Electric power infrastructure planning under uncertainty: stochastic dual dynamic integer programming (SDDiP) and parallelization scheme

We address the long-term planning of electric power infrastructure under uncertainty. We propose a Multistage Stochastic Mixed-integer Programming formulation that optimizes the generation expansion to meet the projected electricity demand over multiple years while considering detailed operational c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization and engineering Ročník 21; číslo 4; s. 1243 - 1281
Hlavní autoři: Lara, Cristiana L., Siirola, John D., Grossmann, Ignacio E.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2020
Springer Nature B.V
Témata:
ISSN:1389-4420, 1573-2924
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We address the long-term planning of electric power infrastructure under uncertainty. We propose a Multistage Stochastic Mixed-integer Programming formulation that optimizes the generation expansion to meet the projected electricity demand over multiple years while considering detailed operational constraints, intermittency of renewable generation, power flow between regions, storage options, and multiscale representation of uncertainty (strategic and operational). To be able to solve this large-scale model, which grows exponentially with the number of stages in the scenario tree, we decompose the problem using Stochastic Dual Dynamic Integer Programming (SDDiP). The SDDiP algorithm is computationally expensive but we take advantage of parallel processing to solve it more efficiently. The proposed formulation and algorithm are applied to a case study in the region managed by the Electric Reliability Council of Texas for scenario trees considering natural gas price and carbon tax uncertainty for the reference case, and a hypothetical case without nuclear power. We show that the parallelized SDDiP algorithm allows in reasonable amounts of time the solution of multistage stochastic programming models of which the extensive form has quadrillions of variables and constraints.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1389-4420
1573-2924
DOI:10.1007/s11081-019-09471-0