_bib11) 2012; 3
Ecker (10.1016/j.energy.2021.122571_bib3) 2017; 206
Huang (10.1016/j.energy.2021.122571_bib2) 2021; 216
Wang (10.1016/j.energy.2021.122571_bib13) 2015; 88
Ma (10.1016/j.energy.2021.122571_bib28) 2020; 201
Herrera (10.1016/j.energy.2021.122571_bib30) 2010; 18
Zheng (10.1016/j.energy.2021.122571_bib1) 2016; 113
Zinth (10.1016/j.energy.2021.122571_bib6) 2014; 271
References_xml – volume: 12
  start-page: 706
  year: 2019
  end-page: 715
  ident: bib21
  article-title: A flexible rechargeable aqueous zinc manganese-dioxide battery working at − 20
  publication-title: Energy Environ Sci
– volume: 113
  start-page: 64
  year: 2016
  end-page: 75
  ident: bib1
  article-title: Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles
  publication-title: Energy
– volume: 4
  start-page: 1071
  year: 2016
  end-page: 1076
  ident: bib12
  article-title: Warming-up effects of phase change materials on lithium-ion batteries operated at low temperatures
  publication-title: Energy Technol
– volume: 6
  start-page: 14
  year: 2020
  end-page: 23
  ident: bib22
  article-title: Impact of connectivity on energy consumption and battery life for electric vehicles
  publication-title: IEEE Trans Intel Vehic
– volume: 25
  start-page: 1157
  year: 2002
  end-page: 1172
  ident: bib26
  article-title: Modeling and experimental evaluation of an automotive air conditioning system with a variable capacity compressor
  publication-title: Int J Refrig
– volume: 246
  start-page: 808
  year: 2014
  end-page: 818
  ident: bib19
  article-title: Thermal and energy battery management optimization in electric vehicles using Pontryagin's maximum principle
  publication-title: J Power Sources
– volume: 6
  start-page: 44036
  year: 2018
  end-page: 44049
  ident: bib29
  article-title: Multi-objective optimization discharge method for heating lithium-ion battery at low temperatures
  publication-title: IEEE Access
– volume: 29
  start-page: 408
  year: 2020
  end-page: 422
  ident: bib23
  article-title: Exergy analysis of electric vehicle heat pump air conditioning system with battery thermal management system
  publication-title: J Therm Sci
– volume: 88
  start-page: 54
  year: 2015
  end-page: 60
  ident: bib13
  article-title: Experimental investigation on EV battery cooling and heating by heat pipes
  publication-title: Appl Therm Eng
– volume: 216
  start-page: 119236
  year: 2021
  ident: bib2
  article-title: Model prediction-based battery-powered heating method for series-connected lithium-ion battery pack working at extremely cold temperatures
  publication-title: Energy
– volume: 18
  start-page: 568
  year: 2010
  end-page: 583
  ident: bib30
  article-title: Evaluation of traffic data obtained via GPS-enabled mobile phones: the mobile century field experiment
  publication-title: Transport Res Part C
– volume: 132
  start-page: 5
  year: 1985
  end-page: 12
  ident: bib25
  article-title: A general energy balance for battery systems
  publication-title: J Electrochem Soc
– volume: 342
  start-page: 17
  year: 2017
  end-page: 23
  ident: bib5
  article-title: Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction
  publication-title: J Power Sources
– volume: 8
  start-page: 8407
  year: 2020
  end-page: 8419
  ident: bib20
  article-title: Computationally efficient stochastic model predictive controller for battery thermal management of electric vehicle
  publication-title: IEEE Trans Veh Technol
– volume: 185
  start-page: 847
  year: 2019
  end-page: 861
  ident: bib24
  article-title: A model-based state-of-charge estimation method for series-connected lithium-ion battery pack considering fast-varying cell temperature
  publication-title: Energy
– volume: 6
  start-page: 1796
  year: 2018
  end-page: 1805
  ident: bib16
  article-title: Robust predictive battery thermal management strategy for connected and automated hybrid electric vehicles
  publication-title: IEEE J Emerg Select Topics Power Electr
– volume: 44
  start-page: 100
  year: 2016
  end-page: 106
  ident: bib10
  article-title: Investigation into heating system of lithium-ion battery pack in low-temperature environment
  publication-title: J S China Univ Technol
– volume: 267
  start-page: 288
  year: 2014
  end-page: 299
  ident: bib18
  article-title: Multi-objective optimal design of lithium-ion battery packs based on evolutionary algorithms
  publication-title: J Power Sources
– volume: 66
  start-page: 3632
  year: 2017
  end-page: 3644
  ident: bib17
  article-title: Nonlinear model predictive control for thermal management in plug-in hybrid electric vehicles
  publication-title: IEEE Trans Veh Technol
– volume: 401
  start-page: 245
  year: 2018
  end-page: 254
  ident: bib9
  article-title: Performance of plug-in hybrid electric vehicle under low temperature condition and economy analysis of battery pre-heating
  publication-title: J Power Sources
– volume: 99
  start-page: 1
  year: 2020
  end-page: 13
  ident: bib31
  article-title: Hierarchical MPC for robust eco-cooling of connected and automated vehicles and its application to electric vehicle battery thermal management
  publication-title: IEEE Trans Control Syst Technol
– volume: 110
  start-page: 1091
  year: 2017
  end-page: 1100
  ident: bib27
  article-title: A comparative study on the performance of HFO-1234yf and HFC-134a as an alternative in automotive air conditioning systems
  publication-title: Appl Therm Eng
– volume: 201
  start-page: 117678
  year: 2020
  ident: bib28
  article-title: Cooling optimization strategy for lithium-ion batteries based on triple-step nonlinear method
  publication-title: Energy
– volume: 206
  start-page: 934
  year: 2017
  end-page: 946
  ident: bib3
  article-title: Influence of operational condition on lithium plating for commercial lithium-ion batteries–Electrochemical experiments and post-mortem-analysis
  publication-title: Appl Energy
– volume: 3
  start-page: 371
  year: 2012
  end-page: 380
  ident: bib11
  article-title: Battery thermal management system with liquid cooling and heating in electric vehicles
  publication-title: J Auto Saf Energy Effic
– volume: 159
  start-page: 576
  year: 2015
  end-page: 588
  ident: bib15
  article-title: The optimization of a hybrid energy storage system at subzero temperatures: energy management strategy design and battery heating requirement analysis
  publication-title: Appl Energy
– volume: 181
  start-page: 115944
  year: 2020
  ident: bib14
  article-title: A thermal management system control strategy for electric vehicles under low-temperature driving conditions considering battery lifetime
  publication-title: Appl Therm Eng
– volume: 273
  start-page: 1030
  year: 2015
  end-page: 1037
  ident: bib8
  article-title: Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain
  publication-title: J Power Sources
– volume: 186
  start-page: 116158
  year: 2020
  ident: bib4
  article-title: Compound self-heating strategies and multi-objective optimization for lithium-ion batteries at low temperature
  publication-title: Appl Therm Eng
– volume: 77
  start-page: 1
  year: 2020
  end-page: 28
  ident: bib7
  article-title: Battery warm-up methodologies at subzero temperatures for automotive applications: recent advances and perspectives
  publication-title: Prog Energy Combust Sci
– volume: 271
  start-page: 152
  year: 2014
  end-page: 159
  ident: bib6
  article-title: Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction
  publication-title: J Power Sources
– volume: 113
  start-page: 64
  year: 2016
  ident: 10.1016/j.energy.2021.122571_bib1
  article-title: Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2016.06.010
– volume: 12
  start-page: 706
  issue: 2
  year: 2019
  ident: 10.1016/j.energy.2021.122571_bib21
  article-title: A flexible rechargeable aqueous zinc manganese-dioxide battery working at − 20◦C
  publication-title: Energy Environ Sci
  doi: 10.1039/C8EE02892C
– volume: 6
  start-page: 1796
  issue: 4
  year: 2018
  ident: 10.1016/j.energy.2021.122571_bib16
  article-title: Robust predictive battery thermal management strategy for connected and automated hybrid electric vehicles
  publication-title: IEEE J Emerg Select Topics Power Electr
  doi: 10.1109/JESTPE.2018.2852218
– volume: 246
  start-page: 808
  year: 2014
  ident: 10.1016/j.energy.2021.122571_bib19
  article-title: Thermal and energy battery management optimization in electric vehicles using Pontryagin's maximum principle
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.08.020
– volume: 29
  start-page: 408
  issue: 2
  year: 2020
  ident: 10.1016/j.energy.2021.122571_bib23
  article-title: Exergy analysis of electric vehicle heat pump air conditioning system with battery thermal management system
  publication-title: J Therm Sci
  doi: 10.1007/s11630-019-1128-2
– volume: 342
  start-page: 17
  year: 2017
  ident: 10.1016/j.energy.2021.122571_bib5
  article-title: Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2016.12.032
– volume: 185
  start-page: 847
  year: 2019
  ident: 10.1016/j.energy.2021.122571_bib24
  article-title: A model-based state-of-charge estimation method for series-connected lithium-ion battery pack considering fast-varying cell temperature
  publication-title: Energy
  doi: 10.1016/j.energy.2019.07.063
– volume: 132
  start-page: 5
  issue: 1
  year: 1985
  ident: 10.1016/j.energy.2021.122571_bib25
  article-title: A general energy balance for battery systems
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2113792
– volume: 4
  start-page: 1071
  year: 2016
  ident: 10.1016/j.energy.2021.122571_bib12
  article-title: Warming-up effects of phase change materials on lithium-ion batteries operated at low temperatures
  publication-title: Energy Technol
  doi: 10.1002/ente.201600083
– volume: 88
  start-page: 54
  year: 2015
  ident: 10.1016/j.energy.2021.122571_bib13
  article-title: Experimental investigation on EV battery cooling and heating by heat pipes
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2014.09.083
– volume: 159
  start-page: 576
  year: 2015
  ident: 10.1016/j.energy.2021.122571_bib15
  article-title: The optimization of a hybrid energy storage system at subzero temperatures: energy management strategy design and battery heating requirement analysis
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.08.120
– volume: 8
  start-page: 8407
  issue: 69
  year: 2020
  ident: 10.1016/j.energy.2021.122571_bib20
  article-title: Computationally efficient stochastic model predictive controller for battery thermal management of electric vehicle
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2020.2999939
– volume: 181
  start-page: 115944
  year: 2020
  ident: 10.1016/j.energy.2021.122571_bib14
  article-title: A thermal management system control strategy for electric vehicles under low-temperature driving conditions considering battery lifetime
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2020.115944
– volume: 201
  start-page: 117678
  year: 2020
  ident: 10.1016/j.energy.2021.122571_bib28
  article-title: Cooling optimization strategy for lithium-ion batteries based on triple-step nonlinear method
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117678
– volume: 401
  start-page: 245
  issue: 15
  year: 2018
  ident: 10.1016/j.energy.2021.122571_bib9
  article-title: Performance of plug-in hybrid electric vehicle under low temperature condition and economy analysis of battery pre-heating
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.08.093
– volume: 3
  start-page: 371
  year: 2012
  ident: 10.1016/j.energy.2021.122571_bib11
  article-title: Battery thermal management system with liquid cooling and heating in electric vehicles
  publication-title: J Auto Saf Energy Effic
– volume: 110
  start-page: 1091
  issue: 1
  year: 2017
  ident: 10.1016/j.energy.2021.122571_bib27
  article-title: A comparative study on the performance of HFO-1234yf and HFC-134a as an alternative in automotive air conditioning systems
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.09.034
– volume: 216
  start-page: 119236
  year: 2021
  ident: 10.1016/j.energy.2021.122571_bib2
  article-title: Model prediction-based battery-powered heating method for series-connected lithium-ion battery pack working at extremely cold temperatures
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119236
– volume: 271
  start-page: 152
  year: 2014
  ident: 10.1016/j.energy.2021.122571_bib6
  article-title: Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.07.168
– volume: 18
  start-page: 568
  issue: 4
  year: 2010
  ident: 10.1016/j.energy.2021.122571_bib30
  article-title: Evaluation of traffic data obtained via GPS-enabled mobile phones: the mobile century field experiment
  publication-title: Transport Res Part C
  doi: 10.1016/j.trc.2009.10.006
– volume: 44
  start-page: 100
  year: 2016
  ident: 10.1016/j.energy.2021.122571_bib10
  article-title: Investigation into heating system of lithium-ion battery pack in low-temperature environment
  publication-title: J S China Univ Technol
– volume: 267
  start-page: 288
  year: 2014
  ident: 10.1016/j.energy.2021.122571_bib18
  article-title: Multi-objective optimal design of lithium-ion battery packs based on evolutionary algorithms
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.05.088
– volume: 186
  start-page: 116158
  year: 2020
  ident: 10.1016/j.energy.2021.122571_bib4
  article-title: Compound self-heating strategies and multi-objective optimization for lithium-ion batteries at low temperature
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2020.116158
– volume: 6
  start-page: 14
  year: 2020
  ident: 10.1016/j.energy.2021.122571_bib22
  article-title: Impact of connectivity on energy consumption and battery life for electric vehicles
  publication-title: IEEE Trans Intel Vehic
  doi: 10.1109/TIV.2020.3032642
– volume: 6
  start-page: 44036
  year: 2018
  ident: 10.1016/j.energy.2021.122571_bib29
  article-title: Multi-objective optimization discharge method for heating lithium-ion battery at low temperatures
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2837652
– volume: 25
  start-page: 1157
  issue: 8
  year: 2002
  ident: 10.1016/j.energy.2021.122571_bib26
  article-title: Modeling and experimental evaluation of an automotive air conditioning system with a variable capacity compressor
  publication-title: Int J Refrig
  doi: 10.1016/S0140-7007(02)00002-6
– volume: 66
  start-page: 3632
  issue: 5
  year: 2017
  ident: 10.1016/j.energy.2021.122571_bib17
  article-title: Nonlinear model predictive control for thermal management in plug-in hybrid electric vehicles
  publication-title: IEEE Trans Veh Technol
– volume: 77
  start-page: 1
  year: 2020
  ident: 10.1016/j.energy.2021.122571_bib7
  article-title: Battery warm-up methodologies at subzero temperatures for automotive applications: recent advances and perspectives
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2019.100806
– volume: 273
  start-page: 1030
  year: 2015
  ident: 10.1016/j.energy.2021.122571_bib8
  article-title: Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2014.09.181
– volume: 206
  start-page: 934
  issue: 15
  year: 2017
  ident: 10.1016/j.energy.2021.122571_bib3
  article-title: Influence of operational condition on lithium plating for commercial lithium-ion batteries–Electrochemical experiments and post-mortem-analysis
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.08.034
– volume: 99
  start-page: 1
  year: 2020
  ident: 10.1016/j.energy.2021.122571_bib31
  article-title: Hierarchical MPC for robust eco-cooling of connected and automated vehicles and its application to electric vehicle battery thermal management
  publication-title: IEEE Trans Control Syst Technol
SSID ssj0005899
Score 2.6079562
Snippet Electric vehicles running at low temperature causes range anxiety and safety hazards because of the reduction of available battery capacity and battery...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122571
SubjectTerms Aging
air
Air conditioning
anxiety
batteries
Electric vehicles
energy
Energy consumption
Heat exchangers
Heat pumps
Heating
Heating rate
Intelligent-connected vehicle
Lithium
Low temperature
Low temperature heating
Multiple objective analysis
Nonlinear control
Nonlinear model predictive control
nonlinear models
Nonlinear systems
Nonlinearity
Optimization
Power battery pack
Power consumption
prediction
Predictive control
Product safety
temperature
Thermal management
Traffic speed
Title Battery thermal management of intelligent-connected electric vehicles at low temperature based on NMPC
URI https://dx.doi.org/10.1016/j.energy.2021.122571
https://www.proquest.com/docview/2639694230
https://www.proquest.com/docview/2636473551
Volume 244
WOSCitedRecordID wos000792265200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLagQ4ILgsFEYSAjIS6Vp7hO4uQ4jY6BurJDJ5WTlTg2ZKqSbm1H-e95ju1kg6GNA5eoSl_atO_L8_f8fiH0TkUZK7IiIEPwJ0iYc0nSJI5JFnIJy4mKCt20zB_zySSZzdIT155g2YwT4FWVbDbp4r-qGs6Bsk3p7D-ou_1QOAGvQelwBLXD8U6Ktx0zfxpGCUZ37vJTfcy_bFtwrog0SS7SUE47DKeUg0v1vcmTMzWOczNtTgGttm2XB2bBK0xwYXJ8cnBtR9_WD5rGpRubK9_uLhw33PRrB8EPbobKUVa3uUDluhGqq2_nZSv4MbMxobL6sb66NQFebZfR4kuyAhKF4TVzC3xisNijYEc4JTcacbufcLanmrsHH35InXy3aPlA_eSLODwdj8V0NJu-X5wTM07MhN3dbJX7aGvIozTpoa39T6PZ5y77J2lGi7Z36Ksqm9S_P7_4b6zlt_W7ISXTJ-ix8ybwvkXBU3RPVdvooS82X26jnVFXyAiCzpIvnyHtYIIdTHAHE1xrfCNMsIcJ9jDB2QoDTPAVmOAGJriusIHJc3R6OJoeHBE3c4NIFvMVUTTQGn5xqimVhaY6LhRjUcyUZrmieURzHoLPDo9wmuZUpUFWpCrgGph0QrVkO6hX1ZV6gbBmjIEcD4JCh3kSJ4pyCWtvHoLZCDPWR8z_p0K6hvRmLspc-MzDM2E1IYwmhNVEH5H2qoVtyHKLPPfqEo5UWrIoAG63XLnrtSvc870UQ2D0cQo-SNBHb9u3wSSbOFtWqXrdyMRmondEX95B5hV61D07u6i3ulir1-iBvFyVy4s3Dre_AJ-7rzY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Battery+thermal+management+of+intelligent-connected+electric+vehicles+at+low+temperature+based+on+NMPC&rft.jtitle=Energy+%28Oxford%29&rft.au=Ma%2C+Yan&rft.au=Ding%2C+Hao&rft.au=Liu%2C+Yongqin&rft.au=Gao%2C+Jinwu&rft.date=2022-04-01&rft.issn=0360-5442&rft.volume=244+p.122571-&rft_id=info:doi/10.1016%2Fj.energy.2021.122571&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon