Enhancing Brain Tumour Multi-Classification Using Efficient-Net B0-Based Intelligent Diagnosis for Internet of Medical Things (IoMT) Applications

Brain tumour disease develops due to abnormal cell proliferation. The early identification of brain tumours is vital for their effective treatment. Most currently available examination methods are laborious, require extensive manual instructions, and produce subpar findings. The EfficientNet-B0 arch...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information (Basel) Ročník 15; číslo 8; s. 489
Hlavní autori: Iqbal, Amna, Jaffar, Muhammad Arfan, Jahangir, Rashid
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.08.2024
Predmet:
ISSN:2078-2489, 2078-2489
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Brain tumour disease develops due to abnormal cell proliferation. The early identification of brain tumours is vital for their effective treatment. Most currently available examination methods are laborious, require extensive manual instructions, and produce subpar findings. The EfficientNet-B0 architecture was used to diagnose brain tumours using magnetic resonance imaging (MRI). The fine-tuned EffeceintNet B0 model was proposed for the Internet of Medical Things (IoMT) environment. The fine-tuned EfficientNet-B0 architecture was employed to classify four different stages of brain tumours from the MRI images. The fine-tuned model showed 99% accuracy in the detection of four different classes of brain tumour detection (glioma, no tumour, meningioma, and pituitary). The proposed model performed very well in the detection of the pituitary class with a precision of 0.95, recall of 0.98, and F1 score of 0.96. The proposed model also performed very well in the detection of the no-tumour class with values of 0.99, 0.90, and 0.94 for precision, recall, and the F1 score, respectively. The precision, recall, and F1 scores for Glioma and Meningioma classes were also high. The proposed solution has several implications for enhancing clinical investigations of brain tumours.
AbstractList Brain tumour disease develops due to abnormal cell proliferation. The early identification of brain tumours is vital for their effective treatment. Most currently available examination methods are laborious, require extensive manual instructions, and produce subpar findings. The EfficientNet-B0 architecture was used to diagnose brain tumours using magnetic resonance imaging (MRI). The fine-tuned EffeceintNet B0 model was proposed for the Internet of Medical Things (IoMT) environment. The fine-tuned EfficientNet-B0 architecture was employed to classify four different stages of brain tumours from the MRI images. The fine-tuned model showed 99% accuracy in the detection of four different classes of brain tumour detection (glioma, no tumour, meningioma, and pituitary). The proposed model performed very well in the detection of the pituitary class with a precision of 0.95, recall of 0.98, and F1 score of 0.96. The proposed model also performed very well in the detection of the no-tumour class with values of 0.99, 0.90, and 0.94 for precision, recall, and the F1 score, respectively. The precision, recall, and F1 scores for Glioma and Meningioma classes were also high. The proposed solution has several implications for enhancing clinical investigations of brain tumours.
Author Jaffar, Muhammad Arfan
Iqbal, Amna
Jahangir, Rashid
Author_xml – sequence: 1
  givenname: Amna
  surname: Iqbal
  fullname: Iqbal, Amna
– sequence: 2
  givenname: Muhammad Arfan
  surname: Jaffar
  fullname: Jaffar, Muhammad Arfan
– sequence: 3
  givenname: Rashid
  orcidid: 0000-0003-1129-6006
  surname: Jahangir
  fullname: Jahangir, Rashid
BookMark eNptUU1vEzEQtVCRKKU3foAlLiCxMP7I2j42IS2RGrikZ8v2elNHWzvYzqE_g3-MmxSpQsxlRm_ePI_fvEVnMUWP0HsCXxhT8DXEMZEZSOBSvULnFITsaKvPXtRv0GUpO2ghhOSSnKPfy3hvogtxi-fZhIg3h4d0yHh9mGroFpMpJYzBmRpSxHflibccGxB8rN0PX_EcurkpfsCrWP00hW1r4G_BbGMqoeAx5WMnx8ZNI177oalNeHPfpAr-uErrzSd8td9Pz4-Ud-j1aKbiL5_zBbq7Xm4W37vbnzerxdVt51gvajdYMfTSet9zbhVwLjl1woAC31ywFphgijBllTRKUdEAMKN0HGwPhPbsAq1OukMyO73P4cHkR51M0Ecg5a02uQY3ee2lMnbmBFhqOfHMMs8YBSpHIo23oml9OGntc_p18KXqXTMxtvU1AyUUJQRmjUVPLJdTKdmP2oV6_HRt1k-agH66pH55yTb0-Z-hv6v-l_4HRl-hYA
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3524732
crossref_primary_10_1007_s44174_025_00468_1
Cites_doi 10.1016/j.compmedimag.2019.05.001
10.1007/s12652-020-02568-w
10.1109/JSTQE.2019.2950795
10.1016/j.cmpb.2021.106597
10.1016/j.neucom.2022.07.005
10.1016/j.compeleceng.2022.108196
10.1109/MAJICC53071.2021.9526262
10.1002/cpe.6541
10.1002/ima.22554
10.1016/j.comnet.2019.04.016
10.1088/1757-899X/1055/1/012115
10.1016/j.bspc.2023.104777
10.1109/ACCESS.2018.2880838
10.1007/s11042-022-12977-y
10.1109/ICCES51350.2021.9489187
10.1007/s11760-020-01793-2
10.20473/jisebi.9.1.1-15
10.1016/j.comcom.2020.11.013
10.3390/jpm13020181
10.3390/healthcare9020153
10.32604/csse.2023.024674
10.1101/2022.07.18.22277779
10.3390/cancers15102837
10.1093/neuros/nyy543
10.32604/cmc.2022.029000
10.3390/electronics12040955
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/info15080489
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2078-2489
ExternalDocumentID oai_doaj_org_article_e89ab5c70b2b41e3b3e332028f18aeb7
10_3390_info15080489
GroupedDBID .4I
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
MK~
ML~
MODMG
M~E
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
XH6
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c367t-db7d68bee644b9044842c7a090e150bb03739139b98a9927b030af8c40b601263
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001304788500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2078-2489
IngestDate Mon Nov 10 04:34:49 EST 2025
Sat Jul 26 00:23:32 EDT 2025
Tue Nov 18 19:44:47 EST 2025
Sat Nov 29 07:18:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-db7d68bee644b9044842c7a090e150bb03739139b98a9927b030af8c40b601263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1129-6006
OpenAccessLink https://doaj.org/article/e89ab5c70b2b41e3b3e332028f18aeb7
PQID 3097921105
PQPubID 2032384
ParticipantIDs doaj_primary_oai_doaj_org_article_e89ab5c70b2b41e3b3e332028f18aeb7
proquest_journals_3097921105
crossref_citationtrail_10_3390_info15080489
crossref_primary_10_3390_info15080489
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Information (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Graber (ref_2) 2019; 84
Meera (ref_10) 2018; 5
ref_14
Isunuri (ref_21) 2022; 34
ref_12
ref_11
ref_31
ref_30
ref_18
Deepak (ref_22) 2021; 12
Kamil (ref_24) 2021; 11
Din (ref_7) 2018; 7
Swati (ref_3) 2019; 75
Kakarla (ref_16) 2021; 31
Elhoseny (ref_6) 2019; 159
Li (ref_1) 2019; 25
Ganesan (ref_17) 2020; 16
Huang (ref_8) 2022; 504
Kibriya (ref_19) 2022; 81
ref_20
Brindha (ref_15) 2021; Volume 1055
Bodapati (ref_4) 2021; 15
ref_29
ref_28
Gao (ref_13) 2021; 166
ref_27
ref_26
ref_9
Vankdothu (ref_23) 2022; 102
ref_5
Rajathi (ref_25) 2023; 44
References_xml – ident: ref_28
– volume: 75
  start-page: 34
  year: 2019
  ident: ref_3
  article-title: Brain tumor classification for MR images using transfer learning and fine-tuning
  publication-title: Comput. Med Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.05.001
– volume: 12
  start-page: 8357
  year: 2021
  ident: ref_22
  article-title: Automated categorization of brain tumor from mri using cnn features and svm
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-02568-w
– ident: ref_5
– volume: 5
  start-page: e17
  year: 2018
  ident: ref_10
  article-title: A review on automatic detection of brain tumor using computer aided diagnosis system through MRI
  publication-title: EAI Endorsed Trans. Energy Web
– volume: 25
  start-page: 1
  year: 2019
  ident: ref_1
  article-title: Polarization-sensitive optical coherence tomography for brain tumor characterization
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2019.2950795
– ident: ref_20
  doi: 10.1016/j.cmpb.2021.106597
– volume: 504
  start-page: 223
  year: 2022
  ident: ref_8
  article-title: Applicable artificial intelligence for brain disease: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.07.005
– volume: 102
  start-page: 108196
  year: 2022
  ident: ref_23
  article-title: Brain image identification and classification on Internet of Medical Things in healthcare system using support value based deep neural network
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2022.108196
– ident: ref_18
  doi: 10.1109/MAJICC53071.2021.9526262
– volume: 34
  start-page: e6541
  year: 2022
  ident: ref_21
  article-title: Three-class brain tumor classification from magnetic resonance images using separable convolution based neural network
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.6541
– volume: 31
  start-page: 1731
  year: 2021
  ident: ref_16
  article-title: Three-class classification of brain magnetic resonance images using average-pooling convolutional neural network
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22554
– volume: 159
  start-page: 147
  year: 2019
  ident: ref_6
  article-title: Effective features to classify ovarian cancer data in internet of medical things
  publication-title: Comput. Networks
  doi: 10.1016/j.comnet.2019.04.016
– volume: Volume 1055
  start-page: 012115
  year: 2021
  ident: ref_15
  article-title: Brain tumor detection from MRI images using deep learning techniques
  publication-title: Proceedings of the IOP Conference Series: Materials Science and Engineering
  doi: 10.1088/1757-899X/1055/1/012115
– ident: ref_11
  doi: 10.1016/j.bspc.2023.104777
– volume: 7
  start-page: 29763
  year: 2018
  ident: ref_7
  article-title: Trust management techniques for the Internet of Things: A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2880838
– volume: 81
  start-page: 29847
  year: 2022
  ident: ref_19
  article-title: Multiclass classification of brain tumors using a novel CNN architecture
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12977-y
– ident: ref_31
  doi: 10.1109/ICCES51350.2021.9489187
– volume: 15
  start-page: 753
  year: 2021
  ident: ref_4
  article-title: Joint training of two-channel deep neural network for brain tumor classification
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-020-01793-2
– ident: ref_27
  doi: 10.20473/jisebi.9.1.1-15
– volume: 166
  start-page: 57
  year: 2021
  ident: ref_13
  article-title: Class consistent and joint group sparse representation model for image classification in internet of medical things
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.11.013
– ident: ref_26
  doi: 10.3390/jpm13020181
– ident: ref_14
  doi: 10.3390/healthcare9020153
– volume: 44
  start-page: 1793
  year: 2023
  ident: ref_25
  article-title: Brain Tumor Diagnosis Using Sparrow Search Algorithm Based Deep Learning Model
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2023.024674
– ident: ref_29
  doi: 10.1101/2022.07.18.22277779
– ident: ref_9
  doi: 10.3390/cancers15102837
– volume: 84
  start-page: E168
  year: 2019
  ident: ref_2
  article-title: Congress of neurological surgeons systematic review and evidence-based guidelines on the use of stereotactic radiosurgery in the treatment of adults with metastatic brain tumors
  publication-title: Neurosurgery
  doi: 10.1093/neuros/nyy543
– volume: 11
  start-page: 32
  year: 2021
  ident: ref_24
  article-title: IoT framework for brain tumor classification using optimized CNN-MRFO model
  publication-title: Am. J. Bioinform. Res.
– volume: 16
  start-page: 69
  year: 2020
  ident: ref_17
  article-title: Internet of medical things with cloud-based e-health services for brain tumour detection model using deep convolution neural network
  publication-title: Electron. Gov. Int. J.
– ident: ref_12
  doi: 10.32604/cmc.2022.029000
– ident: ref_30
  doi: 10.3390/electronics12040955
SSID ssj0000778481
Score 2.307806
Snippet Brain tumour disease develops due to abnormal cell proliferation. The early identification of brain tumours is vital for their effective treatment. Most...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 489
SubjectTerms Accuracy
Brain
Brain cancer
Brain research
brain tumour
Cerebrospinal fluid
Classification
Disease
EfficientNet
Glioma
Human error
Identification
Internet
Internet of medical things
Internet of Medical Things (IoMT)
Literature reviews
Machine learning
Magnetic resonance imaging
magnetic resonance imaging (MRI)
Medical equipment
Metastasis
Methods
multi-classification
Neural networks
Recall
Teaching methods
Tomography
Tumors
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgcIBDy6cotMiHIoGQVSdOY_uEuu1WVIUVh6XqLco4dqmEkrKb8j_6jzvjeLdbIbhwTUaRlXn2zNjj9xjbAW3ogm4paqulwIjXCLBgRYMAAAl5AfGW6-kXPZmYszP7LW24zVNb5WJNjAt10znaI99V0mpL1crep8tfglSj6HQ1SWjcZw-yPM8I5ydaLPdYpNbEFj_0uyus7nfJa8SAjri1dyJRJOz_Yz2OQeZo43-H94Stp_SS7w94eMru-fYZe7xCOvicXY_bH0Sy0Z7zEelD8OkVlv8zHq_iiiiSSe1D0WM8dhTwceSZwPAkJr7nIylGGPsafryk8-z54dCydzHnmAXzYZ8RbbvA01EQHxRC-fvj7uv0A99fOTh_wb4fjacHn0USZhBOlboXDeimNOA9JlNgJVZ4Re50La30-HMBpNKK6EbBmtraXOMDWQfjCglY_-WlesnW2q71rxj3KqtDbsrSNbYIhYLGUsphQwiuzoPeZB8XTqpcYi0n8YyfFVYv5NJq1aWb7N3S-nJg6_iL3Yj8vbQhju34oJudV2nKVt7YGvacRsRCkXkFyitSmzchM7UHHNrWAgpVmvjz6hYHr__9-g17hN8qhl7CLbbWz678NnvofvcX89nbiOMbbBb8zg
  priority: 102
  providerName: ProQuest
Title Enhancing Brain Tumour Multi-Classification Using Efficient-Net B0-Based Intelligent Diagnosis for Internet of Medical Things (IoMT) Applications
URI https://www.proquest.com/docview/3097921105
https://doaj.org/article/e89ab5c70b2b41e3b3e332028f18aeb7
Volume 15
WOSCitedRecordID wos001304788500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: P5Z
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: K7-
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: PIMPY
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYlzaE5hDZtyeYPHVpoKSJay2tJxzhx6NLuYso2JLkYjy0lgeANu06OfYe-cUaSs7iU0EsvAstjbGbGmhlp5htCPoBUrkA3YaWWnKHFqxlo0KxGBQAOUQy-yvXsu5xO1fm5znutvlxOWIAHDow7NEqXMKokPgfx0AgQRrie38oOVWnA15Gj19MLpvwaLKXDiQ-Z7gLj-kMnL4d9jhqr_7BBHqr_r5XYm5fT12Sz8wvpUfieN-SFabbIRg8t8C35nTXXDh2juaKpa-xAZ_cYty-or6Flvruly_vxrKY-FYBmHiAC7QqbmpamnKVotGo6XuFwtvQk5NrdLCm6rzRsECLt3NLuDIeG1p7003g-mX2mR70T73fk52k2O_7Kuo4KrBKJbFkNsk4UGINeEGiOoVkcVbLkmhvkDQAXUjicUNCq1DqSOMFLq6qYAwZuUSLek7Vm3phtQo0YljZSSVLVOraxgFo7X0Fba6sysnJAvjzxuKg6uHHX9eK2wLDDSaToS2RAPq6o7wLMxjN0qRPXisaBY_sJVJmiU5niXyozIHtPwi66P3ZZCK6ldtHwaOd_vGOXvMKrOKQK7pG1dnFv9sl69dDeLBcH5GWaTfMfB15pcfwmGY6TXxmO-egS7-fjSX7xCOJl9bw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKQQIO_KMWCvhAJRCy6rW9cXxAqEu36qrbVQ8LqrikGcculUpSdlMQj8GL8IyMnWRZhODWA1fHsSLnmz975htCnoNOQ4FuwnKjOUOLVzAwYFiBAAAOQkGscn0_1pNJenRkDlfIj64WJqRVdjoxKuqisuGMfEtyo02IVvpvzj-z0DUq3K52LTQaWOy7b18xZJu_Hu3g_90UYnc4fbvH2q4CzMpE16wAXSQpOIeeABiO4YkSVufccIfOEQCXWgauTDBpbozQOMBzn1rFAYMXkUhc9wq5qhQGSyg_h_0PizMdrnVgp2_y66U0fCugJDCuo5yY3yxfbBDwh_6PRm339v-2HXfIrdZ9ptsN3u-SFVfeIzeXSBXvk-_D8mMgESlP6CD0v6DTi0_4Go2lxiw2AQ3pURGRNGZM0GHk0UDzyyaupgPOBmjbCzpa0JXWdKdJSTydU_TyaXOOinMrT9urLtp0QKUvRtXB9CXdXkoMeEDeXcqePCSrZVW6NUKd7OVepEliC6O8klCY4FIZ773Nhdfr5FUHisy2rOyhOchZhtFZgFC2DKF1srmYfd6wkfxl3iDgazEncIjHgWp2krUqKXOpyaFvNUokqJ6TIJ2UAv1N30tzB_hpGx30slaxzbNfuHv078fPyPW96cE4G48m-4_JDVxXNXmTG2S1nl24J-Sa_VKfzmdPowxRcnzZKP0Je7BW9g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Pb9MwFLfGQAgO4782NsAHJoGQVddO4_iA0EpbUW1UPRQ0cclixx6TRjLaDLSPsa_Dp-M9JylFCG47cHUcK3J-75_93u8R8tyoBAt0Y5ZpxRlYvJwZbTTLAQCGGxGZUOX68UBNJsnhoZ6ukR9tLQymVbY6MSjqvLR4Rt6RXCuN0Uqv45u0iOlg9ObsK8MOUnjT2rbTqCGy7y6-Q_i2eD0ewL_eFWI0nL19x5oOA8zKWFUsNyqPE-MceAVGcwhVImFVxjV34CgZw6WSyJtpdJJpLRQM8MwnNuIGAhkRS1j3GrmuIMbEwG_a-7Q83-FKIVN9nWsvpeYdRAyyr4PM6N-sYGgW8IctCAZudOd_3pq7ZKNxq-leLQf3yJor7pPbK2SLD8jlsPiM5CLFMe1jXww6O_8Cr9FQgsxCc1BMmwpIpSGTgg4DvwaYZTZxFe1z1gebn9Pxksa0ooM6VfFkQcH7p_X5KswtPW2uwGjdGZW-GJfvZy_p3krCwEPy4Ur25BFZL8rCbRLqZDfzIoljm-vIR9LkGl0t7b23mfBqi7xqAZLahq0dm4acphC1IZzSVThtkd3l7LOapeQv8_qIteUc5BYPA-X8OG1UVeoSnZmeVSCpJuo6aaSTUoAf6rtJ5gx82k4Lw7RReIv0FwYf__vxM3ITwJkejCf72-QWLBvV6ZQ7ZL2an7sn5Ib9Vp0s5k-DOFFydNUg_QlqZF_K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Brain+Tumour+Multi-Classification+Using+Efficient-Net+B0-Based+Intelligent+Diagnosis+for+Internet+of+Medical+Things+%28IoMT%29+Applications&rft.jtitle=Information+%28Basel%29&rft.au=Iqbal%2C+Amna&rft.au=Jaffar%2C+Muhammad+Arfan&rft.au=Jahangir%2C+Rashid&rft.date=2024-08-01&rft.issn=2078-2489&rft.eissn=2078-2489&rft.volume=15&rft.issue=8&rft.spage=489&rft_id=info:doi/10.3390%2Finfo15080489&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_info15080489
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon