The fault diagnosis method of rolling bearing under variable working conditions based on deep transfer learning

The vibration signals of rolling bearing obtained under variable working conditions do not obey the same independent distribution so that the traditional method of bearing fault diagnosis has low accuracy, a fault diagnosis method about rolling bearing based on sparse denoising autoencoder (SDAE) fo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the Brazilian Society of Mechanical Sciences and Engineering Ročník 42; číslo 11
Hlavní autoři: Dong, Shaojiang, He, Kun, Tang, Baoping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2020
Springer Nature B.V
Témata:
ISSN:1678-5878, 1806-3691
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The vibration signals of rolling bearing obtained under variable working conditions do not obey the same independent distribution so that the traditional method of bearing fault diagnosis has low accuracy, a fault diagnosis method about rolling bearing based on sparse denoising autoencoder (SDAE) for deep feature extraction combining transfer learning is proposed. First, the bearing vibration signal in the time domain is transformed for frequency domain signal via Fourier transform, which is input into the SDAE for adaptive deep feature extraction. Then, the joint geometrical and statistical alignment is introduced to deal with the deep feature samples for reducing the domain discrepancy both statistically and geometrically. Finally, the k-nearest neighbor classification algorithm is used for completing the fault diagnosis of rolling bearing under variable working conditions. The experimental results show that the method presented in the paper improves the accuracy rate of fault diagnosis about rolling bearing under variable working conditions, verifies its feasibility and effectiveness.
AbstractList The vibration signals of rolling bearing obtained under variable working conditions do not obey the same independent distribution so that the traditional method of bearing fault diagnosis has low accuracy, a fault diagnosis method about rolling bearing based on sparse denoising autoencoder (SDAE) for deep feature extraction combining transfer learning is proposed. First, the bearing vibration signal in the time domain is transformed for frequency domain signal via Fourier transform, which is input into the SDAE for adaptive deep feature extraction. Then, the joint geometrical and statistical alignment is introduced to deal with the deep feature samples for reducing the domain discrepancy both statistically and geometrically. Finally, the k-nearest neighbor classification algorithm is used for completing the fault diagnosis of rolling bearing under variable working conditions. The experimental results show that the method presented in the paper improves the accuracy rate of fault diagnosis about rolling bearing under variable working conditions, verifies its feasibility and effectiveness.
ArticleNumber 585
Author Tang, Baoping
Dong, Shaojiang
He, Kun
Author_xml – sequence: 1
  givenname: Shaojiang
  surname: Dong
  fullname: Dong, Shaojiang
  organization: School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University
– sequence: 2
  givenname: Kun
  orcidid: 0000-0001-9916-6075
  surname: He
  fullname: He, Kun
  email: 15923802747@163.com
  organization: School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University
– sequence: 3
  givenname: Baoping
  surname: Tang
  fullname: Tang, Baoping
  organization: State Key Laboratory of Mechanical Transmission, Chongqing University
BookMark eNp9kMtOwzAQRS1UJErhB1hZYh1w7MRxlqjiJVViU9aWH5M2JbWDnYL4exyChMSii9GMrXvmcc_RzHkHCF3l5CYnpLqNBSkYyQgdg_M8YydongvCM8brfJZqXomsFJU4Q-cx7ghhtOTlHPn1FnCjDt2Abas2zsc24j0MW2-xb3DwXde6DdagwpgPzkLAH-mhdAf404e38dt4Z9uh9S5irSIk1GEL0OMhKBebhHSpgUvSC3TaqC7C5W9eoNeH-_XyKVu9PD4v71aZYbwaMmuqplSCGytAAVjKgBOVDtKk4lQUhSHCcGrq2mpWa8qBU20arQ0DUzHOFuh66tsH_36AOMidPwSXRkpalDQnospFUolJZYKPMUAjTTuo8ZC0eNvJnMjRXjnZK5O98sdeyRJK_6F9aPcqfB2H2ATFfrQTwt9WR6hvGR6RWg
CitedBy_id crossref_primary_10_1007_s12206_024_1016_x
crossref_primary_10_1088_1361_6501_ad0611
crossref_primary_10_1109_ACCESS_2021_3059761
crossref_primary_10_1016_j_aei_2022_101609
crossref_primary_10_3390_jmse13071337
crossref_primary_10_1007_s40430_022_03950_9
crossref_primary_10_1016_j_measurement_2022_112346
crossref_primary_10_1088_1361_6501_ac2b72
crossref_primary_10_1016_j_dsp_2022_103662
crossref_primary_10_1155_2024_2341211
crossref_primary_10_1109_ACCESS_2022_3233220
crossref_primary_10_1109_ACCESS_2021_3069884
crossref_primary_10_1007_s42835_023_01453_8
crossref_primary_10_1007_s10772_021_09873_5
crossref_primary_10_1109_ACCESS_2021_3124025
crossref_primary_10_1007_s40430_024_04898_8
crossref_primary_10_1109_JSEN_2022_3165398
crossref_primary_10_1088_1361_6501_ace7e6
crossref_primary_10_3390_app14198666
crossref_primary_10_3390_e24111618
Cites_doi 10.3390/e18080292
10.1016/j.measurement.2019.06.029
10.1016/j.measurement.2013.03.023
10.1109/TIE.2016.2524399
10.1016/j.measurement.2016.07.054
10.1006/mssp.2001.1462
10.1109/TNN.2010.2091281
10.1109/TIE.2019.2953010
10.1109/TIE.2012.2219838
10.1016/j.ymssp.2011.09.003
10.1016/j.ymssp.2017.03.034
10.1016/j.ins.2014.09.004
10.1038/nature14539
10.1109/TSMC.2017.2754287
10.1016/j.ymssp.2013.11.011
10.1038/381607a0
10.1016/j.ymssp.2015.08.030
10.1155/2014/765621
10.1109/TKDE.2009.191
10.3901/CJME.2015.1026.127
10.1016/j.mechmachtheory.2014.01.011
10.1109/CVPR.2017.547
10.1109/ICCV.2013.368
10.1109/DEMPED.2007.4393063
10.1109/ICCV.2013.274
10.1145/1390156.1390294
ContentType Journal Article
Copyright The Brazilian Society of Mechanical Sciences and Engineering 2020
The Brazilian Society of Mechanical Sciences and Engineering 2020.
Copyright_xml – notice: The Brazilian Society of Mechanical Sciences and Engineering 2020
– notice: The Brazilian Society of Mechanical Sciences and Engineering 2020.
DBID AAYXX
CITATION
DOI 10.1007/s40430-020-02661-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1806-3691
ExternalDocumentID 10_1007_s40430_020_02661_3
GrantInformation_xml – fundername: Natural Science Foundation Project of CQ
  grantid: cstc2017jcyjAX0279
– fundername: National Natural Science Foundation of China
  grantid: 51775072
GroupedDBID -EM
06D
0R~
203
29L
29~
2WC
30V
4.4
406
5GY
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXHO
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
APOWU
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
BGNMA
C1A
CS3
CSCUP
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OK1
PT4
RIG
RLLFE
RNS
ROL
RSC
RSV
SCD
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
XSB
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
OVT
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c367t-dc7f5a86cd8eaeed23e60a180b0762844c08c62c99db39b26e62bcfbbc3ec7363
IEDL.DBID RSV
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000581816400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1678-5878
IngestDate Thu Sep 18 00:02:41 EDT 2025
Sat Nov 29 06:05:46 EST 2025
Tue Nov 18 22:35:35 EST 2025
Fri Feb 21 02:31:49 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords Fault diagnosis
Variable working conditions
Transfer learning
Rolling bearing
Sparse denoising autoencoder
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-dc7f5a86cd8eaeed23e60a180b0762844c08c62c99db39b26e62bcfbbc3ec7363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9916-6075
PQID 2452108718
PQPubID 2043642
ParticipantIDs proquest_journals_2452108718
crossref_citationtrail_10_1007_s40430_020_02661_3
crossref_primary_10_1007_s40430_020_02661_3
springer_journals_10_1007_s40430_020_02661_3
PublicationCentury 2000
PublicationDate 20201100
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 20201100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of the Brazilian Society of Mechanical Sciences and Engineering
PublicationTitleAbbrev J Braz. Soc. Mech. Sci. Eng
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Wang, Liang, Li (CR3) 2014; 45
Pan, Tsang, Kwork (CR26) 2011; 22
Olshausen, Field (CR30) 1996; 381
Samanta, Al-Balushi (CR8) 2003; 17
Yang, Wang, Cheng (CR19) 2013; 46
Shell, Coupland (CR23) 2015; 293
Yuan, Huang, Wang (CR13) 2018; 14
Guo, Chen, Shen (CR17) 2016; 93
Liu, Han (CR5) 2014; 18
CR34
Shao, Jiang, Zhao (CR16) 2017; 95
Fei (CR21) 2017; 5
Chen, Shen, Yan (CR25) 2017; 38
CR31
Sun, Wang, Liu (CR15) 2019; 146
Gretton, Borgwardt, Rasch (CR32) 2012; 13
Miguel, Giansalvo, Antonio (CR11) 2013; 60
Cocconcelli, Bassi, Secchi (CR6) 2012; 27
Xu, Zhao, Ma (CR4) 2013; 3
Wu, Yu, Liu (CR20) 2016; 18
Cerradam, Zurita, Cabrera (CR7) 2016; 70
CR29
CR28
CR9
CR27
Yann, Yoshua, Geoffrey (CR12) 2015; 521
Pan, Yang (CR22) 2010; 20
Shen, Chen, Yan (CR24) 2017; 30
Chen, Qie, Zhang (CR1) 2016; 29
Liu, Wang, Chen (CR18) 2014; 2014
Yang, Lei, Jia (CR33) 2020; 67
Wen, Gao, Li (CR14) 2019; 49
Yang, Liu, Chen (CR2) 2017; 13
Duan, Wang (CR10) 2016; 63
BA Olshausen (2661_CR30) 1996; 381
J Shell (2661_CR23) 2015; 293
B Samanta (2661_CR8) 2003; 17
M Cocconcelli (2661_CR6) 2012; 27
2661_CR28
2661_CR27
HH Liu (2661_CR5) 2014; 18
SJ Pan (2661_CR22) 2010; 20
XJ Guo (2661_CR17) 2016; 93
C Chen (2661_CR25) 2017; 38
2661_CR29
TY Wu (2661_CR20) 2016; 18
MD Sun (2661_CR15) 2019; 146
TY Wang (2661_CR3) 2014; 45
HM Liu (2661_CR18) 2014; 2014
XF Yuan (2661_CR13) 2018; 14
F Shen (2661_CR24) 2017; 30
2661_CR9
RC Duan (2661_CR10) 2016; 63
M Cerradam (2661_CR7) 2016; 70
HD Shao (2661_CR16) 2017; 95
SJ Pan (2661_CR26) 2011; 22
2661_CR31
Y Yang (2661_CR19) 2013; 46
SW Fei (2661_CR21) 2017; 5
L Wen (2661_CR14) 2019; 49
BY Yang (2661_CR2) 2017; 13
A Gretton (2661_CR32) 2012; 13
LC Yann (2661_CR12) 2015; 521
GH Chen (2661_CR1) 2016; 29
B Yang (2661_CR33) 2020; 67
2661_CR34
J Xu (2661_CR4) 2013; 3
DP Miguel (2661_CR11) 2013; 60
References_xml – volume: 13
  start-page: 1321
  issue: 3
  year: 2017
  end-page: 1331
  ident: CR2
  article-title: Fault diagnosis for a wind turbine generator bearing via sparse representation and shift-invariant K-SVD
  publication-title: IEEE Trans Ind Electron
– volume: 3
  start-page: 87
  year: 2013
  end-page: 118
  ident: CR4
  article-title: Fault diagnosis of complex industrial process using KICA and sparse SVM
  publication-title: Math Probl Eng
– volume: 18
  start-page: 292
  issue: 8
  year: 2016
  ident: CR20
  article-title: On multi-scale entropy analysis of order-tracking measurement for bearing fault diagnosis under variable speed
  publication-title: Entropy
  doi: 10.3390/e18080292
– volume: 146
  start-page: 305
  year: 2019
  end-page: 314
  ident: CR15
  article-title: A sparse stacked denoising autoencoder with optimized transfer learning applied to the fault diagnosis of rolling bearings
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.06.029
– volume: 46
  start-page: 2306
  issue: 8
  year: 2013
  end-page: 2312
  ident: CR19
  article-title: A fault diagnosis approach for bearings based on VPMCD under variable speed conditio
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.03.023
– volume: 63
  start-page: 3815
  issue: 6
  year: 2016
  end-page: 3823
  ident: CR10
  article-title: Fault diagnosis of on-load tap-changer in converter transformer based on time-frequency vibration analysis
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2016.2524399
– volume: 93
  start-page: 490
  year: 2016
  end-page: 502
  ident: CR17
  article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.07.054
– volume: 17
  start-page: 317
  issue: 2
  year: 2003
  end-page: 328
  ident: CR8
  article-title: Artificial neural network based fault diagnostics of rolling element bearings using time-domain features
  publication-title: Mech Syst Signal Process
  doi: 10.1006/mssp.2001.1462
– volume: 22
  start-page: 199
  issue: 2
  year: 2011
  end-page: 210
  ident: CR26
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2091281
– volume: 67
  start-page: 9747
  issue: 11
  year: 2020
  end-page: 9757
  ident: CR33
  article-title: A polynomial kernel induced distance metric to improve deep transfer learning for fault diagnosis of machines
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2019.2953010
– ident: CR29
– volume: 60
  start-page: 3398
  issue: 8
  year: 2013
  end-page: 3407
  ident: CR11
  article-title: Bearing fault detection by a novel condition-monitoring scheme based on statistical-time features and neural networks
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2012.2219838
– ident: CR27
– volume: 13
  start-page: 723
  year: 2012
  end-page: 773
  ident: CR32
  article-title: A kernal two-sample test
  publication-title: J Mach Learn Res
– volume: 27
  start-page: 667
  issue: 1
  year: 2012
  end-page: 682
  ident: CR6
  article-title: An algorithm to diagnosis to diagnose ball bearing faults in servomotors running arbitrary motion profiles
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2011.09.003
– volume: 95
  start-page: 187
  year: 2017
  end-page: 204
  ident: CR16
  article-title: A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.03.034
– volume: 293
  start-page: 59
  year: 2015
  end-page: 79
  ident: CR23
  article-title: Fuzzy transfer learning: methodology and application
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.09.004
– volume: 30
  start-page: 118
  issue: 1
  year: 2017
  end-page: 126
  ident: CR24
  article-title: Application of singular value decomposition and transfer learning in motor fault diagnosis
  publication-title: J Vib Eng
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR12
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 49
  start-page: 136
  issue: 1
  year: 2019
  end-page: 144
  ident: CR14
  article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2017.2754287
– volume: 38
  start-page: 33
  issue: 1
  year: 2017
  end-page: 40
  ident: CR25
  article-title: Bearing Fault diagnosis based on improved LSSVM and transfer learning method
  publication-title: J Instrum
– ident: CR31
– volume: 14
  start-page: 3235
  issue: 7
  year: 2018
  end-page: 3243
  ident: CR13
  article-title: Deep learning based feature representation and its application for soft sensor modeling with variable-wise weighted SAE
  publication-title: IEEE Trans Ind Electron
– volume: 45
  start-page: 139
  issue: 1
  year: 2014
  end-page: 153
  ident: CR3
  article-title: Rolling element bearing fault diagnosis via fault characteristic order(FCO) analysis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2013.11.011
– ident: CR9
– volume: 5
  start-page: 269
  issue: 3
  year: 2017
  end-page: 276
  ident: CR21
  article-title: Fault diagnosis of bearing under varying load conditions by utilizing composite features self-adaptive reduction-based RVM classifier
  publication-title: J Vib Eng Technol
– ident: CR34
– volume: 381
  start-page: 607
  issue: 6583
  year: 1996
  end-page: 609
  ident: CR30
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
  doi: 10.1038/381607a0
– volume: 70
  start-page: 87
  issue: 1
  year: 2016
  end-page: 103
  ident: CR7
  article-title: Fault diagnosis in spur gears based on genetic algorithm and random forest
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2015.08.030
– volume: 2014
  start-page: 765621
  year: 2014
  ident: CR18
  article-title: Rolling bearing fault diagnosis under variable conditions using Hilbert–Huang transform and singular value decomposition
  publication-title: Math Probl Eng
  doi: 10.1155/2014/765621
– ident: CR28
– volume: 20
  start-page: 1345
  issue: 10
  year: 2010
  end-page: 1359
  ident: CR22
  article-title: A survey on transfer learning
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– volume: 29
  start-page: 204
  issue: 1
  year: 2016
  end-page: 211
  ident: CR1
  article-title: Improved CICA algorithm used for single channel compound fault diagnosis of Rolling Bearings
  publication-title: Chin J Mech Eng
  doi: 10.3901/CJME.2015.1026.127
– volume: 18
  start-page: 67
  issue: 75
  year: 2014
  end-page: 78
  ident: CR5
  article-title: A fault diagnosis method based on local mean decomposition and multi-scale entropy for roller bearings
  publication-title: Mech Mach Theory
  doi: 10.1016/j.mechmachtheory.2014.01.011
– volume: 13
  start-page: 723
  year: 2012
  ident: 2661_CR32
  publication-title: J Mach Learn Res
– volume: 60
  start-page: 3398
  issue: 8
  year: 2013
  ident: 2661_CR11
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2012.2219838
– ident: 2661_CR29
  doi: 10.1109/CVPR.2017.547
– volume: 63
  start-page: 3815
  issue: 6
  year: 2016
  ident: 2661_CR10
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2016.2524399
– volume: 18
  start-page: 67
  issue: 75
  year: 2014
  ident: 2661_CR5
  publication-title: Mech Mach Theory
  doi: 10.1016/j.mechmachtheory.2014.01.011
– volume: 95
  start-page: 187
  year: 2017
  ident: 2661_CR16
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.03.034
– volume: 18
  start-page: 292
  issue: 8
  year: 2016
  ident: 2661_CR20
  publication-title: Entropy
  doi: 10.3390/e18080292
– ident: 2661_CR28
  doi: 10.1109/ICCV.2013.368
– ident: 2661_CR9
  doi: 10.1109/DEMPED.2007.4393063
– volume: 67
  start-page: 9747
  issue: 11
  year: 2020
  ident: 2661_CR33
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2019.2953010
– volume: 3
  start-page: 87
  year: 2013
  ident: 2661_CR4
  publication-title: Math Probl Eng
– volume: 14
  start-page: 3235
  issue: 7
  year: 2018
  ident: 2661_CR13
  publication-title: IEEE Trans Ind Electron
– volume: 20
  start-page: 1345
  issue: 10
  year: 2010
  ident: 2661_CR22
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– ident: 2661_CR34
– volume: 70
  start-page: 87
  issue: 1
  year: 2016
  ident: 2661_CR7
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2015.08.030
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 2661_CR12
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 27
  start-page: 667
  issue: 1
  year: 2012
  ident: 2661_CR6
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2011.09.003
– ident: 2661_CR27
  doi: 10.1109/ICCV.2013.274
– volume: 45
  start-page: 139
  issue: 1
  year: 2014
  ident: 2661_CR3
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2013.11.011
– volume: 17
  start-page: 317
  issue: 2
  year: 2003
  ident: 2661_CR8
  publication-title: Mech Syst Signal Process
  doi: 10.1006/mssp.2001.1462
– volume: 93
  start-page: 490
  year: 2016
  ident: 2661_CR17
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.07.054
– volume: 2014
  start-page: 765621
  year: 2014
  ident: 2661_CR18
  publication-title: Math Probl Eng
  doi: 10.1155/2014/765621
– volume: 29
  start-page: 204
  issue: 1
  year: 2016
  ident: 2661_CR1
  publication-title: Chin J Mech Eng
  doi: 10.3901/CJME.2015.1026.127
– volume: 46
  start-page: 2306
  issue: 8
  year: 2013
  ident: 2661_CR19
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.03.023
– volume: 293
  start-page: 59
  year: 2015
  ident: 2661_CR23
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.09.004
– ident: 2661_CR31
  doi: 10.1145/1390156.1390294
– volume: 30
  start-page: 118
  issue: 1
  year: 2017
  ident: 2661_CR24
  publication-title: J Vib Eng
– volume: 5
  start-page: 269
  issue: 3
  year: 2017
  ident: 2661_CR21
  publication-title: J Vib Eng Technol
– volume: 49
  start-page: 136
  issue: 1
  year: 2019
  ident: 2661_CR14
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2017.2754287
– volume: 38
  start-page: 33
  issue: 1
  year: 2017
  ident: 2661_CR25
  publication-title: J Instrum
– volume: 146
  start-page: 305
  year: 2019
  ident: 2661_CR15
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.06.029
– volume: 13
  start-page: 1321
  issue: 3
  year: 2017
  ident: 2661_CR2
  publication-title: IEEE Trans Ind Electron
– volume: 22
  start-page: 199
  issue: 2
  year: 2011
  ident: 2661_CR26
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2091281
– volume: 381
  start-page: 607
  issue: 6583
  year: 1996
  ident: 2661_CR30
  publication-title: Nature
  doi: 10.1038/381607a0
SSID ssj0032565
Score 2.308949
Snippet The vibration signals of rolling bearing obtained under variable working conditions do not obey the same independent distribution so that the traditional...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Engineering
Fault diagnosis
Feature extraction
Fourier transforms
Learning
Mechanical Engineering
Noise reduction
Roller bearings
Statistical methods
Technical Paper
Vibration
Working conditions
Title The fault diagnosis method of rolling bearing under variable working conditions based on deep transfer learning
URI https://link.springer.com/article/10.1007/s40430-020-02661-3
https://www.proquest.com/docview/2452108718
Volume 42
WOSCitedRecordID wos000581816400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1806-3691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0032565
  issn: 1678-5878
  databaseCode: RSV
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PejBb3E6JQdvGkibNk2PIg4PMsSPsVtp8yED6UbbzX_fl6bdVFTQUwlN0vLy8n7vJe8DoXOtDE21CImJTExA-jESG2gGkoehH6SeO3Ab3kWDgRiN4vsmKKxsvd3bK8laUi-C3WweGEqsuUMtqhC2itYA7oTdjg-Pw1b-MgBx67jogRgmoYhEEyrz_Ryf4WipY365Fq3Rpr_9v__cQVuNdomvHDvsohWd76HNDzkH99EEGAObdPZaYeXc7MYldnWk8cTgwiXpxhnsAPu0MWYFnkPDxljhN3e2jsGKVs7ZC1schKE5VlpPcVUrwjCkKUfxcoCe-zdP17ekqbpAJONRRZSMTJgKLpXQKSCozzSnsGY0oyA4RRBIKiT3ZRyrjMWZzzX3M2myTDItI8bZIerkk1wfIcyEMvBtlQYiDYyWwig_BgUSZBrjnMou8lriJ7JJSW4rY7wmi2TKNTETIGZSEzNhXXSxGDN1CTl-7d1r1zRpNmeZ2Mtmj4KlKLrosl3D5eufZzv-W_cTtOFbNqgjF3uoUxUzfYrW5bwal8VZzbTvSnbm-w
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB68QH3wFtczD75pINu0afoo4qK4LuKFb6XNIYJ0l21X_76THrsqKuhTCU3SMpnMN5PMAXBotGWJkQG1oY0oSj9OI4tNX4kg8PykXR24PXTDXk8-PkbXdVBY3ni7N1eSpaQeB7u5PDCMOnOHOVShfBpmfUQs58h3c_vQyF-OIO4cF9sohmkgQ1mHynw_x2c4muiYX65FS7TpLP_vP1dgqdYuyUnFDqswZbI1WPyQc3Ad-sgYxCajl4Loys3uOSdVHWnSt2RYJekmKe4A93QxZkPyig0XY0XeqrN1gla0rpy9iMNBHJoRbcyAFKUijEPqchRPG3DfObs7Pad11QWquAgLqlVog0QKpaVJEEE9bgTDNWMpQ8EpfV8xqYSnokinPEo9YYSXKpumihsVcsE3YSbrZ2YLCJfa4rd14svEt0ZJq70IFUiUaVwIplrQbogfqzoluauM8RKPkymXxIyRmHFJzJi34Gg8ZlAl5Pi1926zpnG9OfPYXTa3GVqKsgXHzRpOXv882_bfuh_A_PndVTfuXvQud2DBcyxRRjHuwkwxHJk9mFOvxXM-3C8Z-B0mwunf
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB68EH3wFtczD75psNu0afoo6qIoi6Au-1baHLKwdJfdrv59J027HqggPpXQXGQmM5NkvhmAY62Ml2oRUhOZmKL0YzQ2WAwkD0M_SJvuwq1zF7XbotuN7z-g-Etv9_pJ0mEabJSmvDgbKnM2Bb7ZmDAetUcfz2oYymZhPrBJg-x5_aFTy2KGCt06MTZRJNNQRKKCzXzfx2fV9G5vfnkiLTVPa_X_c16DlcrqJOeOTdZhRucbsPwhFuEmDJBhiEkn_YIo537XGxOXX5oMDBm54N0kw51hvxZ7NiIvWLDYK_Lq7twJTkk5JzBi9SM2zYnSekiK0kDGJlWaiucteGpdPV5c0yobA5WMRwVVMjJhKrhUQqeoWX2muYe09DIPBaoIAukJyX0ZxypjceZzzf1MmiyTTMuIcbYNc_kg1ztAmFAGx1ZpINLAaCmM8mM0LFHWMc492YBmTYhEVqHKbcaMfjINslwuZoKLmZSLmbAGnEzbDF2gjl9r79f0TapNO07sIzTyEGrrBpzW9Hz__XNvu3-rfgSL95et5O6mfbsHS77liBLcuA9zxWiiD2BBvhS98eiw5OU3cOTyww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+fault+diagnosis+method+of+rolling+bearing+under+variable+working+conditions+based+on+deep+transfer+learning&rft.jtitle=Journal+of+the+Brazilian+Society+of+Mechanical+Sciences+and+Engineering&rft.au=Dong+Shaojiang&rft.au=He%2C+Kun&rft.au=Tang+Baoping&rft.date=2020-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1678-5878&rft.eissn=1806-3691&rft.volume=42&rft.issue=11&rft_id=info:doi/10.1007%2Fs40430-020-02661-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1678-5878&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1678-5878&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1678-5878&client=summon